- 1 Title : Is adaptation limited by mutation? A timescale-dependent effect of genetic
- 2 diversity on the adaptive substitution rate in animals

- 3 **Authors :** Rousselle M¹, Simion P^{1,2}, Tilak MK¹, Figuet E¹, Nabholz B¹, Galtier N¹.
- 4 ¹ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- 5 ²LEGE, Department of Biology, University of Namur, 5000 Namur, Belgium.

- 6 **Corresponding author:** Marjolaine Rousselle
- 7 marjolaine.rousselle@umontpellier.fr

8 ABSTRACT

9 Whether adaptation is limited by the beneficial mutation supply is a long-standing question of 10 evolutionary genetics, which is more generally related to the determination of the adaptive 11 substitution rate and its relationship with the effective population size N_e. Empirical evidence 12 reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution 13 rate in large-N_e than in small-N_e species.

14 We gathered coding sequence polymorphism data and estimated the adaptive amino-acid 15 substitution rate ω_a , in 50 species from ten distant groups of animals with markedly different 16 population mutation rate θ . We reveal the existence of a complex, timescale dependent relationship 17 between species adaptive substitution rate and genetic diversity. We find a positive relationship 18 between ω_a and θ among closely related species, indicating that adaptation is indeed limited by the 19 mutation supply, but this was only true in relatively low- θ taxa. In contrast, we uncover a weak 20 negative correlation between ω_a and θ at a larger taxonomic scale. This result is consistent with 21 Fisher's geometrical model predictions and suggests that the proportion of beneficial mutations 22 scales negatively with species' long-term Ne.

Key words: adaptive substitution rate, beneficial mutations, effective population size, Mc-Donald
and Kreitman, animals.

25 INTRODUCTION

It is widely recognized that adaptation is more efficient in large populations. Firstly, large 26 27 populations produce a greater number of mutants per generation than small ones, and for this reason 28 are more likely to find the alleles required for adaptation, if missing from the gene pool. Secondly, 29 large populations tend to be genetically more diverse and thus more likely to carry the alleles 30 needed to respond to environmental changes (1). Lastly, the fixation probability of beneficial 31 mutations is higher in large than in small populations due to the weaker effect of genetic drift in the 32 former. So, whether it be from standing variation or *de novo* mutations, one would expect to 33 observe a higher rate of accumulation of adaptive changes, on average, in large than in small 34 populations (2). Under a simple population genetic model, in a population of effective size N_e, 35 mutations of selection coefficient s >> $1/N_e$ should accumulate at rate $\sim 4N_e\mu_as$ if s is small, where μ_a 36 is the adaptive mutation rate - i.e., the adaptive substitution rate should scale linearly with N_e μ 37 (where μ is the total mutation rate) (3).

38 This rationale implicitly assumes that the rate of adaptation is limited by the supply of new 39 mutations, i.e., the population mutation rate $\theta = 4N_{e\mu}$ (4). It might be, however, that the amount of 40 genetic diversity available in all or most existing populations is sufficient for adaptation, and/or that 41 the ability to adapt to environmental changes is determined in the first place by factors independent 42 from the effective population size, such as the magnitude or frequency of perturbations, the finite 43 set of possible genotypes an organism could reach, or the ability of populations to combine 44 favorable alleles across loci via recombination (5–10). Finally, this rationale makes the assumption of a constant distribution of the fitness effect (DFE) across species, whereas it has been suggested 45 that the adaptive mutation rate, μ_a , might be negatively correlated with N_e, which further 46 47 complicates the situation. This is because small populations tend to accumulate deleterious 48 mutations, and the resulting load could offer the opportunity for adaptive, compensatory mutations 49 to arise and spread irrespective of environmental perturbations (9). Theoretical models can therefore 50 predict a positive, negative, or lack of relationship between the population size and the adaptive 51 substitution rate, depending on the underlying assumptions.

52 Molecular data offer an unique opportunity to empirically evaluate the correlation between the 53 adaptive substitution rate and θ , and thus to test whether adaptation is actually limited by mutation. 54 More efficient adaptation in large populations should be reflected by an increased protein 55 evolutionary rate, which can be estimated from coding sequence alignments. The ratio of non-56 synonymous (i.e. amino-acid changing, dN) to synonymous (i.e. amino-acid conservative, dS) 57 substitution rates, often called ω , is a measure of the protein evolutionary rate that controls for the 58 effects of the divergence time and mutation rate. However, ω is influenced by adaptation but also 59 by the strength and efficiency of purifying selection against deleterious alleles. To account for this, 60 McDonald and Kreitman (1991, MK) (10) suggested including within-species polymorphism in the 61 analysis. Adaptive mutations are expected to contribute negligibly to the pool of segregating alleles. 62 The ratio of non-synonymous to synonymous polymorphism, therefore, provides an estimator of the expected ω under neutrality, i.e., in absence of adaptation, called ω_{na} (for non-adaptive). Subtracting 63 64 the neutral expectation ω_{na} from the observed ω provides an estimator of the adaptive rate, ω_{a} , and the proportion of adaptive substitutions, α (11). 65 66 Subsequent improvements in the MK method were intended to account for a number of factors that 67 could potentially confound the estimation of ω_{na} , including the prevalence of slightly deleterious segregating alleles and recent demographic effects (14–21). Improved methods explicitly model the 68 69 DFE of non-synonymous mutations, while taking information not only from the number of 70 synonymous and non-synonymous single nucleotide polymorphisms (SNPs), but also from the 71 distribution of allele frequencies across SNPs – so-called site frequency spectra (SFS). The ω_a 72 statistics has a high sampling variance (22) and its estimation can be biased by various factors, such 73 as a fluctuating population size (12,23,24) and GC-biased gene conversion (25–27). In particular, 74 one key assumption of the MK approach is that the long-term N_e , which determines ω , is equal to 75 the short-term N_e and can therefore be estimated from polymorphism data. It appears unlikely that 76 this is generally true, and ancient fluctuations in N_e could in principle fault the MK rationale 77 (12,23,24). Eyre-Walker (24) theoretically considered the problem of a single ancient change in N_e 78 and showed that an expansion in population size, even if old, could lead to overestimation of the 79 adaptive substitution rate. This bias could create spurious positive correlation between ω_a and N_e, 80 which should be kept in mind when interpreting this type of estimate.

81 The first applications of the MK method to large-scale data sets indicated that the adaptive rate is 82 higher in *Drosophila* than in humans (11,13,14). This is consistent with the prediction of more 83 efficient adaptation in large populations and with the hypothesis that mutation limits adaptation. 84 These studies were, however, focused on the $\alpha = \omega_a/(\omega_a + \omega_{na})$ statistics, i.e., the proportion of amino-85 acid substitutions that result from adaptation. α is influenced by ω_{na} as well as ω_a , and a lower α in 86 humans than in Drosophila might mainly reflect a higher rate of non-adaptive amino-acid substitution in the former. Indeed, purifying selection against deleterious mutations is likely less 87 88 effective in small populations due to increased genetic drift (28). Comparative studies focused on ω_a 89 have only revealed tenuous positive effects of θ on the adaptive rate in mammals, flies and plants 90 (29–31). The largest scale analysis of this sort used 44 pairs of non-model species of animals 91 occupying a wide range of θ (18). This latter study reported a significantly positive relationship 92 between θ -related life history traits and α , consistent with previous literature, but this was entirely 93 due to the non-adaptive component. Galtier (18) failed to detect any effect of θ on ω_a , despite using 94 various models for the distribution of fitness effects and accounting for a number of potential 95 confounding factors-. This result did not support the hypothesis that adaptation is limited by 96 mutation.

97 So, the evidence so far regarding the relationship between the adaptive substitution rate and the 98 population mutation rate is equivocal. Existing comparative studies have involved distinct 99 methodological approaches, both in terms of species sampling and adaptive substitution rate 100 estimation. In particular, these studies were conducted at different evolutionary scales, which might 101 partially explain their somewhat discordant results. In the short term, an increase in N_e is expected 102 to boost the adaptive substitution rate if the mutation supply is limiting. In the long run, differences 103 in N_e could also lead to changes in the DFE, and particularly in the proportion of beneficial 104 mutations, due to the fact that small-N_e species may be pulled away from their fitness optimum via 105 genetic drift (11,18,32). How these two opposing forces interact and combine to determine the 106 relationship between ω_a and θ is still unknown, in the absence of a multi-scale study.

107 In this study, we test the effects of the evolutionary time-scale on the relationship between the 108 adaptive substitution rate (ω_a) and the population mutation rate (θ). We gathered coding sequence polymorphism data in 4-6 species from each of ten distant groups of animals with markedly 109 110 different θ . Our results reveal that the relationship between ω_a and θ varies depending on the 111 considered taxonomic scale, i.e. depending on whether we compare closely related species or 112 distantly related taxa. We report a positive relationship between ω_a and θ within groups, and the strength of this relationship weakens as θ increases, indicating that adaptation is limited by 113 114 beneficial mutations in small- θ animal species. At a larger taxonomic scale, in contrast, we find a 115 weak negative correlation between ω_a and θ , with, for instance, primates and ants showing a higher

adaptive substitution rate than mussels and fruit flies. This is in line with the hypothesis that longterm N_e influences the DFE, and particularly the proportion of adaptive mutations.

118 **RESULTS**

119 **1. Data sets**

120 We assembled a data set of coding sequence polymorphism in 50 species from ten taxonomic 121 groups, each group including 4 to 6 closely-related species (**Table S1**). The ten taxa we analyzed 122 were Catharrhni (Mammalia, hereafter called "primates"), Passeriformes (Aves, hereafter called 123 "passerines"), Galloanserae (Aves, hereafter called "fowls"), Muroidea (Mammalia, hereafter called "rodents"), Lumbricidae (Annelida, hereafter called "earth worms"), Lineus (Nemertea, hereafter 124 125 called "ribbon worms"), Mytilus (Mollusca, hereafter called "mussels"), Satyrini (Lepidoptera, hereafter called "butterflies"), Formica (Hymenoptera, hereafter called "ants"), and Drosophila 126 127 (hereafter called "flies").

128 Data for five groups (primates, passerines, fowls, rodents and flies) were obtained from public databases. Data for the other five groups were newly generated via exon capture in a total of 242 129 130 individuals from 22 species (Table 1) and we obtained sufficient data for 216 of them (~89%). The 131 average coverage was of 9X in ants, 23X in butterflies, 10X in earth worms, 28X in ribbon worms 132 and 26X in mussels (average of median coverage per species). The percentage of targeted coding sequences for which at least one contig was recovered ranged from 31.9% (for Lumbricus terrestris, 133 134 the species with the maximal divergence from the species used to design the baits) to 88.2% across species (median=78.8%, Table 1). 135

Species	Group	Targeted	Recovered	Percentage of recovered
		transcripts	transcripts	among targeted transcripts
Formica fusca	ants	1810	1427	78.8
Formica sanguinea	ants	1810	1396	77.1
Formica pratensis	ants	1810	1398	77.2
Formica cunicularia	ants	1810	1406	77.7
Maniola jurtina	butterflies	2235	1921	86.0
Melanargia galathea	butterflies	2235	1713	76.6
Pyronia tithonus	butterflies	2235	1823	81.6
Pyronia bathseba	butterflies	2235	1864	83.4
Aphantopus hyperanthus	butterflies	2235	1772	79.3
Allolobophora chlorotica L1	earth worms	2955	2293	77.6
Allolobophora chlorotica L2	earth worms	2955	2315	78.3
Allolobophora chlorotica L4	earth worms	2955	1732	58.6
Aporrectodea icterica	earth worms	2955	2321	78.5
Lumbricus terrestris	earth worms	2955	943	31.9
Lineus sanguineus	ribbon worms	1725	1251	72.5
Lineus ruber	ribbon worms	1725	1521	88.2
Lineus lacteus	ribbon worms	1725	1516	87.9
Lineus longissimus	ribbon worms	1725	1505	87.2
Mytilus galloprovincialis	mussels	2181	1820	83.4
Mytilus edulis	mussels	2181	1721	78.9
Mytilus trossulus	mussels	2181	1740	79.8
Mytilus californianus	mussels	2181	1808	82.9

136 **Table 1: Summary of the number of targeted transcripts recovered in the capture experiment.**

We assessed contamination between samples from distinct species using CroCo (33). Overall, the inter-groups connection in **Figure S1** indicates a low level of cross-contamination: when there were connections between taxonomic groups, on average they concerned 38 contigs identified as contaminants, with the worst case being the 172 contigs identified as contaminants between the assembly of *Lineus sanguineus* and *Mytilus galloprovincialis*. Connections between assemblies from closely related species were very likely false positive cases, especially since the intensity of the within-group connections was congruent with the phylogenetic distance between species within taxa. Regardless, all contigs identified as potential contaminants were excluded from the dataset indownstream analyzes as a cautionary measure.

Within each group, we focused on orthologous contigs (**Table S2**), predicted open reading frames, and called the diploid genotypes of individuals for every coding position. The SNPs counts obtained after genotyping are summarized in **Table S3**. We obtain less than a thousand SNPs in only two species, the minimum being 153 for *Lineus longissimus*, in which we were only able to recover data

- 150 for six individuals.
- We recovered an average of 8,459 SNPs per species in ants, 7,950 in butterflies, 4,763 in earth worms, 8,347 in ribbon worms, 19,750 in mussels, 10,191 in primates, 25,534 in rodents, 40,870 in passerines, 8,488 in fowls and 195,398 in flies.

154 In conclusion, the capture experiment seems suitable for recovering population coding sequence 155 data for several closely related species - here, the maximum divergence between species within a 156 taxonomic group was 0.2 subst./site, i.e. the divergence between *Lumbricus terrestris* and 157 *Allolobophora chlorotica L1*.

158 **2.** Between-groups relationship between the population mutation rate (θ) and the adaptive 159 substitution rate (ω_a)

160 We used Galtier's (2016) version of the MK method (18) introduced by Eyre-Walker and Keightley 161 (2009) (16), accounting for the effect of slightly beneficial non-synonymous mutations (see 162 Methods). Two strategies were adopted to combine SFS information from distinct species in a group-level estimate of ω_a , thus accounting for the problem of phylogenetic non-independence 163 164 between species. For both strategies, we first calculated the dN/dS ratio ω at the group-level, i.e., by 165 averaging across all branches of the tree (see Material and Methods). Our first estimator, which we 166 called $\omega_{a[P]}$, was obtained by pooling SFS from distinct species within a group, separately for 167 synonymous and non-synonymous SNPs (as in (34)), before fitting the model and estimating the 168 parameters. This estimate combines data across species weighting each species equally, thus alleviating the effect of species-specific demographic history. 169

- 170 We then computed the relationship between $\omega_{a[P]}$ estimates and the across-species average nucleotide 171 diversity, π_s , which was taken as an estimate of θ . We detected a significant negative relationship
- 172 between $\omega_{a[P]}$ and the across-species average nucleotide diversity, π_s , taken as an estimate of θ
- 173 (regression test, $r^2=0.4$, p-value=2.9e-02) (**Figure 1A**).

175 A: ω_a was estimated by pooling SFS across species within a group ($\omega_{a[P]}$) using all mutations.

176 B: ω_a was estimated by pooling SFS across species within a group ($\omega_{a[P]}$) using only GC-conservative mutations.

177 C: ω_a was estimated via the averaging of ω_{na} across species within a group ($\omega_{a[A]}$) using all mutations.

178 D: ω_a was estimated via the averaging of ω_{na} across species within a group ($\omega_{a[A]}$) using only GC-conservative 179 mutations.

180 Group level π_s was estimated by averaging species-level π_s across closely related species. Black dotted lines represent

181 significant regressions across taxonomic groups and grey dotted lines non-significant ones.

Recent studies in birds and more recently primates indicated that GC-biased gene conversion (gBGC) may lead to overestimation (25,26) or underestimation of ω_a (27). Interestingly, gBGC does not affect genomic evolution with the same intensity in all organisms (35). To avoid bias in the estimation in species where gBGC is active, we restricted the SNP and substitution data to GC- 186 conservative changes, which are not influenced by gBGC. We found a non-significant positive 187 correlation $\omega_{a[P]GC-conservative}$ and θ (**Figure 1B**).

188 Our second estimator of the adaptive rate at the group level, which we called $\omega_{a[A]}$, was obtained by calculating the across-species arithmetic mean of ω_{na} within a group, and by then subtracting this 189 190 average from ω . We suggest that $\omega_{a[A]}$ is a reasonable estimator of the adaptive rate with fluctuating 191 population size if the pace of fluctuations is sufficiently slow, such that the sampled species have 192 reached the selection/drift equilibrium (Supplementary Material **Box S1**). We found a non-193 significant negative correlation between $\omega_{a[A]}$ and $\omega_{a[A]GC-conservative}$ and π_s (Figure 1C and 1D). Overall, 194 the between-group analysis seems to confirm the absence of a positive relationship between ω_a and 195 θ at the between-phyla scale in animals, and even suggests the existence of a weak, negative 196 relationship.

197 **3.** Relationship between life history traits and ω_a

198 We used several life history traits known to be correlated with species long-term effective 199 population size (36). In our data set, all life history traits were correlated with π_s (Spearman 200 correlation p-value, propagule size: 1.1e-12, adult size: 4.3e-04, longevity: 5.5e-02, body mass: 201 4.7e-03, fecundity: 9.4e-06). When estimating the per-group ω_a , we did not find any significant relationship with life history traits, but the signs of the correlation coefficients were indicative of a 202 203 negative relationship between the long-term N_e and both ω_a and $\omega_{a[GC-conservative]}$ (**Figures S2 and S3**). 204 When considering all 50 species (i.e. without controlling for phylogenetic inertia) and all mutations, we found a negative relationship between ω_a and \log_{10} transformed fecundity (regression test, 205 206 r^2 =0.094), as well as a positive relationship with log_{10} transformed longevity (regression test, r^2 =0.10) and log₁₀ transformed propagule size (regression test, r^2 =0.13) (**Figure 2A**). When using 207 only GC-conservative mutations, the relationships were similar (regression test, $r^2=0.11$) (Figure 208 209 **2B**).

210 Figure 2: Relationship between species-level ω_a and life history traits.

- 211 A: ω_a is estimated using all mutations.
- 212 B: ω_a is estimated using only GC-conservative mutations.
- 213 Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-significant ones.

214 We also found a negative relationship between ω_{na} and fecundity (regression test r^2 =0.31), and a

- 215 **positive** relationship between ω_{na} and propagule size (regression test r²=0.13) and body mass
- 216 (regression test r^2 =0.10), which was also true when using only GC-conservative mutations: positive
- 217 relationships between $\omega_{na[GC-conservative]}$ and propagule size (regression test $r^2=0.21$), longevity

218 (regression test $r^2=0.12$), body mass (regression test $r^2=0.08$) and a negative relationship with 219 fecundity (regression test $r^2=0.36$) (**Figure S4**).

4. Within-group relationship between \theta and \omega_a

To assess the within-group effect of π_s on ω_a , we performed an analysis of covariance (ANCOVA) with the taxonomic group as a categorical independent variable, as in (29). The principle of this analysis is to fit a set of parallel lines (one for each taxonomic group) and test whether their common slope is significantly different from zero. Moreover, we tested if the relationship between ω_a and π_s or life history traits differs between taxonomic groups by testing whether the lines have different intercepts.

227 By this strategy, we found that ω_a and both π_s and $\log_{10}(\pi_s)$ were significantly positively correlated when using only GC-conservative mutations (ANCOVA p-value=2.8e-02 and 3.1e-03, respectively) 228 229 (**Figure 3B**). ω_a was only marginally positively correlated with $\log_{10}(\pi_s)$ when using all mutations 230 (ANCOVA p-value=7.6e-02) (Figure 3A). We also found that there was a significant variation 231 between the intercepts (ANCOVA p-value<1e-03), as well as a significant interaction between the 232 dependent variable and the categorical independent variable (ANOVA p-value=1.6e-02). Those 233 results support the existence of a positive relationship between ω_a and θ within groups, with the 234 slope of the relationship differing between groups. This is consistent with the hypothesis that within 235 a group, higher- θ species are more likely to find and fix adaptive substitutions than low- θ species, in 236 line with the hypothesis that mutation limits adaptation. Figure 3 shows that the slopes of the 237 within-group ω_a/θ correlations decreased with group-level π_s , and we actually found a significant 238 negative correlation between these two quantities both when using all or only GC-conservative 239 mutations (Spearman correlation coefficient=-0.77, p-value=1.4e-02). This interestingly suggests 240 that the limitation of adaptation by the supply of adaptive mutations is effective and strong in small- θ groups (e.g. primates, rodents, ants), but not in high- θ groups of animals (e.g. flies, mussels, 241 242 butterflies), where the ω_a/θ relationship is essentially flat (**Figure 3**).

243 Figure 3: Relationship between species-level ω_a and π_s .

- 244 A: ω_a is estimated using all mutations.
- 245 B: ω_a is estimated using only GC-conservative mutations.
- 246 Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-significant ones.

When analyzing the per-species non-adaptive substitution rate, we found a global negative relationship between ω_{na} and π_s (using both all mutations and only GC-conservative mutations: regression test r²=0.16 and r²=0.33, respectively), and a significantly negative relationship within groups (ANCOVA p-value=1.9e-02 and p-value=1.8e-03, respectively) (**Figure S4**). This was consistent with the expectations of the nearly neutral theory of evolution (28), and with previous empirical results (18,37). The estimated ratio of adaptive to total non-synonymous substitutions, α , behaved more or less similarly to ω_a (**Figure S5**).

254 5. Control for fluctuations in Ne

255 We were concerned that the positive correlation between ω_a and π_s might have been due to an 256 artifact generated by past fluctuations in population size (23,24). To test this, we simulated coding 257 sequence evolution under several demographic scenarios with four regimes of demographic 258 fluctuations, with a three or thirty-fold ratio between the low and high N_e, and a high or low long-259 term N_e (see Material and Method and Figure S6). We found that the only scenario where 260 demographic fluctuations could lead to a detectable positive correlation between ω_a and π_s was that 261 with the highest long-term N_e and highest difference between the low and high N_e (see Figure S7 262 **panel B,** regression test r²=0.07, p-value=9.5e-03). The correlation disappeared when we used a 263 ten-fold smaller long-term N_e , whereas we empirically observed that the correlation between ω_a and 264 π_s was stronger for small long-term N_e groups (**Figure 2**). These simulations therefore suggested 265 that ancient demographic fluctuations could not explain our finding of a positive within-group correlation between ω_a and π_s in low- θ groups. We also checked that the F_{is} statistics was not 266 267 significantly correlated to ω_a (regression test p-value=5.9e-01) or π_s (p-value=2.9e-01), which indicated that population substructure was unlikely to confound our results. 268

269 **DISCUSSION**

1. Influence of θ **on** ω_a **: a two-scale mechanism**

In this study, we analyzed a 50-species population genomic data set to assess the relationship between the adaptive substitution rate and the population mutation rate and test the hypothesis that mutation limits adaptation in natural populations of animals.

274 We found that the relationship between ω_a and θ depended on the considered timescale, which is expected if the assumption of a fixed DFE across divergent taxa does not hold. At a recent 275 276 evolutionary scale (i.e., neutral divergence <0.2 subst./site), we found a significant positive 277 correlation between ω_a and π_s (Figure 2). Interestingly, the slope of the relationship differed significantly among taxonomic groups, and this slope itself was negatively correlated with the 278 279 group average π_s . Otherwise, estimates at the group level revealed a weak but consistently negative 280 relationship between ω_a and π_s , and between ω_a and various life history traits correlated with the 281 long-term N_e (**Figure 1** and **3**). This time scale-dependent behavior of the ω_a/θ relationship was here

demonstrated via the analysis of a single, multi-scale dataset, somehow reconciling earlier taxonspecific studies on the subject (4,8,18,29–31,38).

284 2. Relationship between θ and ω_a - a real causative link or an artifact ?

285 Our ANCOVA analysis revealed that the slopes of the relationships between ω_a and π_s within each 286 taxonomic group were significantly different from zero, demonstrating the existence of a positive 287 link between ω_a and π_s within groups (**Figure 2**). We were concerned that this relationship may have 288 resulted from a bias in the MK approach, instead of being a true biological signal. Indeed, the MK 289 approach implicitly assumes that the regime of selection/drift has been constant over the considered 290 time period, i.e. since the divergence between the focal and outgroup species. If however the 291 selection/drift regime had changed (e.g. via a change in effective population size) between the 292 period during which divergence had accumulated and the period during which polymorphism was 293 built, this could lead to overestimation or underestimation of ω_a (23,24). Here, we used the so-called 294 r_i's nuisance parameters (39) to control for recent changes in N_e.

In contrast, ancient N_e changes that affect coding sequence divergence are virtually impossible to trace. We showed in a previous simulation-based study that ancient demographic fluctuations could lead to severely overestimated α and ω_a - an upward bias which is exacerbated when the true adaptive substitution rate is low (23). Moreover, it has been shown by modeling single changes in N_e that in the presence of slightly deleterious mutations, an increase in N_e in the past could yield spurious evidence of positive selection, which can lead to a spurious positive correlation between ω_a and π_s (24).

We used simulations to test if demographic fluctuations could lead to such a correlation. Our results suggested that long-term fluctuations were not responsible for the positive link between ω_a and π_s that we report. In addition, the gradual decrease in the slope of the relationship with per-group average π_s was also consistent with the fact that the relation is genuine, because (i) we do not expect the demographic fluctuation regime to correlate with the average π_s of the group, and (ii) there was no relationship between the inter-group variation in π_s and the average π_s of the group (Spearman correlation test: p-value=4.7e-01).

309 A recently developed method allows the estimation of α and ω_a using polymorphism data alone 310 (20), thus avoiding the assumption of time constancy of the drift/selection regime. However, stimates of α and ω_a by this method deserve a specific interpretation, as they represent the rate of adaptive evolution of the species during its very recent history, and not the one of its long-term history. This method requires high quality datasets and highly polymorphic species, and it was not applicable to our dataset, in which species and groups differ widely in terms of SNP numbers (**Table S3**).

316 **3. Mutation limits adaptation within taxonomic groups in small-0 animals**

317 Our findings therefore indicate of a genuine link between the adaptive substitution rate and θ , which 318 is consistent with the hypothesis that, in several groups of animals, the rate of adaptation is limited 319 by the supply of beneficial mutations. The slope of the relationship was particularly steep in ants, 320 fowls, passerines, rodents and primates (Figure 2). For instance, the estimated adaptive rate in 321 rhesus macaque (*Macaca mulatta*: π_s =0.0018) was more than 3-fold higher than that of humans 322 (*Homo sapiens*: π_s =0.0006). Note that this interpretation relies on the assumption that different 323 species from a given taxonomic group share the same DFE and, in particular, the same proportion 324 of beneficial mutations. This is consistent with previous analyses of the relationship between ω_a and 325 π_s at a relatively recent time scale (27,29). It is also consistent with the finding that strong selective 326 sweeps are more abundant in species of great apes with a large population size (4).

327 Interestingly, we found that the relationship between ω_a and π_s was significantly stronger in low-328 diversity than high-diversity groups. In flies, a high-diversity group, the slope of the linear 329 regression between the two variables was only 1.3, whereas it was between 7.8 and 77 in the four 330 vertebrate groups. In mussels, i.e. the taxonomic group with the highest average diversity in our 331 dataset, we detected no significant relationship between ω_a and π_s , with the slope being very close to 332 zero (-0.4). It is possible that in such organisms the adaptive evolutionary rate is not limited by the 333 mutation supply: the standing variation and/or the influx of new mutations are sufficient for proteins 334 to find the required alleles. This is consistent with the results of (8), who showed that patterns of 335 adaptation to insecticides in natural *Drosophila melanogaster* populations are incompatible with the 336 hypothesis that adaptation is mutation-limited. This is also consistent with the results of Jensen and 337 Bachtrog (40), who found very similar rates of adaptation between two Drosophila species with 338 different N_e.

339 Finally, the results shown in **Figure 3** corroborate theoretical predictions indicating that when N_e is 340 sufficiently large, it is the species ability to combine beneficial alleles across loci that limits 341 adaption rather than the strength of selection or the mutation supply (9). Our results suggest that this 342 situation applies to large- N_e groups of animals, such as *Drosophila*, but not to small- N_e ones, such 343 as primates. Indeed, one should keep in mind that the two variables we analyze here, π_s and ω_a , are 344 potentially affected by the effects of interference between segregating mutations (17). Weissman & 345 Barton (9), following Gillespie (41), explicitly modeled linkage between beneficial mutations and 346 showed that the effect of N_e on the adaptive rate is expected to saturate when parameters are set to values estimated in *Drosophila*. The neutral genetic diversity is also expected to be affected by 347 348 linked selection (42,43), to an extent that still deserves to be properly assessed (44)]. Quantifying 349 the effect of linked selection on the neutral and selected variation, and its relationship with N_e, is a 350 current challenge and would help interpreting results such as the ones we report here.

4. What are the determinants of ω_a **across distantly related taxa**?

352 We used two approaches to estimate the adaptive substitution rate at the group level. Both supported 353 a negative among-group relationship between ω_a and π_s , and between ω_a and life history traits that 354 have been shown to be linked to the long-term effective population size (36) (Figure 1, S2, S3 and 355 3). As different sets of genes were used in the different groups of animals, the gene content might 356 have influenced our results. Indeed, Enard et al. (45) showed that genes interacting with viruses 357 experience a significantly higher adaptive substitution rate, thus demonstrating the importance of 358 the gene sampling strategy in comparative studies. In the exon capture experiment, a subset of 359 genes were randomly sampled from an existing transcriptome reference, whereas all available genes 360 were used in the other species (provided that they were present in all species within a group). We do 361 not see any particular reason why the gene sample would be biased with respect to virus interacting 362 proteins in some specific groups, and we did not detect any effect of data type (i.e. exon capture vs. 363 genome-wide) on ω_a . Our results are consistent with the results of Galtier (16), who analyzed the 364 relationship between ω_a and π_s in a transcriptomic dataset of 44 distantly related species of animals. 365 Indeed, the main analysis in Galtier (18) revealed no significant correlation between ω_a and π_s , but 366 various control analyses (particularly using GC or expression restricted datasets) yielded a 367 significantly negative correlation between the two variables.

368 This suggests that the mutation limitation hypothesis does not accurately account for the variation 369 of ω_a at a large taxonomic scale, implying that factors other than θ must be at work here. Hereafter 370 we discuss a number of such potential factors in the light of Fisher's geometrical model (FGM), 371 which provides a convenient framework for considering the determinants of the adaptive 372 substitution rate.

First, simulations under FGM and a moving optimum showed that the adaptive substitution rate is primarily determined by the rate of environmental change (32,46). If one assumes that species with a longer generation time undergo a higher per generation rate of environmental change, and that generation time is negatively correlated to population size in animals, then our results could perhaps be interpreted this way (36).

378 Moreover, Lourenço et al. (32) suggested that organismal complexity, represented by the dimensionality of the phenotypic space in FGM, affects the adaptive substitution rate more strongly 379 380 than the effective population size does, with the adaptive substitution rate being an increasing 381 function of complexity. This is because the probability that a new mutation is in the optimal 382 direction decreases as the number of potential directions increases, such that the average adaptive 383 walk takes more steps in a high-dimension than a low-dimension space (32,47). Complexity sensus 384 FGM, however, is very hard to quantify in a biologically relevant way. To argue that primates and 385 birds are more complex than mussels and worms does not seem particularly relevant when 386 considering the organism level. Different measures of complexity have been considered at the 387 molecular or cellular level, such as genome size, gene or protein number, number of protein-protein 388 interactions, number of cell types, and these seem to point towards a higher complexity in mammals than insects, for instance (37,38). This is consistent with the idea of a greater complexity of species 389 390 with smaller Ne. Fernández and Lynch (50) suggested that the accumulation of mildly deleterious 391 mutations insmall d populations induces secondary selection for protein-protein interactions that 392 stabilize key gene functions, thus introducing a plausible mechanism for the emergence of 393 molecular complexity (50). If the number of protein-protein interactions is a relevant measure of 394 proteome complexity, then this might contribute to explain our findings of a higher adaptive 395 substitution rate in low- θ than in high- θ groups.

Finally, variations in ω_a across distantly related taxa could be modulated by the long-term N_e via the mean distance of the population to the fitness optimum. Indeed, under FGM, the proportion of beneficial mutations increases with the distance to the optimum. Groups of species evolving under small long-term N_a are further away from their optimum, compared to larger- N_e groups, due to an 400 increased rate of fixation of deleterious mutations at equilibrium, so they are predicted to undergo a 401 larger proportion of beneficial, compensatory mutations. Empirical analyses of SFS based on large 402 samples in humans and flies are consistent with the hypothesis that humans are on average more 403 distant to their optimum than flies (11).

To sum up, our results suggest that factors linked to species long-term effective population size affect the DFE, i.e., the proportion and rate of beneficial mutation would be non-independent of the long-term N_e. We suggest that the proteome is probably more complex and further away from its optimal state in small-N_e than in large-N_e groups of animals, which might contribute to increasing the steady-state adaptive rate in the former, thus masking the effect of mutation limitation in acrossgroup comparisons.

410 CONCLUSION

In this study, we sampled a large variety of animals species and demonstrated a timescale-dependent 411 relationship between the adaptive substitution rate and the population mutation rate, that reconciles 412 413 previous studies that were conducted at different taxonomic scales. We demonstrate that the relationship between the adaptive substitution rate and θ within closely related species sharing a 414 415 similar DFE is shaped by the limited beneficial mutation supply, whereas the between-group pattern probably reflects the influence of long-term population size on the proportion of beneficial 416 417 mutations. Our results provide empirical evidence for mutation-limited adaptive rate at whole proteome level in small-N_e groups of animals, while stressing the fact that DFE is not independent 418 419 of the long-term effective population size – a crucial factor that must be properly accounted for in large-scale comparative population genomic analyses. 420

421 MATERIAL & METHODS

422 1. Data set

423 Genomic, exomic and transcriptomic data from primates, passerines, fowls, rodents and flies were 424 retrieved from the SRA database. Detailed referenced, bioprojects and sample sizes are provided in 425 **Table S1**. The minimal sample size was five diploid individuals (in *Papio anubis*) and the 426 maximum was 20 (in seven species).

427 Exon capture data were newly generated in ants, butterflies, mussels, earth worms and ribbon 428 worms. We gathered tissue samples or DNA samples for at least eight individuals per species and 429 four or five species per group. Reference transcriptomes were obtained from previously published 430 RNA-seq data in one species per taxonomic group (36,51,52). Details of the species and numbers of 431 individuals are presented in **Table S1**.

432 2. Multiplexed target capture experiment

433 DNA from whole animal body (ants), body section (earth worms, ribbon worms), mantle (mussels) 434 or head/thorax (butterflies) was extracted using DNAeasy Blood and Tissue kit (QIAGEN) 435 following the manufacturer instructions. About 3 µg of total genomic DNA were sheared for 20 mn 436 using an ultrasonic cleaning unit (Elmasonic One). Illumina libraries were constructed for all 437 samples following the standard protocol involving blunt-end repair, adapter ligation, and adapter 438 fill-in steps as developed by (53) and adapted in (54).

To perform target capture, we randomly chose contigs in five published reference transcriptomes (*Maniola jurtina* for butterflies (51), *Lineus longissimus* for ribbon worms (36), *Mytilus galloprovincialis* for mussels (36), *Allobophora chlorotica L1* for earth worms (36), and *Formica cunicularia* for ants (52)) in order to reach 2Mb of total sequence length per taxon (~2000 contigs). 100nt-long baits corresponding to these sequences were synthesized by MYbaits (Ann Arbor, MI, USA), with an average cover of 3X.

445 We then performed multiplexed target capture following the MYbaits targeted enrichment protocol: 446 about 5 ng of each library were PCR-dual-indexed using Taq Phusion (Phusion High-Fidelity DNA 447 Polymerase Thermo Scientific) or KAPA HiFi (2× KAPA HiFi HotStart ReadyMix 448 KAPABIOSYSTEMS) polymerases. We used primers developed in (55). Indexed libraries were 449 purified using AMPure (Agencourt) with a ratio of 1.6, quantified with Nanodrop ND-800, and 450 pooled in equimolar ratio. We had a total of 96 combinations of indexes, and two Illumina lanes, for 451 a total of 244 individuals. This means that we had to index two (rarely three) individuals with the 452 same combination to be sequenced in the same line. When this was necessary, we assigned the same 453 tag to individuals from distantly related species (i.e. from different groups). Exon capture was 454 achievedaccording to the Mybaits targeted enrichment protocol, adjusting the hybridization 455 temperature to the phylogenetic distance between the processed library and the baits. For libraries 456 corresponding to individuals from the species used to design baits, we used a temperature of 65°C during 22 h. For the other ones we ran the hybridization reactions for 16 h at 65°C, 2 h at 63°C, 2 h 457 458 at 61°C and 2 h at 59°C. Following hybridization, the reactions were cleaned according to the kit 459 protocol with 200 µL of wash buffers, and hot washes were performed at 65°C or 59°C depending 460 on the samples. The enriched solutions were then PCR-amplified for 14 to 16 cycles, after removal 461 of the streptavidin beads. PCR products were purified using AMPure (Agencourt) with a ratio of 1.6, and paired-end sequenced on two Illumina HiSeq[®] 2500 lines. Illumina sequencing and 462 463 demultiplexing were subcontracted.

464 3. Assembly and genotyping

465 For RNA-seq data (i.e. fowls and two rodents), we used trimmomatic (56) to remove Illumina 466 adapters and reads with a quality score below 30. We constructed *de novo* transcriptome assemblies 467 for each species following strategy B in (57), using Abyss (58) and Cap3 (59). Open reading frames (ORFs) were predicted using the Trinity package (60). Contigs carrying ORF shorter than 150 bp 468 469 were discarded. Filtered RNA-seq reads were mapped to this assembly using Burrow Wheeler 470 Aligner (BWA) (version 0.7.12-r1039) (61). Contigs with a coverage across all individual below 471 2.5xn (where n is the number of individuals) were discarded. Diploid genotypes were called 472 according to the method described in (62) and (63) (model M1) via the software reads2snps 473 (https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools). This method calculates the 474 posterior probability of each possible genotype in a maximum likelihood framework. Genotypes 475 supported by a posterior probability higher than 95% are retained, otherwise missing data is called. 476 We used version of the method which accounts for between-individual, within-species 477 contamination as introduced in (52), using the -contam=0.1 option, which means assuming that up 478 to 10% of the reads assigned to one specific sample may actually come from a distinct sample, and 479 only validating genotypes robust to this source of uncertainty.

For primates, rodents, passerines and flies, reference genomes, assemblies and annotations files were downloaded from Ensembl (release 89) and NCBI (**Table S1**). We kept only '*CDS*' reports in the annotations files, corresponding to coding exons, which were annotated with the automatic Ensembl annotation pipeline, and the havana team for *Homo sapiens*. We used trimmomatic to remove Illumina adapters, to trim low-quality reads (i.e. with an average base quality below 20), 485 and to keep only reads longer than 50bp. Reads were mapped using BWA (61) on the complete 486 reference assembly. We filtered out hits with mapping quality below 20 and removed duplicates, 487 and we extracted mapping hits corresponding to regions containing coding sequences according to 488 the annotated reference assembly. This was done to avoid calling SNPs on the whole genome, 489 which would be both time consuming and useless in the present context. We called SNPs using a 490 pipeline based on GATK (v3.8-0-ge9d80683). Roughly, this pipeline comprised two rounds of 491 variant calling separated by a base quality score recalibration. Variant calling was first run on every 492 individuals from every species using HaplotypeCaller (--emitRefConfidence GVCF 493 --genotyping mode DISCOVERY -hets 0.001). The variant callings from all individuals of a given 494 species were then used to produce a joint genotype using GenotypeGVCFs. Indels in the resulting 495 vcf files were then filtered out using vcftools. The distributions of various parameters associated 496 with SNPs were then used to set several hard thresholds (i.e. Quality by Depth < 3.0; Fisher Strand 497 > 10; Strand Odds Ratio > 3.0; MQRootMeanSquare < 50; MQRankSum < -0.5; ReadPosRankSum < -2.0) in order to detect putative SNP-calling errors using VariantFiltration. This erroneous SNPs 498 499 were then used for base quality score recalibration of the previously created mapping files using 500 BaseRecalibrator. These mappings with re-calibrated quality scores were then used to re-call 501 variants (HaplotypeCaller), to re-produce a joint genotype (GenotypeGVCFs, --allsites) and to re-502 set empirical hard thresholds (i.e. same values as above, except for Quality by Depth < 5.0). The 503 obtained vcf files were converted to fasta files (i.e. producing two unphased allelic sequences per 504 individual) using custom python scripts while discarding exons found on both mitochondrial and 505 sexual chromosomes and while filtering out additional SNPs: we removed SNPs with a too high 506 coverage (thresholds were empirically set for each species), with a too low coverage (i.e. 10x per 507 individual) and with a too low genotype quality per individual (i.e. less than 30).

508 For reads generated through target capture experiment, we cleaned reads with trimmomatic to 509 remove Illumina adapters and reads with a quality score below 30. For each species, we chose the 510 individual with the highest coverage and constructed de novo assemblies using the same strategy as 511 in fowls. Reads of each individuals were then mapped to the newly generated assemblies for each 512 species, using BWA (61). Diploid genotypes were called using the same protocol as in fowls. We 513 used a version of the SNP calling method which accounts for between-individual, within-species 514 contamination as introduced in (52) (see the following section). As the newly generated assemblies 515 likely contained intronic sequences, the predicted cDNAs were compared to the reference 516 transcriptome using blastn searches, with a threshold of e-value of 10e-15. We used an in-house

517 script to remove any incongruent correspondence or inconsistent overlap between sequences from 518 the transcriptomic references and the predicted assemblies, and removed six base pairs at each 519 extremity of the resulting predicted exonic sequences. These high-confidence exonic sequences 520 were used for downstream analyses.

521 **3. Contamination detection and removal**

522 For the newly generated data set, we performed two steps of contamination detection. First, we used 523 the software tool CroCo to detect inter-specific contamination in the *de novo* assembly generated 524 after exon capture (33).

525 CroCo is a database-independent tool designed to detect and remove cross-contaminations in 526 assembled transcriptomes of distantly related species. This program classifies predicted cDNA in 527 five categories, "clean", "dubious", "contamination", "low coverage" and "high expression".

528 Secondly, we used a version of the SNP calling method which accounts for between-individual, 529 within-species contamination as introduced in (52), using the -contam=0.1 option. This means 530 assuming that up to 10% of the reads assigned to one specific sample may actually come from a 531 distinct sample, and only validating genotypes robust to this source of uncertainty.

532 4. Orthology prediction and divergence analysis

In primates, we extracted one-to-one orthology groups across the six species from the OrthoMaMdatabase (64,65).

535 In fowls, passerines, rodents and flies, we translated the obtained CDS into proteins and predicted 536 orthology using OrthoFinder (66). In fowls, full coding sequences from the well-annotated chicken 537 genome (Ensembl release 89) were added to the dataset prior to orthology prediction, then 538 discarded. We kept only orthogroups that included all species. We aligned the orthologous 539 sequences with MACSE (Multiple Alignment for Coding SEquences (67).

540 In each of earth worms, ribbon worms, mussels, butterflies and ants, orthogroups were created via a 541 a blastn similarity search between predicted exonic sequences reference transcriptomes. In each 542 taxon, we concatenated the predicted exonic sequences of each species that matched the same ORF 543 from the reference transcriptome and aligned these using MACSE. We then kept alignments 544 comprising exactly one sequence per species or if only one species was absent. 545 We estimated lineage specific dN/dS ratio using bppml (version 2.4) and MapNH (version 2.3.2) 546 (68), the former for estimating each branch length and the latter for mapping substitutions on 547 species specific branches.

548 Tree topologies were obtained from the literature (**Table S4**). In passerines, fowls, rodents, flies and 549 primates, we kept only alignments comprising all the species. In the other groups we also kept 550 alignments comprising all species but one.

551 We also estimated dN/dS ratios at group level by adding up substitution counts across branches of 552 the trees, including internal branches.

To account for GC-biased gene conversion, we modified the MapNH software such that only GCconservative substitutions were recorded (26). We estimated the non-synonymous and synonymous number of GC-conservative sites per coding sequence using an in-house script. We could then compute the dN/dS ratio only for GC-conservative substitutions.

557 5. Polymorphism analysis

558 For each taxon, we estimated ancestral sequences at each internal node of the tree with the Bio++ 559 program SeqAncestor (68). The ancestral sequences at each internal node were used to orientate single nucleotide polymorphisms (SNPs) of species that descend from this node. We computed non-560 561 synonymous (π_n) and synonymous (π_s , i.e. θ) nucleotide diversity, as well as π_n/π_s using the software 562 dNdSpiNpiS_1.0 developed within the PopPhyl project (https://kimura.univ-563 montp2.fr/PopPhyl/index.php?section=tools) (using gapN_site=4, gapN_seq=0.1 and median transition/transversion ratio values estimated by bppml for each taxonomic group). We also 564 565 computed unfolded and folded synonymous and non-synonymous site frequency spectra both using 566 all mutations and only GC-conservative mutations using an in-house script as in (18).

567 6. Mc-Donlad-Kreitman analysis

We estimated α , ω_a and ω_{na} using the approach of (16) as implemented in (18) (program Grapes v.1.0). It models the distribution of the fitness effects (DFE) of deleterious and neutral nonsynonymous mutations as a negative Gamma distribution, which is fitted to the synonymous and non-synonymous site frequency spectra (SFS) computed for a set of genes. This estimated DFE is then used to deduce the expected dN/dS under near-neutrality. The difference between observed and 573 expected dN/dS provides an estimate of the proportion of adaptive non-synonymous substitutions, 574 α . The per mutation rate of adaptive and non-adaptive amino-acid substitution were then obtained as 575 following: $\omega_a = \alpha(dN/dS)$ and $\omega_{na} = (1-\alpha)(dN/dS)$. We computed these statistics for each species 576 using the per branch dN/dS ratio, using either all mutations and substitutions, or only GC-577 conservative mutations and substitutions.

578 We used three different distributions to model the fitness effects of mutations that have been shown

579 to perform the best in (18). Two of these models, GammaExpo and ScaledBeta, account for the

580 existence of slightly beneficial non-synonymous mutations. We then averaged the estimates of the

581 three models using Akaike weights as follows:

 $\overline{\alpha} = \alpha_{GammaZero} * AICw_{GammaZero} + \alpha_{GammaExpo} * AICw_{GammaExpo} + \alpha_{ScaledBeta} * AICw_{ScaledBeta}$ $\overline{\omega_a} = \alpha_{GammaZero} * AICw_{GammaZero} + \omega_{aGammaExpo} * AICw_{GammaExpo} + \omega_{aScaledBeta} * AICw_{ScaledBeta}$ $\overline{\omega_{na}} = \omega_{naGammaZero} * AICw_{GammaZero} + \omega_{naGammaExpo} * AICw_{GammaExpo} + \omega_{naScaledBeta} * AICw_{ScaledBeta}$

582 where AICw stands for akaike weigths that were estimated using the akaike.weights fonction in R

583 (https://www.rdocumentation.org/packages/qpcR/versions/1.4-1/topics/akaike.weights).

584 When estimating DFE model parameters, we accounted for recent demographic effects, as well as 585 population structure and orientation errors, by using nuisance parameters, which correct each class 586 of frequency of the synonymous and non-synonymous SFS relative to the neutral expectation in an 587 equilibrium Wright–Fisher population (39).

588 We also estimated α , ω_a and ω_{na} at group level. Two approaches were used. Firstly, we pooled 589 species specific SFS from each group, and used the dN/dS ratio of the total tree of each taxon. We 590 did so following the unweighted and unbiased strategy of (34), which combines polymorphism data 591 across species with equal weights. Briefly, we divided the synonymous and non-synonymous 592 number of SNPs of each category of the SFS of each species by the total number of SNPs of the 593 species, then we summed those normalized numbers across species and finally we transformed 594 those sums so that the total number of SNPs of the pooled SFS matches the total number of SNPs 595 across species. The resulting estimate was called $\omega_{a[P]}$. Secondly, we calculated the arithmetic mean 596 of ω_{na} across species within a taxonomic group to obtain a non-adaptive substitution rate at the group level. We then subtracted this average from the dN/dS ratio calculating across the whole tree 597 598 of each taxon to obtain an estimate of the adaptive substitution rate at group level (called $\omega_{a[A]}$).

599 **7. Life history traits variables**

Five life history traits were retrieved from the literature for each species: adult size (i.e. the average length of adults), body mass (i.e. the mean body mass of adults' wet weights), fecundity (i.e. the number of offspring released per day), longevity (i.e. the maximal recorded longevity in years), and propagule size (i.e. the size of the juvenile or egg or larva when leaving parents or group of relatives) (**Table S5**). In the case of social insects and birds, parental care is provided to juveniles until they reach adult size so in these cases, propagule size is equal to adult size.

606 8. Simulations

607 In order to evaluate whether our method to estimate the adaptive substitution rate could lead to a 608 spurious correlation between π_s and ω_a , we simulated the evolution of coding sequences in a single 609 population undergoing demographic fluctuations using SLIM V2 (69). We considered panmictic populations of diploid individuals whose genomes consisted of 1500 coding sequences, each of 999 610 base pairs. We set the mutation rate to 2.2e-9 per base pair per generation, the recombination rate to 611 612 10e-8 per base (as in (23)) and the DFE to a gamma distribution of mean -740 and shape 0.14 for 613 the negative part, and to an exponential distribution of mean 10⁻⁴ for the positive part (those DFE 614 parameters correspond to the DFE estimated from the pooled SFS of primates). We simulated 615 several demographic scenarios with four regimes of frequency of the fluctuations, as well as four 616 regimes of intensity of the fluctuations (see figure S5). We sampled polymorphism and divergence for 20 individuals at several time points during the simulations, evaluated π_s and ω_a and measured 617 618 the correlation between the two variables.

619 Acknowledgments

We thank Roger de Vila, Lise Dupont, Nicolas Bierne and Christophe Galkowski for providing us with tissue or DNA samples. We thank Iago Bonicci for the homemade program that allowed us to remove intronic sequences of the contigs obtained during the capture experiment by identifying any incongruent correspondence or inconsistent overlap on both the transcriptomic reference and the assembly of the capture experiment contigs. We also thank Yoann Anselmetti, Thibault Leroy and Jonathan Romiguier for their frequent help, Yoann Anciaux for sharing his experience with Fisher's geometrical model predictions, and Thomas Bataillon for his pieces of advice with regards to theDFE-α method models and estimates.

628 Data accessibility:

629 Illumina raw reads of the capture experiment are deposited under the Bioproject PRJNA530965 in

- 630 the SRA database.
- 631 **Conflict of interest disclosure:** The authors of this preprint declare that they have no financial
- 632 conflict of interest with the content of this article. Nicolas Galtier is one of the PCI Evol Biol
- 633 recommenders.

634 Supplementary tables and figures legends:

Table S1 : Details of the species used in this study and numbers of individuals for each species.

636 **Table S2 : Number of orthogroups for each taxonomic group.**

637 The differences in terms of number of orthogroups comes from the fact that we not only kept orthogroups with all 638 species but also orthogroups with all species but one to estimate dN/dS value for each terminal branches in order to 639 maximize the number of substitutions for data sets generated by exon catpure.

640 **Table S3: SNPs counts for each species.**

641 SNPs counts are not integers because they corresponds to SNPs that are present in our SFS, where we chose a sample

642 size (i.e. the number of categories of the SFS) lower that 2*n, where n is the number of individuals. This is to

643 compensate the uneven coverage between individuals that results in some sites in some individuals not to be genotyped.

644 We chose sample sizes that maximize the number of SNPs in each SFS.

645 Table S4: Sources of the tree topologies of each taxonomic group used to estimate branch

- 646 length and map substitutions.
- **Table S5: Values and sources of the life history traits used in this study.**
- 648 Tables S6 and S7: Per species and per group life history traits, polymorphism and divergence
- 649 data, α , ω_a and ω_{na} estimates.
- 650 Figure S1: Cross contamination network for de novo assemblies from exon capture.

651 Circles represent the assemblies, and arrows and their corresponding numbers represent the number of cross 652 contaminants. Most cross contamination events occur between closely-related species and are therefore likely false 653 positive cases.

Figure S2: Relationship between $\omega_{a[P]}$ **and** π_s **and log**₁₀ **transformed life history traits.**

 $\omega_{a[P]}$ is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions

- 656 (B). Group level π_s and life history traits are estimated by averaging species level estimates across closely related
- 657 species. Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-
- 658 significant ones.

Figure S3: Relationship between $\omega_{a[A]}$ **and** π_s **and log**₁₀ **transformed life history traits.**

660 $ω_{a[A]}$ is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions 661 (B). Group level $π_s$ and life history traits are estimated by averaging species level estimates across closely related 662 species. Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-663 significant ones.

664 Figure S4: Relationship between species-level $ω_{na}$ and $π_s$ and log_{10} transformed life history 665 traits.

 $666 \quad \omega_{na}$ is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions

667 (B). Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-significant668 ones.

669 Figure S5: Relationship between species-level α and π_s .

- 670 α is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions (B).
- 671 The dotted line represents the regression across all species, and full lines represent the regression within each taxonomic672 groups. Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-
- 673 significant ones.

674 Figure S6: Design of the simulations of fluctuation of population size.

- A: three fold ratio between low and high population size and high long-term population size.
- 676 B: thirty fold ratio between low and high population size and high long-term population size.
- 677 C: three fold ratio between low and high population size and low long-term population size.
- 678 D: thirty fold ratio between low and high population size and low long-term population size.

679 Figure S7: Relationship between ω_a and π_s in simulated scenarios of fluctuating population

- 680 size.
- 681 A: three fold ratio between low and high population size and high long-term population size (scenario A in figure S1)
- 682 B: thirty fold ratio between low and high population size and high long-term population size (scenario B in figure S1)
- 683 C: three fold ratio between low and high population size and low long-term population size (scenario C in figure S1)
- 684 D: thirty fold ratio between low and high population size and low long-term population size (scenario D in figure S1)

685 References:

- 1. Bell G. Evolutionary rescue and the limits of adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(1610):20120080.
- 2. Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends in Ecology & Evolution. janv 2014;29(1):33-41.
- 3. Smith JM. What Determines the Rate of Evolution? The American Naturalist. 1 mai 1976;110(973):331-8.
- 4. Nam K, Munch K, Mailund T, Nater A, Greminger MP, Krützen M, et al. Evidence that the rate of strong selective sweeps increases with population size in the great apes. Proceedings of the National Academy of Sciences. 14 févr 2017;114(7):1613-8.
- 5. Bürger R, Lynch M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution. 1995;49(1):151-63.
- 6. Barton N, Partridge L. Limits to natural selection. BioEssays. 2000;22(12):1075-84.
- 7. Kopp M, Hermisson J. The genetic basis of phenotypic adaptation II: the distribution of adaptive substitutions in the moving optimum model. Genetics. 2009;183(4):1453-76.
- 8. Karasov T, Messer PW, Petrov DA. Evidence that Adaptation in Drosophila Is Not Limited by Mutation at Single Sites. PLOS Genetics. 17 juin 2010;6(6):e1000924.
- 9. Weissman DB, Barton NH. Limits to the Rate of Adaptive Substitution in Sexual Populations. PLOS Genetics. 7 juin 2012;8(6):e1002740.
- 10. Yeaman S, Gerstein AC, Hodgins KA, Whitlock MC. Quantifying how constraints limit the diversity of viable routes to adaptation. PLoS genetics. 2018;14(10):e1007717.
- 11. Huber CD, Kim BY, Marsden CD, Lohmueller KE. Determining the factors driving selective effects of new nonsynonymous mutations. Proceedings of the National Academy of Sciences. 2017;114(17):4465-70.
- 12. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 20 juin 1991;351(6328):652-4.
- 13. Smith NGC, Eyre-Walker A. Adaptive protein evolution in *Drosophila*. Nature. févr 2002;415(6875):1022-4.
- 14. Keightley PD, Eyre-Walker A. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics. 2007;177(4):2251-61.
- 15. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS genetics. 2008;4(5):e1000083.

- 16. Eyre-Walker A, Keightley PD. Estimating the Rate of Adaptive Molecular Evolution in the Presence of Slightly Deleterious Mutations and Population Size Change. Mol Biol Evol. 1 sept 2009;26(9):2097-108.
- 17. Messer PW, Petrov DA. Frequent adaptation and the McDonald–Kreitman test. PNAS. 21 mai 2013;110(21):8615-20.
- 18. Galtier N. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis. PLOS Genetics. 11 janv 2016;12(1):e1005774.
- 19. Keightley PD, Campos JL, Booker TR, Charlesworth B. Inferring the Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of Drosophila melanogaster. Genetics. 1 juin 2016;203(2):975-84.
- 20. Tataru P, Mollion M, Glémin S, Bataillon T. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data. Genetics. 1 nov 2017;207(3):1103-19.
- 21. Loewe L, Charlesworth B. Inferring the distribution of mutational effects on fitness in Drosophila. Biology Letters. 22 sept 2006;2(3):426-30.
- 22. Stoletzki N, Eyre-Walker A. Estimation of the neutrality index. Molecular biology and evolution. 2010;28(1):63-70.
- 23. Rousselle M, Mollion M, Nabholz B, Bataillon T, Galtier N. Overestimation of the adaptive substitution rate in fluctuating populations. Biology Letters. 1 mai 2018;14(5):20180055.
- 24. Eyre-Walker A. Changing effective population size and the McDonald-Kreitman test. Genetics. 2002;162(4):2017-24.
- 25. Corcoran P, Gossmann TI, Barton HJ, Slate J, Zeng K. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species. Genome Biol Evol. 1 nov 2017;9(11):2987-3007.
- Rousselle M, Laverré A, Figuet E, Nabholz B, Galtier N. Influence of Recombination and GCbiased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Mol Biol Evol [Internet]. [cité 22 févr 2019]; Disponible sur: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy243/5261349
- 27. Bolívar P, Mugal CF, Rossi M, Nater A, Wang M, Dutoit L, et al. Biased inference of selection due to GC-biased gene conversion and the rate of protein evolution in flycatchers when accounting for it. Mol Biol Evol [Internet]. [cité 3 août 2018]; Disponible sur: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy149/5063898
- 28. Ohta T. The Nearly Neutral Theory of Molecular Evolution. Annual Review of Ecology and Systematics. 1992;23(1):263-86.
- 29. Gossmann TI, Keightley PD, Eyre-Walker A. The Effect of Variation in the Effective Population Size on the Rate of Adaptive Molecular Evolution in Eukaryotes. Genome Biol Evol. 1 janv 2012;4(5):658-67.

- 30. Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, et al. Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Molecular biology and evolution. 2010;27(8):1822-32.
- 31. Strasburg JL, Kane NC, Raduski AR, Bonin A, Michelmore R, Rieseberg LH. Effective population size is positively correlated with levels of adaptive divergence among annual sunflowers. Molecular biology and evolution. 2010;28(5):1569-80.
- 32. Lourenço JM, Glémin S, Galtier N. The rate of molecular adaptation in a changing environment. Molecular biology and evolution. 2013;30(6):1292-301.
- 33. Simion P, Belkhir K, François C, Veyssier J, Rink JC, Manuel M, et al. A software tool 'CroCo'detects pervasive cross-species contamination in next generation sequencing data. BMC biology. 2018;16(1):28.
- 34. James JE, Piganeau G, Eyre-Walker A. The rate of adaptive evolution in animal mitochondria. Molecular ecology. 2016;25(1):67-78.
- 35. Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, et al. Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Molecular biology and evolution. 2018;35(5):1092-103.
- 36. Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014;515(7526):261.
- 37. Chen J, Glémin S, Lascoux M. Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species. Molecular Biology and Evolution. juin 2017;34(6):1417-28.
- 38. Zhen Y, Huber CD, Davies RW, Lohmueller KE. Stronger and higher proportion of beneficial amino acid changing mutations in humans compared to mice and flies. 26 sept 2018 [cité 10 oct 2018]; Disponible sur: http://biorxiv.org/lookup/doi/10.1101/427583
- 39. Eyre-Walker A, Woolfit M, Phelps T. The Distribution of Fitness Effects of New Deleterious Amino Acid Mutations in Humans. Genetics. 1 juin 2006;173(2):891-900.
- 40. Jensen JD, Bachtrog D. Characterizing the Influence of Effective Population Size on the Rate of Adaptation: Gillespie's Darwin Domain. Genome Biol Evol. 24 juin 2011;3:687-701.
- 41. Gillespie JH. IS THE POPULATION SIZE OF A SPECIES RELEVANT TO ITS EVOLUTION? - Gillespie - 2001 - Evolution - Wiley Online Library [Internet]. 2001 [cité 11 juill 2019]. Disponible sur: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0014-3820.2001.tb00732.x
- 42. Gillespie JH. The neutral theory in an infinite population. Gene. 2000;261(1):11-8.
- 43. Corbett-Detig RB, Hartl DL, Sackton TB. Natural Selection Constrains Neutral Diversity across A Wide Range of Species. PLOS Biology. 10 avr 2015;13(4):e1002112.

- 44. Coop G. Does linked selection explain the narrow range of genetic diversity across species? bioRxiv. 7 mars 2016;042598.
- 45. Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. :25.
- 46. Razeto-Barry P, Díaz J, Vásquez RA. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity. Genetics. 2012;191(2):523-34.
- 47. Orr HA. Adaptation and the Cost of Complexity. Evolution. 1 févr 2000;54(1):13-20.
- 48. Valentine JW, Collins AG, Meyer CP. Morphological complexity increase in metazoans. Paleobiology. 1994;20(2):131-42.
- 49. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, et al. Estimating the size of the human interactome. Proceedings of the National Academy of Sciences. 2008;105(19):6959-64.
- 50. Fernández A, Lynch M. Non-adaptive origins of interactome complexity. Nature. 2011;474(7352):502.
- 51. Rousselle M, Faivre N, Ballenghien M, Galtier N, Nabholz B. Hemizygosity Enhances Purifying Selection: Lack of Fast-Z Evolution in Two Satyrine Butterflies. Genome Biol Evol. 1 oct 2016;8(10):3108-19.
- 52. Ballenghien M, Faivre N, Galtier N. Patterns of cross-contamination in a multispecies population genomic project: detection, quantification, impact, and solutions. BMC Biology [Internet]. déc 2017 [cité 12 mars 2018];15(1). Disponible sur: http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-017-0366-6
- 53. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols. 2010;2010(6):pdb. prot5448.
- 54. Tilak M-K, Justy F, Debiais-Thibaud M, Botero-Castro F, Delsuc F, Douzery EJP. A costeffective straightforward protocol for shotgun Illumina libraries designed to assemble complete mitogenomes from non-model species. Conservation Genet Resour. 1 mars 2015;7(1):37-40.
- 55. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome research. 2012;
- 56. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.
- 57. Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, et al. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Molecular ecology resources. 2012;12(5):834-45.
- 58. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence data. Genome research. 2009;19(6):1117-23.

- 59. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome research. 1999;9(9):868-77.
- 60. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology. 2011;29(7):644.
- 61. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754-60.
- 62. Tsagkogeorga G, Cahais V, Galtier N. The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biology and Evolution. 2012;4(8):852-61.
- 63. Gayral P, Melo-Ferreira J, Glémin S, Bierne N, Carneiro M, Nabholz B, et al. Reference-free population genomics from next-generation transcriptome data and the vertebrate—invertebrate gap. PLoS genetics. 2013;9(4):e1003457.
- 64. Ranwez V, Delsuc F, Ranwez S, Belkhir K, Tilak M-K, Douzery EJ. OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics. BMC evolutionary biology. 2007;7(1):241.
- 65. Douzery EJ, Scornavacca C, Romiguier J, Belkhir K, Galtier N, Delsuc F, et al. OrthoMaM v8: a database of orthologous exons and coding sequences for comparative genomics in mammals. Molecular biology and evolution. 2014;31(7):1923-8.
- 66. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome biology. 2015;16(1):157.
- 67. Ranwez V, Harispe S, Delsuc F, Douzery EJ. MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PloS one. 2011;6(9):e22594.
- 68. Guéguen L, Gaillard S, Boussau B, Gouy M, Groussin M, Rochette NC, et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Molecular biology and evolution. 2013;30(8):1745-50.
- 69. Haller BC, Messer PW. SLiM 2: Flexible, Interactive Forward Genetic Simulations. Mol Biol Evol. 1 janv 2017;34(1):230-40.