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ABSTRACT

Whether  adaptation is  limited by the beneficial  mutation supply is  a  long-standing question of

evolutionary  genetics,  which  is  more  generally  related  to  the  determination  of  the  adaptive

substitution  rate  and  its  relationship  with  the  effective  population  size  Ne.  Empirical  evidence

reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution

rate in large-Ne than in small-Ne species.

We  gathered coding  sequence  polymorphism  data  and  estimated  the  adaptive  amino-acid

substitution  rate  ωa,  in  50  species  from ten  distant  groups  of  animals  with  markedly  different

population mutation rate θ. We reveal the existence of a complex, timescale dependent relationship

between species adaptive substitution rate and genetic diversity.  We find a positive relationship

between ωa and θ among closely related species, indicating that adaptation is indeed limited by the

mutation supply, but this was only true in relatively low-θ taxa. In contrast, we uncover a weak

negative correlation between  ωa and θ at a larger taxonomic scale. This result is consistent with

Fisher’s geometrical model  predictions and suggests that  the proportion of beneficial  mutations

scales negatively with species' long-term Ne.

Key words: adaptive substitution rate, beneficial mutations, effective population size, Mc-Donald

and Kreitman, animals.
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INTRODUCTION

It  is  widely  recognized  that  adaptation  is  more  efficient  in  large  populations.  Firstly,  large

populations produce a greater number of mutants per generation than small ones, and for this reason

are more likely to find the alleles required for adaptation, if missing from the gene pool. Secondly,

large populations  tend to  be genetically  more diverse and thus  more likely to  carry the alleles

needed  to  respond  to  environmental  changes  (1).  Lastly,  the  fixation  probability  of  beneficial

mutations is higher in large than in small populations due to the weaker effect of genetic drift in the

former.  So,  whether  it  be  from standing variation  or  de novo mutations, one  would  expect to

observe a  higher  rate  of  accumulation  of  adaptive changes,  on average,  in  large than in  small

populations  (2).  Under a simple population genetic model,  in a population of effective size Ne,

mutations of selection coefficient s >> 1/Ne should accumulate at rate ~4Neμas if s is small, where μa

is the adaptive mutation rate – i.e., the adaptive substitution rate should scale linearly with Neμ

(where μ is the total mutation rate) (3).

This  rationale  implicitly  assumes  that  the  rate  of  adaptation  is  limited  by  the  supply  of  new

mutations, i.e., the population mutation rate θ=4Neμ (4). It might be, however, that the amount of

genetic diversity available in all or most existing populations is sufficient for adaptation, and/or that

the ability to adapt to environmental changes is determined in the first place by factors independent

from the effective population size, such as the magnitude or frequency of perturbations, the finite

set  of  possible  genotypes  an  organism  could  reach,  or  the  ability  of  populations  to  combine

favorable alleles across loci via recombination (5–10). Finally, this rationale makes the assumption

of a constant distribution of the fitness effect (DFE) across species, whereas it has been suggested

that  the  adaptive  mutation  rate,  μa,  might  be  negatively  correlated  with  Ne,  which  further

complicates  the  situation.  This  is  because  small  populations  tend  to  accumulate  deleterious

mutations, and the resulting load could offer the opportunity for adaptive, compensatory mutations

to arise and spread irrespective of environmental perturbations (9). Theoretical models can therefore

predict a positive, negative, or lack of relationship between the population size and the adaptive

substitution rate, depending on the underlying assumptions.

Molecular  data  offer  an unique opportunity to  empirically  evaluate  the correlation between the

adaptive substitution rate and θ, and thus to test whether adaptation is actually limited by mutation.

More  efficient  adaptation  in  large  populations  should  be  reflected  by  an  increased  protein
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evolutionary rate,  which can be  estimated from coding sequence alignments.  The ratio  of non-

synonymous  (i.e.  amino-acid  changing,  dN)  to  synonymous  (i.e.  amino-acid  conservative,  dS)

substitution rates, often called ω, is a measure of the protein evolutionary rate that controls for the

effects of the divergence time and mutation rate. However, ω  is influenced by adaptation but also

by the strength and efficiency of purifying selection against deleterious alleles. To account for this,

McDonald and Kreitman (1991, MK) (10) suggested including within-species polymorphism in the

analysis. Adaptive mutations are expected to contribute negligibly to the pool of segregating alleles.

The ratio of non-synonymous to synonymous polymorphism, therefore, provides an estimator of the

expected ω under neutrality, i.e., in absence of adaptation, called ωna (for non-adaptive). Subtracting

the neutral expectation ωna from the observed ω provides an estimator of the adaptive rate, ωa, and

the proportion of adaptive substitutions, α (11). 

Subsequent improvements in the MK method were intended to account for a number of factors that

could potentially confound the estimation of  ωna, including the prevalence of slightly deleterious

segregating alleles and recent demographic effects (14–21). Improved methods explicitly model the

DFE  of  non-synonymous  mutations,  while  taking  information  not  only  from  the  number  of

synonymous  and  non-synonymous  single  nucleotide  polymorphisms  (SNPs),  but  also  from the

distribution  of  allele  frequencies  across  SNPs – so-called site  frequency spectra  (SFS).  The  ωa

statistics has a high sampling variance (22) and its estimation can be biased by various factors, such

as a fluctuating population size  (12,23,24) and GC-biased gene conversion  (25–27).  In particular,

one key assumption of the MK approach is that the long-term Ne, which determines ω, is equal to

the short-term Ne and can therefore be estimated from polymorphism data. It appears unlikely that

this  is  generally  true,  and ancient  fluctuations  in  Ne could  in  principle  fault  the  MK rationale

(12,23,24). Eyre-Walker (24) theoretically considered the problem of a single ancient change in Ne

and showed that an expansion in population size, even if old, could lead to overestimation of  the

adaptive substitution rate. This bias could create spurious positive correlation between ωa  and Ne,

which should be kept in mind when interpreting this type of estimate. 

The first applications of the MK method to large-scale data sets indicated that the adaptive rate is

higher in  Drosophila than in humans  (11,13,14).  This is consistent with the prediction of more

efficient adaptation in large populations and with the hypothesis that mutation limits adaptation.

These studies were, however, focused on the α=ωa/(ωa+ωna) statistics, i.e., the proportion of amino-

acid substitutions that result from adaptation. α is influenced by ωna as well as ωa, and a lower α in
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humans  than  in  Drosophila might  mainly  reflect  a  higher  rate  of  non-adaptive  amino-acid

substitution in the former. Indeed, purifying selection against deleterious mutations is likely less

effective in small populations due to increased genetic drift (28). Comparative studies focused on ωa

have only revealed tenuous positive effects of θ on the adaptive rate in mammals, flies and plants

(29–31).  The largest  scale  analysis  of  this  sort  used  44 pairs  of  non-model  species  of  animals

occupying a wide range of  θ (18). This latter study reported a significantly positive relationship

between θ-related life history traits and α, consistent with previous literature, but this was entirely

due to the non-adaptive component. Galtier (18) failed to detect any effect of θ on ωa, despite using

various  models  for  the distribution of  fitness  effects  and accounting  for  a  number of  potential

confounding  factors–.  This  result  did  not  support  the  hypothesis  that  adaptation  is  limited  by

mutation. 

So, the evidence so far regarding the relationship between the adaptive substitution rate and the

population  mutation  rate  is  equivocal.  Existing  comparative  studies  have  involved  distinct

methodological  approaches,  both  in  terms  of  species  sampling  and  adaptive  substitution  rate

estimation. In particular, these studies were conducted at different evolutionary scales, which might

partially explain their somewhat discordant results. In the short term, an increase in Ne is expected

to boost the adaptive substitution rate if the mutation supply is limiting. In the long run, differences

in  Ne could  also  lead  to  changes  in  the  DFE,  and  particularly  in  the  proportion  of  beneficial

mutations, due to the fact that small-Ne species may be pulled away from their fitness optimum via

genetic  drift  (11,18,32).  How these two opposing forces interact and combine to  determine the

relationship between ωa and θ is still unknown, in the absence of a multi-scale study.

In this  study, we test  the effects  of the evolutionary time-scale on the relationship between the

adaptive substitution rate (ωa) and the population mutation rate (θ).  We gathered coding sequence

polymorphism data  in  4-6  species  from each  of  ten  distant  groups  of  animals  with  markedly

different  θ.  Our  results  reveal  that  the  relationship  between  ωa  and  θ  varies  depending on the

considered  taxonomic  scale,  i.e.  depending  on  whether  we  compare  closely  related  species  or

distantly related taxa. We  report a positive relationship between ωa and θ within groups, and the

strength  of  this  relationship  weakens  as  θ  increases,  indicating  that  adaptation  is  limited  by

beneficial mutations in small-θ animal species. At a larger taxonomic scale, in contrast, we find a

weak negative correlation between ωa and θ, with, for instance, primates and ants showing a higher
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adaptive substitution rate than mussels and fruit flies. This is in line with the hypothesis that long-

term Ne influences the DFE, and particularly the proportion of adaptive mutations.

RESULTS 

1. Data sets

We assembled a  data  set  of  coding sequence  polymorphism in 50 species  from ten  taxonomic

groups, each group including 4 to 6 closely-related species (Table S1). The ten taxa we analyzed

were Catharrhni  (Mammalia,  hereafter  called “primates”),  Passeriformes (Aves,  hereafter  called

“passerines”), Galloanserae (Aves, hereafter called “fowls”), Muroidea (Mammalia, hereafter called

“rodents”), Lumbricidae (Annelida, hereafter called “earth worms”),  Lineus (Nemertea, hereafter

called  “ribbon  worms”),  Mytilus (Mollusca,  hereafter  called  “mussels”),  Satyrini  (Lepidoptera,

hereafter  called  “butterflies”),  Formica (Hymenoptera,  hereafter  called  “ants”),  and  Drosophila

(hereafter called “flies”). 

Data for five groups (primates,  passerines,  fowls,  rodents and flies)  were obtained from public

databases. Data for the other five groups were newly generated via exon capture in a total of 242

individuals from 22 species (Table 1) and we obtained sufficient data for 216 of them (~89%). The

average coverage was of 9X in ants, 23X in butterflies, 10X in earth worms, 28X in ribbon worms

and 26X in mussels (average of median coverage per species). The percentage of targeted coding

sequences for which at least one contig was recovered ranged from 31.9% (for Lumbricus terrestris,

the species with the maximal divergence from the species used to design the baits) to 88.2% across

species (median=78.8%, Table 1).
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Species Group Targeted

transcripts

Recovered

transcripts

Percentage of recovered

among targeted transcripts

Formica fusca ants 1810 1427 78.8

Formica sanguinea ants 1810 1396 77.1

Formica pratensis ants 1810 1398 77.2

Formica cunicularia ants 1810 1406 77.7

Maniola jurtina butterflies 2235 1921 86.0

Melanargia galathea butterflies 2235 1713 76.6

Pyronia tithonus butterflies 2235 1823 81.6

Pyronia bathseba butterflies 2235 1864 83.4

Aphantopus hyperanthus butterflies 2235 1772 79.3

Allolobophora chlorotica L1 earth worms 2955 2293 77.6

Allolobophora chlorotica L2 earth worms 2955 2315 78.3

Allolobophora chlorotica L4 earth worms 2955 1732 58.6

Aporrectodea icterica earth worms 2955 2321 78.5

Lumbricus terrestris earth worms 2955 943 31.9

Lineus sanguineus ribbon worms 1725 1251 72.5

Lineus ruber ribbon worms 1725 1521 88.2

Lineus lacteus ribbon worms 1725 1516 87.9

Lineus longissimus ribbon worms 1725 1505 87.2

Mytilus galloprovincialis mussels 2181 1820 83.4

Mytilus edulis mussels 2181 1721 78.9

Mytilus trossulus mussels 2181 1740 79.8

Mytilus californianus mussels 2181 1808 82.9

Table 1: Summary of the number of targeted transcripts recovered in the capture experiment.

We assessed contamination between samples from distinct species using CroCo (33). Overall, the

inter-groups connection in Figure S1 indicates a low level of cross-contamination: when there were

connections  between  taxonomic  groups,  on  average  they  concerned  38  contigs  identified  as

contaminants, with the worst case being the 172 contigs identified as contaminants between  the

assembly  of  Lineus  sanguineus and  Mytilus  galloprovincialis.  Connections  between  assemblies

from closely related species were very likely false positive cases, especially since the intensity of

the within-group connections was congruent with the phylogenetic distance between species within
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taxa. Regardless, all contigs identified as potential contaminants were excluded from the dataset in

downstream analyzes as a cautionary measure. 

Within each group, we focused on orthologous contigs (Table S2), predicted open reading frames,

and called the diploid genotypes of individuals for every coding position. The SNPs counts obtained

after genotyping are  summarized in  Table S3. We obtain less than a thousand SNPs in only two

species, the minimum being 153 for Lineus longissimus, in which we were only able to recover data

for six individuals. 

We recovered an average of 8,459 SNPs per species in ants, 7,950 in butterflies, 4,763 in earth

worms, 8,347 in ribbon worms, 19,750 in mussels, 10,191 in primates, 25,534 in rodents, 40,870 in

passerines, 8,488 in fowls and 195,398 in flies.

In conclusion, the capture experiment seems suitable for recovering population coding sequence

data for several closely related species - here, the maximum divergence between species within a

taxonomic  group  was  0.2  subst./site,  i.e. the  divergence  between  Lumbricus  terrestris and

Allolobophora chlorotica L1. 

2. Between-groups relationship between the population mutation rate (θ) and the adaptive

substitution rate (ωa) 

We used Galtier's (2016) version of the MK method (18) introduced by Eyre-Walker and Keightley

(2009)  (16),  accounting  for  the  effect  of  slightly  beneficial  non-synonymous  mutations  (see

Methods). Two strategies were adopted to  combine SFS information from distinct  species  in  a

group-level  estimate  of  ωa,  thus  accounting  for  the  problem of  phylogenetic  non-independence

between species. For both strategies, we first calculated the dN/dS ratio ω at the group-level, i.e., by

averaging across all branches of the tree (see Material and Methods). Our first estimator, which we

called  ωa[P],  was  obtained by pooling  SFS from distinct  species  within  a  group,  separately  for

synonymous and non-synonymous SNPs (as in  (34)), before fitting the model and estimating the

parameters.  This  estimate  combines  data  across  species  weighting  each  species  equally,  thus

alleviating the effect of species-specific demographic history.

We then computed the relationship between ωa[P] estimates and the across-species average nucleotide

diversity, πs, which was taken as an estimate of θ. We detected a significant negative relationship

between ωa[P] and the across-species  average nucleotide diversity,  πs,  taken as an estimate of  θ

(regression test, r2=0.4, p-value=2.9e-02) (Figure 1A).
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Figure 1: Relationship between group-level ωa and group-level πs. 

A: ωa was estimated by pooling SFS across species within a group (ωa[P]) using all mutations.

B: ωa was estimated by pooling SFS across species within a group (ωa[P]) using only GC-conservative mutations.

C: ωa was estimated via the averaging of ωna across species within a group (ωa[A]) using all mutations.

D:  ωa was  estimated  via  the  averaging  of  ωna across  species  within  a  group  (ωa[A])  using  only  GC-conservative

mutations.

Group level πs was estimated by averaging species-level πs  across closely related species. Black dotted lines represent

significant regressions across taxonomic groups and grey dotted lines non-significant ones.

Recent  studies  in  birds  and  more  recently  primates  indicated  that  GC-biased  gene  conversion

(gBGC) may lead to overestimation (25,26) or underestimation of ωa (27). Interestingly, gBGC does

not affect genomic evolution with the same intensity in all organisms  (35). To avoid bias in the

estimation in species where gBGC is active, we restricted the SNP and substitution data to GC-
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conservative changes,  which are not  influenced by gBGC.  We found a non-significant  positive

correlation ωa[P]GC-conserative and θ (Figure 1B).

Our second estimator of the adaptive rate at the group level, which we called ω a[A], was obtained by

calculating the across-species arithmetic mean of ωna within a group, and by then subtracting this

average from ω. We suggest that ωa[A] is a reasonable estimator of the adaptive rate with fluctuating

population size if the pace of fluctuations is sufficiently slow, such that the sampled species have

reached  the  selection/drift  equilibrium  (Supplementary  Material  Box  S1).  We  found  a  non-

significant negative correlation between ωa[A] and ωa[A]GC-conserative and πs (Figure 1C and 1D). Overall,

the between-group analysis seems to confirm the absence of a positive relationship between ωa and

θ  at  the between-phyla  scale  in  animals,  and even  suggests  the  existence  of  a  weak,  negative

relationship.

3. Relationship between life history traits and ωa 

We  used  several  life  history  traits  known  to  be  correlated  with  species  long-term  effective

population  size  (36).  In  our  data  set,  all  life  history  traits  were  correlated  with  π s  (Spearman

correlation p-value,  propagule size: 1.1e-12, adult  size:  4.3e-04, longevity: 5.5e-02, body mass:

4.7e-03, fecundity: 9.4e-06). When estimating the per-group  ωa, we did not find any significant

relationship with life history traits, but the signs of the correlation coefficients were indicative of a

negative relationship between the long-term Ne and both ωa and ωa[GC-conservative] (Figures S2 and S3). 

When considering all 50 species (i.e. without controlling for phylogenetic inertia) and all mutations,

we  found  a  negative  relationship  between  ωa and  log10  transformed  fecundity  (regression  test,

r2=0.094),  as  well  as  a  positive  relationship  with  log10 transformed  longevity  (regression  test,

r2=0.10) and log10 transformed propagule size (regression test, r2=0.13)  (Figure 2A).  When using

only GC-conservative mutations, the relationships were similar (regression test, r2=0.11) (Figure

2B). 
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Figure 2: Relationship between species-level ωa and life history traits.

A: ωa is estimated using all mutations. 

B: ωa is estimated using only GC-conservative mutations. 

Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-significant ones.

We also found a  negative relationship between ωna and fecundity (regression test r2=0.31), and a

positive relationship  between  ωna and  propagule  size  (regression  test  r2=0.13)  and  body  mass

(regression test r2=0.10), which was also true when using only GC-conservative mutations: positive

relationships  between  ωna[GC-conservative] and  propagule  size  (regression  test  r2=0.21),  longevity
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(regression  test  r2=0.12),  body  mass  (regression  test  r2=0.08)  and  a  negative relationship  with

fecundity (regression test r2=0.36) (Figure S4).

4. Within-group relationship between θ and ωa 

To assess the within-group effect of πs on ωa, we performed an analysis of covariance (ANCOVA)

with the taxonomic group as a categorical independent variable, as in  (29). The principle of this

analysis  is  to  fit  a  set  of  parallel  lines  (one for  each taxonomic group)  and test  whether  their

common slope is significantly different from zero. Moreover, we tested if the relationship between

ωa and πs or life history traits differs between taxonomic groups by testing whether the lines have

different intercepts.

By this strategy, we found that ωa and both πs and log10(πs) were significantly positively correlated

when using only GC-conservative mutations (ANCOVA p-value=2.8e-02 and 3.1e-03, respectively)

(Figure 3B).  ωa was only marginally positively correlated with log10(πs) when using all mutations

(ANCOVA p-value=7.6e-02)  (Figure 3A).  We also found that  there was a significant  variation

between the intercepts (ANCOVA p-value<1e-03), as well as a significant interaction between the

dependent  variable  and  the  categorical  independent  variable  (ANOVA p-value=1.6e-02).  Those

results support the existence of a positive relationship between  ωa and θ within groups, with the

slope of the relationship differing between groups. This is consistent with the hypothesis that within

a group, higher-θ species are more likely to find and fix adaptive substitutions than low-θ species, in

line with the hypothesis  that mutation limits  adaptation.  Figure 3 shows that the slopes of the

within-group ωa/θ correlations decreased with group-level πs, and we actually found a significant

negative correlation between these two quantities both when using all  or only GC-conservative

mutations  (Spearman correlation coefficient=-0.77,  p-value=1.4e-02).  This interestingly suggests

that the limitation of adaptation by the supply of adaptive mutations is effective and strong in small-

θ groups (e.g.  primates, rodents, ants), but not in high-θ groups of animals (e.g. flies, mussels,

butterflies), where the ωa/θ relationship is essentially flat (Figure 3).
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Figure 3: Relationship between species-level ωa and πs.

A: ωa is estimated using all mutations. 

B: ωa is estimated using only GC-conservative mutations. 

Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-significant ones.

When  analyzing  the  per-species  non-adaptive  substitution  rate,  we  found  a  global  negative

relationship between ωna and  πs (using both all  mutations and only GC-conservative mutations:

regression test r2=0.16 and r2=0.33, respectively), and a significantly negative relationship within

groups  (ANCOVA p-value=1.9e-02  and  p-value=1.8e-03,  respectively) (Figure  S4).  This  was

consistent with the expectations of the nearly neutral theory of evolution  (28), and with previous

empirical results (18,37). The estimated ratio of adaptive to total non-synonymous substitutions, α,

behaved more or less similarly to ωa (Figure S5).
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5. Control for fluctuations in Ne

We were concerned that the  positive correlation between ωa and πs might have been due to an

artifact generated by past fluctuations in population size (23,24). To test this, we simulated coding

sequence  evolution  under  several  demographic  scenarios  with  four  regimes  of  demographic

fluctuations, with a three or thirty-fold ratio between the low and high Ne, and a high or low long-

term  Ne (see  Material  and  Method  and  Figure  S6).  We  found  that  the  only  scenario  where

demographic fluctuations could lead to a detectable positive correlation between ωa and πs was that

with the highest long-term Ne and highest difference between the low and high Ne (see Figure S7

panel B,  regression test r2=0.07, p-value=9.5e-03). The correlation disappeared when we used a

ten-fold smaller long-term Ne, whereas we empirically observed that the correlation between ωa and

πs was stronger for small long-term Ne groups (Figure 2). These simulations therefore suggested

that  ancient  demographic  fluctuations  could  not  explain  our  finding of  a  positive  within-group

correlation between ωa and  πs in  low-θ groups. We also  checked that  the Fis statistics  was not

significantly  correlated  to  ωa (regression  test  p-value=5.9e-01)  or  πs (p-value=2.9e-01),  which

indicated that population substructure was unlikely to confound our results.

DISCUSSION

1. Influence of θ on ωa : a two-scale mechanism

In  this  study,  we analyzed a  50-species  population  genomic  data  set to  assess  the  relationship

between the adaptive substitution rate and the population mutation rate and test the hypothesis that

mutation limits adaptation in natural populations of animals. 

We found that the relationship between ωa and θ depended on the considered timescale, which is

expected  if  the  assumption  of  a  fixed  DFE across  divergent  taxa  does  not  hold. At  a  recent

evolutionary  scale  (i.e.,  neutral  divergence  <0.2  subst./site),  we  found  a  significant  positive

correlation  between  ωa and  πs (Figure  2).  Interestingly,  the  slope  of  the relationship  differed

significantly  among taxonomic  groups,  and this  slope  itself  was  negatively  correlated  with  the

group average πs. Otherwise, estimates at the group level revealed a weak but consistently negative

relationship between ωa and πs, and between ωa and various life history traits correlated with the

long-term Ne (Figure 1 and 3). This time scale-dependent behavior of the ωa/θ relationship was here
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demonstrated via  the analysis of a single, multi-scale dataset, somehow reconciling earlier taxon-

specific studies on the subject (4,8,18,29–31,38).

2. Relationship between θ and ωa - a real causative link or an artifact ?

Our ANCOVA analysis revealed that the slopes of the relationships between ωa and πs within each

taxonomic group were significantly different from zero, demonstrating the existence of a positive

link between ωa and πs within groups (Figure 2). We were concerned that this relationship may have

resulted from a bias in the MK approach, instead of being a true biological signal. Indeed, the MK

approach implicitly assumes that the regime of selection/drift has been constant over the considered

time  period,  i.e.  since  the  divergence  between  the  focal  and outgroup  species.  If  however  the

selection/drift  regime had changed (e.g.  via  a change in  effective population size)  between the

period during which divergence had accumulated and the period during which polymorphism was

built, this could lead to overestimation or underestimation of ωa (23,24). Here, we used the so-called

ri’s nuisance parameters (39) to control for recent changes in Ne. 

In contrast, ancient Ne changes that affect coding sequence divergence are virtually impossible to

trace. We showed in a previous simulation-based study that ancient demographic fluctuations could

lead to severely overestimated α and ωa -  an upward bias which is  exacerbated when the true

adaptive substitution rate is low (23). Moreover, it has been shown by modeling single changes in

Ne  that in the presence of slightly deleterious mutations, an increase in Ne in the past could yield

spurious evidence of positive selection, which can lead to a spurious positive correlation between ωa

and πs (24). 

We used simulations to test if demographic fluctuations could lead to such a correlation. Our results

suggested that long-term fluctuations were not responsible for the positive link between ωa and πs

that we report.  In addition,  the gradual decrease in the slope of the relationship with per-group

average πs was also consistent with the fact that the relation is genuine, because (i) we do not expect

the demographic fluctuation regime to correlate with the average πs of the group, and (ii) there was

no relationship between the inter-group variation in πs and the average πs of the group (Spearman

correlation test: p-value=4.7e-01).

A recently developed method allows the estimation of α and ωa using polymorphism data alone

(20),  thus  avoiding  the  assumption  of  time  constancy  of  the  drift/selection  regime.  However,
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estimates of α and ωa by this method deserve a specific interpretation, as they represent the rate of

adaptive evolution of the species during its very recent history, and not the one of its long-term

history. This method requires high quality datasets and highly polymorphic species, and it was not

applicable to  our dataset,  in  which species and groups differ  widely in terms of  SNP numbers

(Table S3).

3. Mutation limits adaptation within taxonomic groups in small-θ animals

Our findings therefore indicate of a genuine link between the adaptive substitution rate and θ, which

is consistent with the hypothesis that, in several groups of animals, the rate of adaptation is limited

by the supply of beneficial mutations. The slope of the relationship was particularly steep in ants,

fowls,  passerines,  rodents and primates (Figure 2).  For instance,  the estimated adaptive rate  in

rhesus macaque (Macaca mulatta:  πs=0.0018) was more than 3-fold higher than that of humans

(Homo sapiens:  πs=0.0006).  Note that  this  interpretation relies  on  the assumption that  different

species from a given taxonomic group share the same DFE and, in particular, the same proportion

of beneficial mutations. This is consistent with previous analyses of the relationship between ωa and

πs at a relatively recent time scale (27,29). It is also consistent with the finding that strong selective

sweeps are more abundant in species of great apes with a large population size (4). 

Interestingly, we found that the relationship between  ωa and πs was significantly stronger in low-

diversity  than  high-diversity  groups.  In  flies,  a  high-diversity  group,  the  slope  of  the  linear

regression between the two variables was only 1.3, whereas it was between 7.8 and 77 in the four

vertebrate groups. In mussels,  i.e. the taxonomic group with the highest average diversity in our

dataset, we detected no significant relationship between ωa and πs, with the slope being very close to

zero (-0.4). It is possible that in such organisms the adaptive evolutionary rate is not limited by the

mutation supply: the standing variation and/or the influx of new mutations are sufficient for proteins

to find the required alleles. This is consistent with the results of (8), who showed that patterns of

adaptation to insecticides in natural Drosophila melanogaster populations are incompatible with the

hypothesis that adaptation is mutation-limited. This is also consistent with the results of Jensen and

Bachtrog  (40), who found very similar rates of adaptation between two  Drosophila species with

different Ne. 
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Finally, the results shown in Figure 3 corroborate theoretical predictions indicating that when Ne is

sufficiently  large,  it  is  the  species  ability  to  combine  beneficial  alleles  across  loci  that  limits

adaption rather than the strength of selection or the mutation supply (9). Our results suggest that this

situation applies to large-Ne groups of animals, such as Drosophila, but not to small-Ne ones, such

as primates. Indeed, one should keep in mind that the two variables we analyze here, πs and ωa, are

potentially affected by the effects of interference between segregating mutations (17). Weissman &

Barton (9), following Gillespie  (41), explicitly modeled linkage between beneficial mutations and

showed that the effect of Ne on the adaptive rate is expected to saturate when parameters are set to

values estimated in  Drosophila.  The neutral genetic diversity is also expected to be affected by

linked selection (42,43), to an extent that still deserves to be properly assessed (44)]. Quantifying

the effect of linked selection on the neutral and selected variation, and its relationship with Ne, is a

current challenge and would help interpreting results such as the ones we report here.

4. What are the determinants of ωa across distantly related taxa?

We used two approaches to estimate the adaptive substitution rate at the group level. Both supported

a negative among-group relationship between ωa and πs, and between ωa and life history traits that

have been shown to be linked to the long-term effective population size (36) (Figure 1, S2, S3 and

3). As different sets of genes were used in the different groups of animals, the gene content might

have influenced our results. Indeed, Enard et al.  (45) showed that genes interacting with viruses

experience a significantly higher adaptive substitution rate, thus demonstrating the importance of

the gene sampling strategy in comparative studies. In the exon capture experiment,  a subset of

genes were randomly sampled from an existing transcriptome reference, whereas all available genes

were used in the other species (provided that they were present in all species within a group). We do

not see any particular reason why the gene sample would be biased with respect to virus interacting

proteins in some specific groups, and we did not detect any effect of data type (i.e. exon capture vs.

genome-wide) on ωa. Our results are consistent with the results of Galtier  (16), who analyzed the

relationship between ωa and πs in a transcriptomic dataset of 44 distantly related species of animals.

Indeed, the main analysis in Galtier (18) revealed no significant correlation between ωa and πs, but

various  control  analyses  (particularly  using  GC  or  expression  restricted  datasets)  yielded  a

significantly negative correlation between the two variables. 
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This suggests that the mutation limitation hypothesis does not accurately account for the variation

of ωa at a large taxonomic scale,implying that factors other than θ must be at work here.  Hereafter

we discuss a number of such potential factors in the light of  Fisher’s geometrical model (FGM),

which  provides  a  convenient  framework  for  considering  the  determinants  of  the  adaptive

substitution rate.

First, simulations under FGM and a moving optimum showed that the adaptive substitution rate is

primarily determined by the rate of environmental change (32,46). If one assumes that species with

a longer generation time undergo a higher per generation rate of environmental change, and that

generation time is negatively correlated to population size in animals, then our results could perhaps

be interpreted this way (36). 

Moreover,  Lourenço  et  al.  (32) suggested  that  organismal  complexity,  represented  by  the

dimensionality of the phenotypic space in FGM, affects the adaptive substitution rate more strongly

than the  effective  population  size  does,  with the  adaptive  substitution  rate  being  an  increasing

function  of  complexity.  This  is  because  the  probability  that  a  new mutation  is  in  the  optimal

direction decreases as the number of potential directions increases, such that the average adaptive

walk takes more steps in a high-dimension than a low-dimension space (32,47). Complexity sensus

FGM, however, is very hard to quantify in a biologically relevant way. To argue that primates and

birds  are  more  complex  than  mussels  and  worms  does  not  seem  particularly  relevant  when

considering  the  organism level.  Different  measures  of  complexity  have  been considered  at  the

molecular or cellular level, such as genome size, gene or protein number, number of protein-protein

interactions, number of cell types, and these seem to point towards a higher complexity in mammals

than insects, for instance (37,38). This is consistent with the idea of a greater complexity of species

with smaller Ne. Fernández and Lynch (50) suggested that the accumulation of mildly deleterious

mutations insmall d populations induces secondary selection for protein–protein interactions that

stabilize  key  gene  functions,  thus  introducing  a  plausible  mechanism  for  the  emergence  of

molecular complexity  (50). If  the number of protein-protein interactions is a relevant measure of

proteome  complexity,  then  this  might  contribute  to  explain  our  findings  of  a  higher  adaptive

substitution rate in low-θ than in high-θ groups.

 Finally, variations in ωa across distantly related taxa could be modulated by the long-term Ne via

the mean distance of the population to the fitness optimum. Indeed, under FGM, the proportion of

beneficial mutations increases with the distance to the optimum. Groups of species evolving under

small long-term Na are further away from their optimum, compared to larger-Ne groups, due to an
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increased rate of fixation of deleterious mutations at equilibrium, so they are predicted to undergo a

larger proportion of beneficial, compensatory mutations. Empirical analyses of SFS based on large

samples in humans and flies are consistent with the hypothesis that humans are on average more

distant to their optimum than flies (11). 

To sum up, our results suggest that factors linked to species long-term effective population size

affect the DFE, i.e., the proportion and rate of beneficial mutation would be non-independent of the

long-term Ne. We suggest that the proteome is probably more complex and further away from its

optimal state in small-Ne than in large-Ne  groups of animals, which might contribute to increasing

the steady-state adaptive rate in the former, thus masking the effect of mutation limitation in across-

group comparisons.

CONCLUSION

In this study, we sampled a large variety of animals species and demonstrated a timescale-dependent

relationship between the adaptive substitution rate and the population mutation rate, that reconciles

previous  studies  that  were  conducted  at  different  taxonomic  scales.  We  demonstrate  that  the

relationship between the adaptive substitution rate and θ within closely related species sharing a

similar DFE is shaped by the limited beneficial mutation supply, whereas the between-group pattern

probably  reflects  the  influence  of  long-term  population  size  on  the  proportion  of  beneficial

mutations.  Our  results  provide  empirical  evidence  for  mutation-limited  adaptive  rate  at  whole

proteome level in small-Ne groups of animals, while stressing the fact that DFE is not independent

of the long-term effective population size – a crucial factor that must be properly accounted for in

large-scale comparative population genomic analyses.

MATERIAL & METHODS

1. Data set

Genomic, exomic and transcriptomic data from primates, passerines, fowls, rodents and flies were

retrieved from the SRA database. Detailed referenced, bioprojects and sample sizes are provided in
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Table  S1.  The  minimal  sample  size  was  five  diploid  individuals  (in  Papio  anubis)  and  the

maximum was 20 (in seven species).

Exon capture  data  were  newly generated  in  ants,  butterflies,  mussels,  earth  worms and ribbon

worms. We gathered tissue samples or DNA samples for at least eight individuals per species and

four or five species per group. Reference transcriptomes were obtained from previously published

RNA-seq data in one species per taxonomic group (36,51,52). Details of the species and numbers of

individuals are presented in Table S1.

2. Multiplexed target capture experiment

DNA from whole animal body (ants), body section (earth worms, ribbon worms), mantle (mussels)

or  head/thorax  (butterflies)  was  extracted  using  DNAeasy  Blood  and  Tissue  kit  (QIAGEN)

following the manufacturer instructions. About 3 µg of total genomic DNA were sheared for 20 mn   

using  an  ultrasonic  cleaning  unit  (Elmasonic  One).  Illumina  libraries  were  constructed  for  all

samples following the standard protocol involving blunt-end repair, adapter ligation, and adapter

fill-in steps as developed by (53) and adapted in (54). 

To perform target capture, we randomly chose contigs in five published reference transcriptomes

(Maniola  jurtina for  butterflies  (51),  Lineus  longissimus for  ribbon  worms  (36),  Mytilus

galloprovincialis for mussels (36),  Allobophora chlorotica L1 for earth worms (36), and Formica

cunicularia for ants (52)) in order to reach 2Mb of total sequence length per taxon (~2000 contigs).

100nt-long baits corresponding to these sequences were synthesized by MYbaits (Ann Arbor, MI,

USA), with an average cover of 3X.

We then performed multiplexed target capture following the MYbaits targeted enrichment protocol:

about 5 ng of each library were PCR-dual-indexed using Taq Phusion (Phusion High-Fidelity DNA 

Polymerase  Thermo  Scientific)  or  KAPA  HiFi  (2×  KAPA  HiFi  HotStart  ReadyMix

KAPABIOSYSTEMS) polymerases.  We used primers developed in  (55).  Indexed libraries were

purified using AMPure (Agencourt) with a ratio of 1.6, quantified with Nanodrop ND-800, and

pooled in equimolar ratio. We had a total of 96 combinations of indexes, and two Illumina lanes, for

a total of 244 individuals. This means that we had to index two (rarely three) individuals with the

same combination to be sequenced in the same line. When this was necessary, we assignedthe same

tag  to  individuals  from distantly  related species  (i.e.  from different  groups).  Exon capture  was

achievedaccording  to  the  Mybaits  targeted  enrichment  protocol,  adjusting  the  hybridization
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temperature to the phylogenetic distance between the processed library and the baits. For libraries

corresponding to individuals from the species used to design baits, we used a temperature of 65°C

during 22 h. For the other ones we ran the hybridization reactions for 16 h at 65°C, 2 h at 63°C, 2 h

at 61°C and 2 h at 59°C. Following hybridization, the reactions were cleaned according to the kit

protocol with 200 μL of wash buffers, and hot washes were performed at 65°C or 59°C depending

on the samples. The enriched solutions were then PCR-amplified for 14 to 16 cycles, after removal

of the streptavidin beads. PCR products were purified using AMPure (Agencourt) with a ratio of

1.6,  and paired-end  sequenced  on  two  Illumina  HiSeq® 2500  lines.  Illumina  sequencing  and

demultiplexing were subcontracted. 

3. Assembly and genotyping

For RNA-seq data (i.e.  fowls and two rodents),  we used  trimmomatic (56) to  remove Illumina

adapters and reads with a quality score below 30. We constructed de novo transcriptome assemblies

for each species following strategy B in (57), using Abyss (58) and Cap3 (59). Open reading frames

(ORFs) were predicted using the Trinity package (60). Contigs carrying ORF shorter than 150 bp

were discarded.  Filtered RNA-seq reads  were  mapped to  this  assembly  using  Burrow Wheeler

Aligner (BWA)  (version 0.7.12-r1039) (61). Contigs with a coverage  across all individual below

2.5xn  (where  n  is  the  number  of  individuals)  were  discarded.  Diploid  genotypes  were  called

according  to  the  method  described  in  (62) and  (63) (model  M1)  via  the  software  reads2snps

(https://kimura.univ-montp2.fr/PopPhyl/index.php?section=tools).  This  method  calculates  the

posterior probability of each possible genotype in a maximum likelihood framework. Genotypes

supported by a posterior probability higher than 95% are retained, otherwise missing data is called.

We  used  version  of  the  method  which  accounts  for  between-individual,  within-species

contamination as introduced in (52), using the -contam=0.1 option, which means assuming that up

to 10% of the reads assigned to one specific sample may actually come from a distinct sample, and

only validating genotypes robust to this source of uncertainty.

For primates, rodents,  passerines and flies, reference genomes,  assemblies and annotations files

were downloaded from Ensembl (release 89) and NCBI (Table S1). We kept only 'CDS' reports in

the annotations  files,  corresponding to  coding exons,  which were annotated with the automatic

Ensembl annotation  pipeline,  and the havana team for  Homo sapiens.  We used  trimmomatic to

remove Illumina adapters, to trim low-quality reads (i.e. with an average base quality below 20),
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and to keep only reads longer than 50bp. Reads were mapped using BWA (61) on the complete

reference assembly. We filtered out hits with mapping quality below 20 and removed duplicates,

and we extracted mapping hits corresponding to regions containing coding sequences according to

the annotated reference assembly.  This was done to avoid calling SNPs on the whole genome,

which would be both time consuming and useless in the present context.  We called SNPs using a

pipeline  based  on GATK (v3.8-0-ge9d80683).  Roughly,  this  pipeline  comprised  two rounds  of

variant calling separated by a base quality score recalibration. Variant calling was first run on every

individuals  from  every  species  using  HaplotypeCaller  (--emitRefConfidence  GVCF

--genotyping_mode DISCOVERY -hets 0.001). The variant callings from all individuals of a given

species were then used to produce a joint genotype using GenotypeGVCFs. Indels in the resulting

vcf files were then filtered out using vcftools. The distributions of various parameters associated

with SNPs were then used to set several hard thresholds (i.e. Quality by Depth < 3.0; Fisher Strand

> 10; Strand Odds Ratio > 3.0; MQRootMeanSquare < 50; MQRankSum < -0.5; ReadPosRankSum

< -2.0) in order to detect putative SNP-calling errors using VariantFiltration. This erroneous SNPs

were then used for base quality score recalibration of the previously created mapping files using

BaseRecalibrator.  These  mappings  with  re-calibrated  quality  scores  were  then  used  to  re-call

variants (HaplotypeCaller), to re-produce a joint genotype (GenotypeGVCFs, --allsites) and to re-

set empirical hard thresholds (i.e. same values as above, except for Quality by Depth < 5.0). The

obtained vcf files were converted to fasta files (i.e. producing two unphased allelic sequences per

individual) using custom python scripts while discarding exons found on both mitochondrial and

sexual chromosomes and while filtering out additional SNPs: we removed SNPs with a too high

coverage (thresholds were empirically set for each species), with a too low coverage (i.e. 10x per

individual) and with a too low genotype quality per individual (i.e. less than 30).

For  reads  generated  through target  capture  experiment,  we cleaned  reads  with  trimmomatic to

remove Illumina adapters and reads with a quality score below 30. For each species, we chose the

individual with the highest coverage and constructed de novo assemblies using the same strategy as

in fowls. Reads of each individuals were then mapped to the newly generated assemblies for each

species, using BWA (61). Diploid genotypes were called using the same protocol as in fowls. We

used a version of the SNP calling method which accounts for between-individual, within-species

contamination as introduced in (52) (see the following section). As the newly generated assemblies

likely  contained  intronic  sequences,  the  predicted  cDNAs  were  compared  to  the  reference

transcriptome using blastn searches, with a threshold of e-value of 10e-15. We used an in-house
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script to remove any incongruent correspondence or inconsistent overlap between sequences from

the transcriptomic references and the predicted assemblies,  and removed six base pairs  at  each

extremity of  the  resulting  predicted exonic  sequences.  These high-confidence exonic  sequences

were used for downstream analyses. 

3. Contamination detection and removal

For the newly generated data set, we performed two steps of contamination detection. First, we used

the software tool CroCo to detect inter-specific contamination in the  de novo assembly generated

after exon capture (33). 

CroCo  is  a  database-independent  tool  designed  to  detect  and  remove  cross-contaminations  in

assembled transcriptomes of distantly related species. This program classifies predicted cDNA in

five categories, “clean”, “dubious”, “contamination”, “low coverage” and “high expression”.

Secondly, we used a version of the SNP calling method which accounts for between-individual,

within-species  contamination  as  introduced  in  (52),  using  the  -contam=0.1  option.  This  means

assuming that up to 10% of the reads assigned to one specific sample may actually come from a

distinct sample, and only validating genotypes robust to this source of uncertainty.

4. Orthology prediction and divergence analysis

In primates, we extracted one-to-one orthology groups across the six species from the OrthoMaM

database (64,65). 

In fowls, passerines, rodents and flies, we translated the obtained CDS into proteins and predicted

orthology using OrthoFinder (66). In fowls, full coding sequences from the well-annotated chicken

genome  (Ensembl  release  89)  were  added  to  the  dataset  prior  to  orthology  prediction,  then

discarded.  We  kept  only  orthogroups  that  included  all  species.  We  aligned  the  orthologous

sequences with MACSE (Multiple Alignment for Coding SEquences (67).

In each of earth worms, ribbon worms, mussels, butterflies and ants, orthogroups were created via a

a blastn similarity search between predicted exonic sequences reference transcriptomes. In each

taxon, we concatenated the predicted exonic sequences of each species that matched the same ORF

from  the  reference  transcriptome  and  aligned  these  using  MACSE.  We  then  kept  alignments

comprising exactly one sequence per species or if only one species was absent. 
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We estimated lineage specific dN/dS ratio using bppml (version 2.4) and MapNH (version 2.3.2)

(68),  the  former  for  estimating  each branch length  and the  latter  for  mapping substitutions  on

species specific branches.

Tree topologies were obtained from the literature (Table S4). In passerines, fowls, rodents, flies and

primates, we kept only alignments comprising all the species. In the other groups we also kept

alignments comprising all species but one. 

We also estimated dN/dS ratios at group level by adding up substitution counts across branches of

the trees, including internal branches. 

To account for GC-biased gene conversion, we modified the MapNH software such that only GC-

conservative substitutions were recorded (26). We estimated the non-synonymous and synonymous

number of  GC-conservative sites  per  coding sequence using an in-house script.  We could then

compute the dN/dS ratio only for GC-conservative substitutions. 

5. Polymorphism analysis

For each taxon, we estimated ancestral sequences at each internal node of the tree with the Bio++

program SeqAncestor  (68). The ancestral sequences at each internal node were used to orientate

single nucleotide polymorphisms (SNPs) of species that descend from this node. We computed non-

synonymous (πn) and synonymous (πs, i.e. θ) nucleotide diversity, as well as πn/πs using the software

dNdSpiNpiS_1.0  developed  within  the  PopPhyl  project  (https://kimura.univ-

montp2.fr/PopPhyl/index.php?section=tools)  (using  gapN_site=4,  gapN_seq=0.1  and  median

transition/transversion  ratio  values  estimated  by  bppml  for  each  taxonomic  group).  We  also

computed unfolded and folded synonymous and non-synonymous site frequency spectra both using

all mutations and only GC-conservative mutations using an in-house script as in (18).

6. Mc-Donlad-Kreitman analysis

We estimated α, ωa and ωna using the approach of  (16) as implemented in  (18) (program Grapes

v.1.0).  It  models  the  distribution  of  the  fitness  effects  (DFE)  of  deleterious  and  neutral  non-

synonymous mutations as a negative Gamma distribution, which is fitted to the synonymous and

non-synonymous site frequency spectra (SFS) computed for a set of genes. This estimated DFE is

then used to deduce the expected dN/dS under near-neutrality. The difference between observed and
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expected dN/dS provides an estimate of the proportion of adaptive non-synonymous substitutions,

α. The per mutation rate of adaptive and non-adaptive amino-acid substitution were then obtained as

following: ωa = α(dN/dS) and ωna = (1-α)(dN/dS). We computed these statistics for each species

using  the  per  branch  dN/dS  ratio,  using  either  all  mutations  and  substitutions,  or  only  GC-

conservative mutations and substitutions. 

We used three different distributions to model the fitness effects of mutations that have been shown

to perform the best in  (18).  Two of these models, GammaExpo and ScaledBeta, account for the

existence of slightly beneficial non-synonymous mutations. We then averaged the estimates of the

three models using Akaike weights as follows:

where AICw stands for akaike weigths that were estimated using the akaike.weights fonction in R

(https://www.rdocumentation.org/packages/qpcR/versions/1.4-1/topics/akaike.weights).

When estimating DFE model parameters, we accounted for recent demographic effects, as well as

population structure and orientation errors, by using nuisance parameters, which correct each class

of frequency of the synonymous and non-synonymous SFS relative to the neutral expectation in an

equilibrium Wright–Fisher population (39). 

We also estimated α,  ωa and ωna at  group level.  Two approaches were used.  Firstly,  we pooled

species specific SFS from each group, and used the dN/dS ratio of the total tree of each taxon. We

did so following the unweighted and unbiased strategy of (34), which combines polymorphism data

across  species  with  equal  weights.  Briefly,  we  divided  the  synonymous  and  non-synonymous

number of SNPs of each category of the SFS of each species by the total number of SNPs of the

species,  then we summed those normalized numbers across species and finally  we transformed

those sums so that the total number of SNPs of the pooled SFS matches the total number of SNPs

across species. The resulting estimate was called ωa[P]. Secondly, we calculated the arithmetic mean

of ωna across species within a taxonomic group to obtain a non-adaptive substitution rate at the

group level. We then subtracted this average from the dN/dS ratio calculating across the whole tree

of each taxon to obtain an estimate of the adaptive substitution rate at group level (called ωa[A]).
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7. Life history traits variables

Five life history traits were retrieved from the literature for each species: adult size (i.e. the average

length of adults), body mass (i.e. the mean body mass of adults’ wet weights), fecundity (i.e.  the

number of offspring released per day), longevity (i.e. the maximal recorded longevity in years), and

propagule  size  (i.e.  the  size  of  the  juvenile  or  egg or  larva  when leaving parents  or  group of

relatives) (Table S5). In the case of social insects and birds, parental care is provided to juveniles

until they reach adult size so in these cases, propagule size is equal to adult size. 

8. Simulations

In order to evaluate whether our method to estimate the adaptive substitution rate could lead to a

spurious correlation between πs and ωa, we simulated the evolution of coding sequences in a single

population undergoing demographic fluctuations using SLIM V2  (69). We considered panmictic

populations of diploid individuals whose genomes consisted of 1500 coding sequences, each of 999

base pairs. We set the mutation rate to 2.2e-9 per base pair per generation, the recombination rate to

10e-8 per base (as in (23)) and the DFE to a gamma distribution of mean -740 and shape 0.14 for

the negative part, and to an exponential distribution of mean 10-4 for the positive part (those DFE

parameters  correspond to  the  DFE estimated  from the  pooled  SFS of  primates).  We simulated

several demographic scenarios with four regimes of frequency of the fluctuations, as well as four

regimes of intensity of the fluctuations (see figure S5). We sampled polymorphism and divergence

for 20 individuals at several time points during the simulations, evaluated πs and ωa and measured

the correlation between the two variables.
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Supplementary tables and figures legends:

Table S1 : Details of the species used in this study and numbers of individuals for each species.

Table S2 : Number of orthogroups for each taxonomic group. 

The differences in terms of number of orthogroups comes from the fact that we not only kept orthogroups with all

species but also orthogroups with all species but one to estimate dN/dS value for each terminal branches in order to

maximize the number of substitutions for data sets generated by exon catpure. 

Table S3: SNPs counts for each species. 

SNPs counts are not integers because they corresponds to SNPs that are present in our SFS, where we chose a sample

size  (i.e.  the  number  of  categories  of  the  SFS)  lower  that  2*n,  where  n  is  the  number  of  individuals.  This  is  to

compensate the uneven coverage between individuals that results in some sites in some individuals not to be genotyped.

We chose sample sizes that maximize the number of SNPs in each SFS. 

Table S4:  Sources of the tree topologies of each taxonomic group used to estimate branch

length and map substitutions. 

Table S5: Values and sources of the life history traits used in this study.

Tables S6 and S7: Per species and per group life history traits, polymorphism and divergence

data, α, ωa and ωna estimates.

Figure S1: Cross contamination network for de novo assemblies from exon capture. 

Circles  represent  the  assemblies,  and  arrows  and  their  corresponding  numbers  represent  the  number  of  cross

contaminants. Most cross contamination events occur between closely-related species and are therefore likely false

positive cases.

Figure S2: Relationship between ωa[P] and πs and log10 transformed life history traits.
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ωa[P] is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions

(B).  Group level  πs and life history traits  are estimated by averaging species  level  estimates  across closely related

species.  Black  dotted  lines  represent  significant  regressions  across  taxonomic  groups  and  grey  dotted  lines  non-

significant ones.

Figure S3: Relationship between ωa[A] and πs and log10 transformed life history traits.

ωa[A] is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions

(B).  Group level  πs and life history traits  are estimated by averaging species  level  estimates  across closely related

species.  Black  dotted  lines  represent  significant  regressions  across  taxonomic  groups  and  grey  dotted  lines  non-

significant ones.

Figure S4:  Relationship between species-level  ωna and  πs and log10 transformed life history

traits.

ωna is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions

(B). Black dotted lines represent significant regressions across taxonomic groups and grey dotted lines non-significant

ones.

Figure S5: Relationship between species-level α and πs.

α is estimated using all mutations and substitutions (A) or using only GC-conservative mutations and substitutions (B).

The dotted line represents the regression across all species, and full lines represent the regression within each taxonomic

groups.  Black  dotted  lines  represent  significant  regressions  across  taxonomic  groups  and  grey  dotted  lines  non-

significant ones.

Figure S6: Design of the simulations of fluctuation of population size.

A: three fold ratio between low and high population size and high long-term population size.

B: thirty fold ratio between low and high population size and high long-term population size.

C: three fold ratio between low and high population size and low long-term population size.

D: thirty fold ratio between low and high population size and low long-term population size.

Figure S7:  Relationship between  ωa  and πs  in simulated scenarios of fluctuating population

size.

A: three fold ratio between low and high population size and high long-term population size (scenario A in figure S1)

B: thirty fold ratio between low and high population size and high long-term population size (scenario B in figure S1)

C: three fold ratio between low and high population size and low long-term population size (scenario C in figure S1)

D: thirty fold ratio between low and high population size and low long-term population size (scenario D in figure S1)

28

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684



References:

1. Bell G. Evolutionary rescue and the limits of adaptation. Philosophical Transactions of the 
Royal Society B: Biological Sciences. 2013;368(1610):20120080. 

2. Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends in 
Ecology & Evolution. janv 2014;29(1):33-41. 

3. Smith JM. What Determines the Rate of Evolution? The American Naturalist. 1 mai 
1976;110(973):331-8. 

4. Nam K, Munch K, Mailund T, Nater A, Greminger MP, Krützen M, et al. Evidence that the 
rate of strong selective sweeps increases with population size in the great apes. Proceedings of 
the National Academy of Sciences. 14 févr 2017;114(7):1613-8. 

5. Bürger R, Lynch M. Evolution and extinction in a changing environment: a quantitative‐
genetic analysis. Evolution. 1995;49(1):151-63. 

6. Barton N, Partridge L. Limits to natural selection. BioEssays. 2000;22(12):1075-84. 

7. Kopp M, Hermisson J. The genetic basis of phenotypic adaptation II: the distribution of 
adaptive substitutions in the moving optimum model. Genetics. 2009;183(4):1453-76. 

8. Karasov T, Messer PW, Petrov DA. Evidence that Adaptation in Drosophila Is Not Limited by 
Mutation at Single Sites. PLOS Genetics. 17 juin 2010;6(6):e1000924. 

9. Weissman DB, Barton NH. Limits to the Rate of Adaptive Substitution in Sexual Populations. 
PLOS Genetics. 7 juin 2012;8(6):e1002740. 

10. Yeaman S, Gerstein AC, Hodgins KA, Whitlock MC. Quantifying how constraints limit the 
diversity of viable routes to adaptation. PLoS genetics. 2018;14(10):e1007717. 

11. Huber CD, Kim BY, Marsden CD, Lohmueller KE. Determining the factors driving selective 
effects of new nonsynonymous mutations. Proceedings of the National Academy of Sciences. 
2017;114(17):4465-70. 

12. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. 
Nature. 20 juin 1991;351(6328):652-4. 

13. Smith NGC, Eyre-Walker A. Adaptive protein evolution in Drosophila. Nature. févr 
2002;415(6875):1022-4. 

14. Keightley PD, Eyre-Walker A. Joint inference of the distribution of fitness effects of 
deleterious mutations and population demography based on nucleotide polymorphism 
frequencies. Genetics. 2007;177(4):2251-61. 

15. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, et al. 
Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS 
genetics. 2008;4(5):e1000083. 

29

685



16. Eyre-Walker A, Keightley PD. Estimating the Rate of Adaptive Molecular Evolution in the 
Presence of Slightly Deleterious Mutations and Population Size Change. Mol Biol Evol. 1 sept
2009;26(9):2097-108. 

17. Messer PW, Petrov DA. Frequent adaptation and the McDonald–Kreitman test. PNAS. 21 mai 
2013;110(21):8615-20. 

18. Galtier N. Adaptive Protein Evolution in Animals and the Effective Population Size 
Hypothesis. PLOS Genetics. 11 janv 2016;12(1):e1005774. 

19. Keightley PD, Campos JL, Booker TR, Charlesworth B. Inferring the Frequency Spectrum of 
Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of 
Drosophila melanogaster. Genetics. 1 juin 2016;203(2):975-84. 

20. Tataru P, Mollion M, Glémin S, Bataillon T. Inference of Distribution of Fitness Effects and 
Proportion of Adaptive Substitutions from Polymorphism Data. Genetics. 1 nov 
2017;207(3):1103-19. 

21. Loewe L, Charlesworth B. Inferring the distribution of mutational effects on fitness in 
Drosophila. Biology Letters. 22 sept 2006;2(3):426-30. 

22. Stoletzki N, Eyre-Walker A. Estimation of the neutrality index. Molecular biology and 
evolution. 2010;28(1):63-70. 

23. Rousselle M, Mollion M, Nabholz B, Bataillon T, Galtier N. Overestimation of the adaptive 
substitution rate in fluctuating populations. Biology Letters. 1 mai 2018;14(5):20180055. 

24. Eyre-Walker A. Changing effective population size and the McDonald-Kreitman test. 
Genetics. 2002;162(4):2017-24. 

25. Corcoran P, Gossmann TI, Barton HJ, Slate J, Zeng K. Determinants of the Efficacy of Natural
Selection on Coding and Noncoding Variability in Two Passerine Species. Genome Biol Evol. 
1 nov 2017;9(11):2987-3007. 

26. Rousselle M, Laverré A, Figuet E, Nabholz B, Galtier N. Influence of Recombination and GC-
biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals 
versus Birds. Mol Biol Evol [Internet]. [cité 22 févr 2019]; Disponible sur: 
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy243/5261349

27. Bolívar P, Mugal CF, Rossi M, Nater A, Wang M, Dutoit L, et al. Biased inference of selection
due to GC-biased gene conversion and the rate of protein evolution in flycatchers when 
accounting for it. Mol Biol Evol [Internet]. [cité 3 août 2018]; Disponible sur: 
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy149/5063898

28. Ohta T. The Nearly Neutral Theory of Molecular Evolution. Annual Review of Ecology and 
Systematics. 1992;23(1):263-86. 

29. Gossmann TI, Keightley PD, Eyre-Walker A. The Effect of Variation in the Effective 
Population Size on the Rate of Adaptive Molecular Evolution in Eukaryotes. Genome Biol 
Evol. 1 janv 2012;4(5):658-67. 

30



30. Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, et al. 
Genome wide analyses reveal little evidence for adaptive evolution in many plant species. 
Molecular biology and evolution. 2010;27(8):1822-32. 

31. Strasburg JL, Kane NC, Raduski AR, Bonin A, Michelmore R, Rieseberg LH. Effective 
population size is positively correlated with levels of adaptive divergence among annual 
sunflowers. Molecular biology and evolution. 2010;28(5):1569-80. 

32. Lourenço JM, Glémin S, Galtier N. The rate of molecular adaptation in a changing 
environment. Molecular biology and evolution. 2013;30(6):1292-301. 

33. Simion P, Belkhir K, François C, Veyssier J, Rink JC, Manuel M, et al. A software tool 
‘CroCo’detects pervasive cross-species contamination in next generation sequencing data. 
BMC biology. 2018;16(1):28. 

34. James JE, Piganeau G, Eyre‐Walker A. The rate of adaptive evolution in animal mitochondria. 
Molecular ecology. 2016;25(1):67-78. 

35. Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, et al. Codon Usage Bias in 
Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-
Biased Gene Conversion. Molecular biology and evolution. 2018;35(5):1092-103. 

36. Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, et al. Comparative 
population genomics in animals uncovers the determinants of genetic diversity. Nature. 
2014;515(7526):261. 

37. Chen J, Glémin S, Lascoux M. Genetic Diversity and the Efficacy of Purifying Selection 
across Plant and Animal Species. Molecular Biology and Evolution. juin 2017;34(6):1417-28. 

38. Zhen Y, Huber CD, Davies RW, Lohmueller KE. Stronger and higher proportion of beneficial 
amino acid changing mutations in humans compared to mice and flies. 26 sept 2018 [cité 10 
oct 2018]; Disponible sur: http://biorxiv.org/lookup/doi/10.1101/427583

39. Eyre-Walker A, Woolfit M, Phelps T. The Distribution of Fitness Effects of New Deleterious 
Amino Acid Mutations in Humans. Genetics. 1 juin 2006;173(2):891-900. 

40. Jensen JD, Bachtrog D. Characterizing the Influence of Effective Population Size on the Rate 
of Adaptation: Gillespie’s Darwin Domain. Genome Biol Evol. 24 juin 2011;3:687-701. 

41. Gillespie JH. IS THE POPULATION SIZE OF A SPECIES RELEVANT TO ITS 
EVOLUTION? - Gillespie - 2001 - Evolution - Wiley Online Library [Internet]. 2001 [cité 11 
juill 2019]. Disponible sur: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0014-
3820.2001.tb00732.x

42. Gillespie JH. The neutral theory in an infinite population. Gene. 2000;261(1):11-8. 

43. Corbett-Detig RB, Hartl DL, Sackton TB. Natural Selection Constrains Neutral Diversity 
across A Wide Range of Species. PLOS Biology. 10 avr 2015;13(4):e1002112. 

31



44. Coop G. Does linked selection explain the narrow range of genetic diversity across species? 
bioRxiv. 7 mars 2016;042598. 

45. Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation 
in mammals. :25. 

46. Razeto-Barry P, Díaz J, Vásquez RA. The nearly neutral and selection theories of molecular 
evolution under the fisher geometrical framework: substitution rate, population size, and 
complexity. Genetics. 2012;191(2):523-34. 

47. Orr HA. Adaptation and the Cost of Complexity. Evolution. 1 févr 2000;54(1):13-20. 

48. Valentine JW, Collins AG, Meyer CP. Morphological complexity increase in metazoans. 
Paleobiology. 1994;20(2):131-42. 

49. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, et al. Estimating the size of the 
human interactome. Proceedings of the National Academy of Sciences. 2008;105(19):6959-64.

50. Fernández A, Lynch M. Non-adaptive origins of interactome complexity. Nature. 
2011;474(7352):502. 

51. Rousselle M, Faivre N, Ballenghien M, Galtier N, Nabholz B. Hemizygosity Enhances 
Purifying Selection: Lack of Fast-Z Evolution in Two Satyrine Butterflies. Genome Biol Evol. 
1 oct 2016;8(10):3108-19. 

52. Ballenghien M, Faivre N, Galtier N. Patterns of cross-contamination in a multispecies 
population genomic project: detection, quantification, impact, and solutions. BMC Biology 
[Internet]. déc 2017 [cité 12 mars 2018];15(1). Disponible sur: 
http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-017-0366-6

53. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target 
capture and sequencing. Cold Spring Harbor Protocols. 2010;2010(6):pdb. prot5448. 

54. Tilak M-K, Justy F, Debiais-Thibaud M, Botero-Castro F, Delsuc F, Douzery EJP. A cost-
effective straightforward protocol for shotgun Illumina libraries designed to assemble 
complete mitogenomes from non-model species. Conservation Genet Resour. 1 mars 
2015;7(1):37-40. 

55. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for 
multiplexed target capture. Genome research. 2012; 

56. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. 
Bioinformatics. 2014;30(15):2114-20. 

57. Cahais V, Gayral P, Tsagkogeorga G, Melo‐Ferreira J, Ballenghien M, Weinert L, et al. 
Reference‐free transcriptome assembly in non‐model animals from next‐generation 
sequencing data. Molecular ecology resources. 2012;12(5):834-45. 

58. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler 
for short read sequence data. Genome research. 2009;19(6):1117-23. 

32



59. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome research. 
1999;9(9):868-77. 

60. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length 
transcriptome assembly from RNA-Seq data without a reference genome. Nature 
biotechnology. 2011;29(7):644. 

61. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. 
Bioinformatics. 2009;25(14):1754-60. 

62. Tsagkogeorga G, Cahais V, Galtier N. The population genomics of a fast evolver: high levels 
of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. 
Genome Biology and Evolution. 2012;4(8):852-61. 

63. Gayral P, Melo-Ferreira J, Glémin S, Bierne N, Carneiro M, Nabholz B, et al. Reference-free 
population genomics from next-generation transcriptome data and the vertebrate–invertebrate 
gap. PLoS genetics. 2013;9(4):e1003457. 

64. Ranwez V, Delsuc F, Ranwez S, Belkhir K, Tilak M-K, Douzery EJ. OrthoMaM: a database of 
orthologous genomic markers for placental mammal phylogenetics. BMC evolutionary 
biology. 2007;7(1):241. 

65. Douzery EJ, Scornavacca C, Romiguier J, Belkhir K, Galtier N, Delsuc F, et al. OrthoMaM 
v8: a database of orthologous exons and coding sequences for comparative genomics in 
mammals. Molecular biology and evolution. 2014;31(7):1923-8. 

66. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons 
dramatically improves orthogroup inference accuracy. Genome biology. 2015;16(1):157. 

67. Ranwez V, Harispe S, Delsuc F, Douzery EJ. MACSE: Multiple Alignment of Coding 
SEquences accounting for frameshifts and stop codons. PloS one. 2011;6(9):e22594. 

68. Guéguen L, Gaillard S, Boussau B, Gouy M, Groussin M, Rochette NC, et al. Bio++: efficient 
extensible libraries and tools for computational molecular evolution. Molecular biology and 
evolution. 2013;30(8):1745-50. 

69. Haller BC, Messer PW. SLiM 2: Flexible, Interactive Forward Genetic Simulations. Mol Biol 
Evol. 1 janv 2017;34(1):230-40. 

33


