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In the 19th century, C. Darwin and F. Delpino engaged in a debate about the success of

species with different reproduction modes, with the later favouring the idea that monoecious

plants capable of autonomous selfing could spread more easily than dioecious plants (or

self-incompatible hermaphroditic plants) if cross-pollination opportunities were limited [1].

Since then, debate has never faded about how natural selection is responsible for transitions

to selfing and can explain the diversity and distribution of reproduction modes we observe in

the natural world [2, 7].

Explanations for mating systems diversity, and transitions to selfing in particular, gener-

ally fall into two categories: either genetic or ecological. On the genetic side, many theoretical

works showed a critical role for mutation load and inbreeding depression, transmission ad-

vantage and reproductive assurance in the evolution of selfing, e.g. [6]. Many experimental

works were conducted to test theoretical hypotheses and predictions, especially regarding

the magnitude of inbreeding depression; see [8] for a review. Ecologically, the presence of

selfing populations is usually correlated with fragmented and harsh habitats, on the periphery

of ancestral outcrossing populations. The cause of this distribution could be that selfers are

better dispersers and colonizers than outcrossers, or variations in other life-history traits
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[3]. Yet, few experiments were run to assess whether selfing species or populations have

effectively different ecological characteristics, and even scarcer are experiments evaluating

both the roles of mutational load and life-history traits evolution. This is the aim of the present

study by X. Yang et al [9].

The study of Yang et al [9], together with that of Petrone Mendoza et al. [5], supervised

by S. Glémin and M. Lascoux, is probably one of the first to conduct experiments where

the competitive abilities are compared between and within species. Using 4 species of the

Capsella genus, annual plants from the mustard family, they tested the theoretical predictions
that i) the transition from outcrossing to selfing resulted in reduced competitive ability at

higher densities, because of the accumulation of deleterious mutations and/or the evolution

of life-history traits in an open habitat and a colonization/dispersal trade-off; ii) that reduced

competitive ability of selfers should be less pronounced in polyploid then diploid species

because the effect of partially recessive deleterious mutations would be buffered; and iii) that

competitive ability of selfers should decline with historical range expansion because of the

expansion load [4].

Of the 4 Capsella species studied, only one of them, presumably the ancestral, is a diploid
outcrosser with a small distribution but large population sizes. The three other species are

selfers, two diploids with independent histories of transitions from outcrossing, and another,

tetraploid, resulting from a recent hybridization between one of the diploid selfer and the

diploid outcrossing ancestor. Many accessions from each species were sampled and indi-

viduals assayed for their competitive ability against a tester species or alone, for vegetative

and reproductive traits. The measured vegetative traits (rosette surface at two stages, growth

rate and flowering probability) showed no differentiation between selfers and outcrossers. To

the contrary, reproductive traits (number of flowers) followed theoretical predictions: selfing

species are more sensitive to competition than the outcrossing species, with polyploid selfing

species being intermediate between the diploid selfers and the diploid outcrosser, and within

the tetraploid selfing species (where sampling was quite significant across a large geographical

range) sensitivity to competition increased with range expansion.

The study of Yang et al. [9] suffers from several limitations, such that alternative expla-

nations cannot be discarded in the absence of further experimental data. They nonetheless

provide the reader with a nice discussion and prospects on how to untwine the causes and

the consequences of transitions to selfing. Their study also brings up to date questions about

the joint evolution of mating system and life-history traits, which needs a renewed interest

from an empirical and theoretical point of view. The results of Yang et al. raise for instance

the question of whether it is indeed expected that only reproductive traits, and not vegetative

traits, should evolve with the transition to selfing.

The recommandation and evaluation of this paper have been made in collaboration with

Thomas Lesaffre.
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