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The study by Pfenninger (2025) addresses the critical need to understand the genomic basis of ecologically

important traits to better predict and respond to the impacts of global change on biodiversity (Gienapp et al.

2017). It introduces the popGWAS, a novel GWAS approach, which utilizes phenotypic population means and

genome-wide allele frequency data, obtainable through methods like Pool-sequencing (Pool-Seq), to identify

the genetic loci underlying quantitative polygenic traits in natural populations and predict their mean. The

core idea is that trait-increasing alleles should exhibit higher frequencies in populations with higher mean trait

values. popGWAS then maps mean allele frequencies across populations to their trait means. Working with as

many allele frequency values as populations sampled, popGWAS potentially has more power to find significant

associations at genomic loci than individual-based GWAS working with three genotypes at a locus. This new

method addresses some of the problems faced by traditional genome-wide association studies (GWAS), which

require extensive resources and large sample sizes, posing challenges for biodiversity research on non-model

species in natural populations.

To evaluate the effectiveness of popGWAS, Pfenninger (2025) conducted extensive population genetic

forward simulations, examining scenarios with varying numbers of populations, ranging from 12 to 60. The

results indicated that popGWAS performance improved with increasing sample size, showing a diminishing

return above 36 populations. In a direct comparison across all simulation scenarios, popGWAS consistently

outperformed individual-based GWAS (iGWAS). On average, popGWAS identified more true positive loci than

iGWAS. In addition, when combined with minimum entropy feature selection (MEFS), popGWAS achieved large
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predictive accuracy of populationmeans of 0.8 or better in over 97% of simulations with 36 ormore populations,

regardless of other parameters. In contrast, iGWAS failed to generate valid phenotypic predictions in over

70% of the simulations. Also, unlike iGWAS, popGWAS did not suffer from p-value inflation. Yet, population

structure or varying levels of relatedness among individuals were not fully accounted for in the simulations.

The extent to which popGWAS would be sensitive to such individual covariates remains to be shown. Finally,

popGWAS was relatively insensitive to low trait heritability because random individual variation gets averaged

out when calculating the population mean trait value.

The study demonstrates that popGWAS is a promising approach, particularly for oligogenic and moderately

polygenic traits. The method performs more poorly for polygenic traits with large genetic redundancy, where

different alleles contribute to the same trait mean in different populations. The method thus performs better

when large-effect loci contribute to genetic differentiation in parallel across populations, as expected when

gene flow is moderate to high (Yeaman & Whitlock 2011). Low genomic predictability is reached when drift

dominates or when genetic architectures are highly polygenic.

The popGWAS method proved effective with a moderate number of sampled populations and, when com-

bined with machine learning for genomic prediction, exhibited strong performance in predicting population

means, even for low-heritability traits. Notably, popGWAS consistently outperformed iGWAS in terms of

identifying true positive loci and prediction accuracy. This suggests that popGWAS can make GWAS studies

more accessible for biodiversity genomics research, providing a valuable tool for dissecting the genetic basis of

complex traits in natural populations. A key aspect contributing to the efficiency of popGWAS is its compatibility

with pooled sequencing (Pool-Seq). Pool-Seq provides estimates of allele frequencies within a population by

sequencing a mixed DNA sample representing multiple individuals from that population (Futschik & Schlöt-

terer 2010). This approach is significantly more cost-effective than sequencing each individual separately,

allowing researchers to obtain genome-wide allele frequency data across multiple populations with a sub-

stantially reduced budget. This data efficiency makes GWAS more accessible to a wider range of researchers,

particularly those working in biodiversity genomics where financial resources may be limited. Furthermore,

popGWAS can be coupled with bulk phenotyping methods, such as automatic video recording, remote sensing,

metabolomics/transcriptomics, etc., to efficiently obtain population-level phenotypic data, further streamlining

the research process. Ultimately, popGWAS represents a valuable addition to the geneticist’s toolkit, offering a

complementary approach to iGWAS that can be particularly advantageous in specific research contexts where

predicting trait mean is more important than resolving the precise genetic basis of a trait.
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Reviews

Evaluation round #2

DOI or URL of the preprint: https://doi.org/10.1101/2024.06.12.598621
Version of the preprint: 2

Authors’ reply, 12 March 2025

Download author’s reply

Decision by Frédéric Guillaume , posted 04 March 2025, validated 05 March 2025

Dear Markus,

Thank you for submitting your revised manuscript on popGWAS. The improvements are significant and I am

willing to go on with recommendation pending some minor revisions. I attach a commented version of your

manuscript where I have highlighted typos and places where corrections may be needed. I would also like

to give you the opportunity to reply to the criticisms of reviewer 1. Many points raised by the reviewer are

actually addressed in your discussion, I thus do not expect additional explanations for those points.

I would also like to ask you to clarify the iGWAS part as much as you can. Information on iGWAS in the

supplementary material is missing and it would be informative for the readers to know more about the impact

of population structure/relatedness on p-value inflation. I hope this would not require much more work from

you.

I’d also recommend to avoid using ”phenotypic plasticity” when referring to the ”environmental variance”

parameter. The two are used in the manuscript but it would be preferable to use only the environmental

variance to refer to the random noise added to the genotypic value when computing the phenotype. A plastic

response is expected to be more directional/predictive response to environmental variation rather than just

noise.

Thank you for your contribution.

Best wishes,

Fred Download recommender’s annotations

Reviewed by Petri Kemppainen , 07 February 2025

While the manuscript has improved a lot and there is a lot to like, there still are some issues that need

addressing.

While I’m still not entirely convinced by the simulations that are still run for a very small number of generations

(but where the allele frequencies are now at least drawn from a beta distributionwith alpha=beta=0.5, instead of

a uniform distribution), I am willing to compromise on this. The main reason is that given the same sequencing

effort, popGWAS always outperformed iGWAS in the same data sets, which is indeed the main selling point of

this manuscript (but also iGWAS cannot be used for poolseq data). Thus, whatever shortcomings there are

with the simulations, I cannot see how any of them could bias the results in favor of popGWAS.

However, the only information about this iGWAS I can find in the manuscript is on L.325: “… a traditional

linear GWAS on a random sample of individuals from all subpopulations was performed for all simulation

scenarios ...”. If this is the case, I am not surprised that it did not perform in par with popGWAS, since the

iGWAS seemingly did not even attempt to control for any relatedness in the data for instance by including

relatedness as a random effect, which is I consider to be a bare minimum (for instance using EMMAX).

Also, it was argued that popGWAS is not sensitive to p-value inflation (L.662-), but for comparison, the levels

of p-value inflation were never reported for the iGWAS results nor any attempts to control this (if present). I’m
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still quite confident that popGWAS can outperform iGWAS but before these shortcomings are addressed, I

cannot know for sure.

Furthermore, I’m not convinced that a mean lambda of 1.27 (ranging between 1-1.99, L.440) can be inter-

preted as no p-value inflation, since the threshold is generally assumed to be 1.1. This is not that much of

an issue in the simulations, mainly because the performance was assessed by considering the proportion of

true positive loci (TPL) above a given quantile, not a fixed threshold. However, in empirical data, the -log10(P)

would, on average, have to be 1.27x higher, provided genomic control was used, which may be the difference

between many TPL being significant or not in empirical data.

Perhaps more importantly, SNPs are assumed to represent haplotypes, thus the QTN are assumed to be

100% correlated with the SNPs in the simulated data. This is rarely the case in and to ensure that at least one

SNPs is 100% (or at least close to) associated with a QTN (as in the simulations), much higher SNP densities

are needed in empirical data for a given level of “LD-structure”. In other words, the ratio between QTN (or

SNPs strongly associated with them) and neutral loci randomly sampled in the genome are likely to be much

lower in empirical data compared to the simulations making corrections for multiple testing much more taxing

(there will many more chances of neutral loci to also be as differentiated as SNPs highly correlated with the

QTN or the QTN themselves). This does not take anything away from the fact the popGWAS performed better

than iGWAS (but see above), but could be a reason why popGWAS may not be as powerful in empirical data as

implied in the manuscript, which should be addressed in the discussion.

One reason p-value inflation was not an issue for popGWAS was the overall high levels of migration between

sub-populations (a minimum of 5 migrants per generation), and in addition the simulations were not run for

enough generations for population structuring to come into effect (L. 416). Indeed, it seemed that Fst did not

exceed much beyond 0.07 in any of the simulations (L. 669), which I still consider to be very low for many

species and populations in the wild, and a level that I do not think would lead to much p-value inflation in the

iGWAS data either (which is why I would like to see them reported).

Perhaps the biggest weakness of popGWAS in this context is the fact that it relies on some level of “parallelism”

(as accurately pointed out on L. 668-692) so migration cannot be too low, which is perhaps the reason why

lower levels of migration were not tested. And, as I already pointed out in the previous review, the fact that the

simulation started from a common pool of alleles with selection being imposed on the populations before

population structuring has reached its full effect gives higher chances of parallelism than would be expected

for a given level of gene flow in the wild.

The fact that these the simulations are not at equilibrium is also not an “advantage” as explicitly implied on

L. 613-617, since the kind of non-equilibrium that was present in the simulations are highly unrealistic relative

to the types of non-equilibrium conditions that can be expected in the wild (population size changes, range

expansions etc.).

Furthermore, contrary to what is implied (L.668), many of these limitations are not unique to popGWAS

but are expected to affect iGWAS performance as well – QTL involved controlling the same traits across larger

number of populations/geographic ranges will overall be more correlated with habitat regardless of how this

association is tested.

Ideally, I would therefore want to see that the simulations were run until migration-drift equilibrium BEFORE

selection is imposed. Given this, the limits of popGWAS may be apparent already with the, in my opinion, “high”

levels of migration so far tested. If not, I would also like to have a level of migration that gives an overall Fst of

at least 0.1-0.2, though even higher levels are of course not rare in the wild.

I still do not understand what is meant by the “phenotypic plasticity” parameter (e.g. L. 505). Since “phenotypic

plasticity” is not explained anywhere in the text, from the context I assume this is the same as environmental

variance, but there is a large difference between these two – plasticity is predictable, whereas environmental

variance is not. I think I mentioned this in the first review as well.
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Lastly, the idea that “…complex traits are influenced by a few dozen genes that are mechanistically directly

involved in their expression, but often also by numerous, if not almost all other genes as well…” is important but

not commonly known (and perhaps a bit controversial) and requires thus some more explanation (L. 45-47).

Reviewed by anonymous reviewer 1, 05 February 2025

The author made a very thorough job addressing both reviewers comments. I think that the new simulations

to compare popGWAS to stablished GWAS-like methods is a great contribution to the discussion regarding the

strengths, weaknesses, and releveance of the proposed method.

I think the current manuscript is rigorous, clear, and will be an important contribution to the community.

Evaluation round #1

DOI or URL of the preprint: https://doi.org/10.1101/2024.06.12.598621
Version of the preprint: 1

Authors’ reply, 13 January 2025

Download author’s reply

Decision by Frédéric Guillaume , posted 20 August 2024, validated 21 August 2024

Thank you for submitting your work to PCI Evolutionary Biology. The manuscript presents a novel mean-

based GWAS approach whereby mean allele frequencies andmean trait values of many populations are utilized

to understand the genetic basis of complex traits in natural populations. Whereas the two reviewers and

myself find merits in the approach proposed, several points need to be addressed in a revised version of this

manuscript. Both reviewers provide detailed and constructive criticisms on how to improve the manuscript.

The most salient issues are a lack of realism in the simulations, failure to account for population structure in the

analysis, and lack of clear, simulation-based comparisons with classic GWAA. Simulations were run for only a

few generations, did not reach mutation-drift-selection balance and had no migration among sub-populations.

Since population structure is a major confounder in GWAS, efforts to account for it in the analysis seems

waranted. Likewise, claims of superiority of mean-GWAA over individual-based GWAA should be backed by

clear comparisons and the advantages of mean-GWAA be clearly discussed. You will find more points that

need to be addressed in the reviewers’ comments.

I hope you will consider addressing the reviewers comments in a revised version of your manuscript. Please

provide a point-by-point answer to the reviewers’ comments.

Reviewed by Petri Kemppainen , 26 July 2024

The manuscript “On the potential for GWAS with phenotypic population means and allele-frequency data

(popGWAS)” describes a simple method correlating population mean phenotypic values against population

mean allele frequencies to identify putative causal nucleotides underlying traits of interest. The principle is

the same as in GWAS but using populations, as opposed to individuals, as sampling units. The benefit of this

(relative to regular GWAS), is the fact that sequencing (namely PoolSeq) and phenotyping (bulk phenotyping)

is cheaper and easier for populations compared to individuals. In addition, by focusing on population, the
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variance around the phenotypic means is decreased potentially increasing the power of this method when heri-

tability is low (high environmental variance). This approach is somewhat analogous to outlier analyses/genome

scan approaches where associations between genotypes and phenotypes are tested indirectly by assuming

different habitats have predictably different phenotypic means. Here the focus is also on populations/habitats

rather than the individuals, albeit typically these approaches are not readily applicable for PoolSeq data. It is

for instance well known that studies of parallel evolution (where similar phenotypic differences are predictably

found across different habitats or environmental gradients across a species distribution range) are particularly

powerful of disentangling the effects of natural selection from neutral processes such as genetic drift as

a source of allele frequency differences between populations (e.g. Johannesson K. 2001. Trends Ecol Evol

16:148–153).

This the premise of this approach is tested in simple forward in time Wright-Fisher simulations, with ini-

tial allele frequencies for the ancestral population drawn from uniform distribution with range [0.1,0.9]. From

this, sub-populations (500 individuals each) were colonized, each with phenotypic optima drawn from a normal

distribution. The allelic effect sizes (for a varying number of loci) were drawn from different distributions. The

subpopulations were then allowed to evolve for 2-50 generations, which, in the absence of migration between

the subpopulations, resulted in different degree of population structuring between them (due to genetic drift).

Overall, the author reported high statistical power to detect phenotype x genotype associations in their

simulations particularly when the number of causal loci was low and many populations were sampled, even

when heritability was as low as ~30%. Promisingly, reasonable statistical power was also detected for moder-

ately polygenic traits (up to~100).

Given the simulations, these results are not surprising for several reasons. We know that rapid adapta-

tion in nature is highly dependent on standing genetic variation. However, in structured populations (the norm

in natural populations) this variation is likely to differ between different geographic regions. Thus, what set of

alleles are available for adaption (e.g. when colonising new habitats or when the environment changes) can

greatly differ from population to population. In the simulation presented in this manuscript, however, the

initial allele frequency was the same for all populations (giving each the same probability of having the same

set alleles available for adaptation). Furthermore, the initial allele frequencies were drawn from a uniform

distribution, while allele frequencies in natural populations (i.e. populations reasonably close to mutation-drift

equilibrium) are typically highly skewed towards low frequency variants (further reducing the chance that all

populations have access to the same ancestral pool of adaptive alleles in the wild).

There was also a clear trend towards lower statistical power with increasing number of generations of adapta-

tion (Fig. 4D), but the populations were only allowed to adapt for up to 50 generations. These circumstances,

i.e. immediate colonization of populations form the same pool of ancestral genetic variation (with unnaturally

high numbers of medium frequency alleles) that are allowed to adapt for only 50 generations is the type of

scenario where the proposed approach is likely to perform well. Unfortunately, this is also a very unrealistic

scenario in natural populations. In the least, the simulations should include some form of a burn-in to allow

allele frequencies to reach mutation-drift equilibrium, ideally with different levels of population structuring in

the ancestral population and the populations should be allowed to evolve for much longer than 50 generations

(and instead allowing different levels of gene flow between them), before any conclusions can be drawn from

this study.

The test is based on a simple linear regression performed independently for each SNP. From the GWAS

literature, we know that population structuring lead to false associations (two populations that differ in phe-

notype may also differ at neutral loci due to genetic drift), such that great care is always taken to control for
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this. There are two major ways to achieve this. One is to either include relatedness as a random effect or add

population (or PC coordinates) as a co-variate. The other is to perform genomic control to account any residual

p-value inflation. Notably, residual p-value inflation may exist even if relatedness is otherwise accounted for (it

may not have succeeded to account for everything), and should always be performed. Thus, in all association

studies/outlier analyses/genome scans I expect to see some quantile-quantile plots of expected (uniform

distribution with range [0,1]) vs. observed -log10 p-values. P-value inflation exist when the slope of a linear

regression of these data points is »1 and genomic control is simply dividing the observed -log10 values by this

slope. Without seeing these plot, it is not clear whether p-value inflation exists in the data from the simulations.

In more realistic simulations (as suggested above) certainly some level of p-value inflation is expected and

would need to be accounted for.

The novelty of this approach is that there currently does not exist any method that can utilise PoolSeq data

to test for genotype x phenotype associations and as such I would certainly want to see this method tested

with more realistic simulations (and ideally also complemented with empirical data as hinted by the author). I

expect it to perform similar to other outlier methods out there with the benefit that this is specifically tailored

for PoolSeq data (I do not expect it to do well on polygenic traits, but this is perfectly fine). However, seeing as

this method is so related to standard GWAS, the knowledge from this field should be utilised better, notably

by showing to what extent the approach is susceptible for p-value inflation and then, in the least perform

GC (which will reduce false positive rates but also power), but ideally directly control for relatedness e.g. by

including relatedness as a random effect, which is expected to reduce false positive rates but not statistical

power (at least not to the same extent as GC). As an example, in Fang et al (2021,Mol Biol Evol 38:msab144) such

an approach (EMMAX) was successfully used to teste for association between genotype and habitat treated as

a binary trait.

Some minor comments (in no particular order):

In the abstract there is no hint on what the test is based on, only how it performs. The title gives some idea,

but not enough to be of any help when reading the abstract.

I believe that the “phenotypic plasticity parameter“ used in this study is simply environmental variance. Phe-

notypic plasticity implies a genotype x environment interactionwhichwas, tomy understanding, not tested here.

L318 “The number of effectively independently evolving loci in a population depends on genome size, ef-

fective population size (including all factors that affect it locally and globally) and LD structure”. It is not clear

what LD structure means. I my view, all the cited processes effect LD structure so it should not be mentioned

as a separate process here.

The proposed method only performed well when genome size was small (the number of independently

segregating loci in the simulations) and/or the number of sampled populations was large. In large(ish) out-

breeding natural populations LD typically declines relatively quickly such that likely »100.000 (the largest

genome size simulated here) SNPs are typically required for the sampled loci to be in sufficiently high LD with

the causal loci of interest for them to be useful, especially for polygenic traits. Thus, even if similar performance

as presented here can be replicated in more realistic simulations (see above), it seems the proposed method

still relies on a large sample size to detect anything but SNPs with large or medium effect sizes (on par with

most outlier methods/genome scans approaches that I’m aware of which is not a problem, see above).

Given the parallels with methods used to detect parallel/convergent evolution, I’m surprised that this is

not discussed more. In particular, the simulations used in this literature are typically much more realistic (e.g.

Fang et al. 2020. Nat Ecol Evol 4:1105–1115, Kemppainen et al. 2021. Mol Ecol).
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L233 “For the assessment of the effect of population structure, the subpopulations could evolve in com-

plete isolation from each other for predetermined number of generations…” I think it is a bit misleading to

consider the number of generations of adaptation in isolation as a proxy for “population structure”. Population

structure implies some level of migration-mutation-drift balance in a meta-population setting and the level of

population structure should then be modelled by different levels of migration/dispersal.

I am not aware of the F1-score, and I would be grateful for some more information about this in the main text

(what does it tells us?).

Although I found the manuscript well and clearly written, it was not completely clear how the different sections

in the materials and methods were connected. It seems there were several sections describing different parts

of the same simulation. It would benefit with some text giving a better overview of the methods/simulations

that were used. Also, whenever range of parameter values is mentioned, it would be great to have a reference

to Table 1. Or make it clear early that all parameter values are described in detail in Table 1 so the reader is

not left hanging.

I did not see any information about how many sub-populations were simulated? I assume, since there

was no gene flow between subpopulations, there was no need to simulate more than were used for the

analyses. This should be clear from the text.

Reviewed by anonymous reviewer 1, 09 August 2024

The manuscript by Markus proposes a GWAS approach to identify the genetic basis of complex traits in

natural populations. The author uses extensive simulations to show that a moderate number of true positive

QTL can be identified using allele frequency data from PoolSeq and phenotypicmeans instead of individual-level

genotypes and phenotypes. He also shows that given a large number of independent populations scored, a

reasonably good prediction score can be achieved in new populations.

Although the simulation results are convincing regarding the effect of different parameters on the power

of QTL detection and prediction, it is not clear whether this approach has any real and practical advantage

compared to an individual-based GWAS, and/or whether it overcomes the well-known limitations of GWAS.

A proper comparison is never made, and I think that besides a discussion explicitly addressing this point,

a proper simulation-based comparison is needed to support the claims made by the author regarding the

advantages of this approach.

Main points that should be addressed:

1. What is the actual feasibility of using the proposed experimental design in wild populations?

Based on the results and discussion (line 530), to have a moderate chance to detect some QTLs >60

populations need to be sampled (min 50 individuals for pool DNAseq and phenotypes). How many species

could actually be sampled in such way? Is this actually an experimental design that can be implemented by

researchers? Which are the phenotyping approaches that the author imagine will make mean phenotyping

feasible? Etc.

2. What are the actual sequencing costs of this approach?

It is stated in the intro (line 80-84) and in the discussion (line 627) that this approach requires ‘marginal

sequencing efforts compared to individual based’ approaches. However, the author doesn’t show any calcula-

tions that actually support this point. The author should give precise estimates so the reader is convinced that

there is actually a cost advantage. For example, if for a moderate-powered pool-based GWAS we need 60

populations DNA pools sequenced at 50x (minimum, to get 1 read per individual, based on the 50 individuals

used in the simulations), we will need a total of 3000x coverage for all pools. Now, for an individual-based

GWAS, if we sample 600 individuals and sequence at 5x (which will give me enough confidence to call individual
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genotypes), that results in the same sequencing effort of 3000x coverage.a

3. How does this approach overcomes GWAS limitations when addressing actual complex traits?

a. It is well known that rare alleles have larger effects when it comes to complex traits, and therefore

large sample sizes are needed to identify such rare alleles. How is this method better at doing this than

individual-based GWAS?

b. Population structure and relatedness between individuals is a huge issue in GWAS, and therefore GLM

that include GRMs must be used to assure that the results are not dominated by false positives. How is the

pool-based GWAS addressing this point? Specially given that it requires that tens of independent populations

be genotypes and phenotyped. In the current proposed model there is nothing addressing structure. Is the

pool based data able to control for structure across populations and within populations?

c. related to the above, estimates of false positives for the QTL mapping results should be presented and

discussed. I didn’t see them, maybe they are in the supplement?

The author should provide an actual (simulation based) comparison between both approaches to prove

that pool-based GWAS is better at the known GWAS limitations that he describes in the introduction.

4. Why is the prediction power of this approach so much better than widely-used (but mostly underper-

forming) polygenic scores in humans?

The proposed approach sounds very similar to polygenic risk scores and we know that when used in

populations different from the one where scores where estimated they terribly underperform. The author

should discuss why his approach is so successful compared to PRS. If the traits the approach is targeting are

complex traits, and are confounded by structure and environmental effects, shouldn’t the performance be

similar to what we know so far in real populations (a.k.a. poor).

5. Is this approach actually good for complex traits? From the results it seems that it does moderately well

for traits with a few QTL.

6. The discussion section should address the comparison between mean-based and individual-based GWAS

approaches given that it is on this front that the manuscript promises to do better. The current discussion

barely addresses any of the points I mentioned above, and therefore it is not clear whether there is actually

any practical advantage of using one or the other.

Minor comments:

- It is not clear from the abstract what is the innovation of the proposed approach. I will suggest that the

problem is clearly described first and then how the proposed method solves such problem.

- line 63. “Few empirical studies are currently available” – this needs citations of the successful studies doing

GWAS in wild pops, e.g. Johnston et al 2011 Mol Ecol, Pallares et al 2014 Mol Ecol, etc

- I couldn’t access the supplementary material, the link provided doesn’t work.

- fig 2, given that the main factor is number of populations scored, it will be good to make this plot separating

each x-axis factor into # of population scored. The current way of presenting this data looks like PPV is really

high overall, but given that the one and only thing a researcher can control is the number of pops she can

sample, it will be actually very useful to show, for each simulation parameter, what’s the PPV given # pops

scored.

- line 402-402 reads funny, re-phrase.

- Line 423, first time FP is mentioned.

- Fig 4, what does it mean that r are negative? And for some panels (e.g. panel C, 500; panel E, 12), basically

50% of the simulations show opposite signs. Please explain how shall we understand this, predictions cannot

be trusted at all?

- line 494, yes, the trend is that the correlation is positive but it approximates zero pretty quickly. It will be

important if the author explicitly tests for significance of such correlations and states what’s the actual limit

in which he thinks the method is actually useful (e.g. less than 200 loci? Less than 20?). It is clear that the
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researcher doesn’t know a priori the genetic architecture of the trait, but this would make clear whether the

proposed approach is truly useful for polygenic traits where hundreds or thousands of loci are expected to be

involved.

- line 500. From Fig 1, while the trend again is consistent across distribution of effect sizes, it is clear than

under the most realistic model (strong exponential), working with traits with more than 20 QTLs is not really a

good idea under this model.

- the discussion uses a lot of imprecise statements that don’t make clear the actual limitations and potential

for the method. For example, line 609 “ provided a sufficiently high number of populations is screened” how

many?. Line 560 “increasing number of samples led to diminishing returns in statistical power beyond a certain

threshold” which is such threshold? The discussion should be precise about the interpretation of the results

and their implications for the implementation of this proposed approach in the field of complex traits in wild

populations.
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