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Abstract 

Dietary shifts may act to ease energetic constraints and allow organisms to optimise life-history traits. 

Heliconius butterflies differ from other nectar-feeders due to their unique ability to digest pollen, 

which provides a reliable source of amino acids to adults. Pollen-feeding has been associated with 

prolonged adult lifespan and increased fertility, yet there is a lack of empirical data demonstrating 

how pollen consumption influences key fitness traits, including chemical defences and adult body 

weight, as well as fertility over their elongated lifespan. Here, we investigated the effect of pollen-

feeding on fertility, weight and chemical defences, as well as offspring defences, controlling for 

butterfly age and sex. Recently emerged Heliconius erato butterflies of similar size were fed for 14 or 

45 days on one of three diets: sugar solution only, or sugar solution replenished with either amino 

acid supplement or pollen. At the end of the experiment, oviposition assays were performed to 

evaluate fertility, and afterwards all butterflies and eggs were weighed and used for quantification of 

cyanogenic glucosides (CG). We found that there is an age-specific and sex-specific effect of pollen-

feeding on butterfly weight, with both the sugar-only and amino-acid supplement diets reducing the 

weight of old females (45d), but not young females (14d) or males of any age. Females fed only sugar 

significantly reduced their egg-laying through adulthood, whereas females that had access to pollen 

maintained their fertility. Diet had a significant effect on the maintenance of the chemical defence of 

females, but not males. Curiously, even though females that have access to pollen were heavier, more 

toxic and laid more eggs, this did not translate into improvements in offspring defences, as eggs from 

butterflies of all ages and diet treatments had similar CG content. Our results emphasise the 

importance of controlling for age-specific and sex-specific effects in studies of life-history evolution 

and demonstrate that dietary novelty can relax energetic constraints. 
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Introduction 1 

Survival and reproductive success are the two major components of Darwinian fitness, and as with all 2 

life-history traits, they are under strong selective pressures. Nevertheless, species cannot evolve to 3 

live forever and reproduce continuously (there are no “Darwinian demons” (Law, 1979)) due to 4 

physiological and energetic constraints that create trade-offs between life-history traits (Healy, Ezard, 5 

Jones, Salguero-Gómez, & Buckley, 2019). Yet, dietary shifts may ease energetic constraints, which 6 

could in turn allow organisms to optimise multiple fitness traits simultaneously (Swanson et al., 2016).   7 

One striking case of dietary innovation is provided by the pollen feeding Heliconius butterflies (Gilbert 8 

1972; Young and Montgomery 2020). Butterflies typically require water and sugars during adulthood, 9 

which can be acquired either from rotten fruits (fruit-feeders) or nectar produced by flowers (nectar-10 

feeders) (Krenn, 2008). Butterflies of the Heliconius genus differ from other nectar-feeders due to 11 

their ability to additionally collect and digest pollen while feeding on nectar (Gilbert 1972; Young and 12 

Montgomery 2020). Although many insects can eat pollen (e.g. bees as well as some beetles, sawflies, 13 

mirids, thrips, flies and moths) (Wäckers, Romeis, & Van Rijn, 2007), Heliconius are the only butterflies 14 

known to actively collect and digest pollen grains. This is probably explained by the necessity of 15 

specific adaptations for mechanical and chemical digestion of pollen to make its nutrients available 16 

for absorption (Johnson & Nicolson, 2001).  17 

A number of adaptations were probably necessary to allow Heliconius to digest pollen. Pollen grains 18 

collected in the elongated proboscis of these butterflies are humidified with salivary secretions, aided 19 

by the co-option of a “grooming behaviour” (coiling and uncoiling of the proboscis for some minutes 20 

to hours) (Gilbert 1972; Krenn et al. 2009; Hikl and Krenn 2011). Pollen-feeding is not observed in 21 

other genera of the Heliconiini tribe and arose in the Heliconius genus, with an independent lost in the 22 

aoede clade (four species that were previously classified a the Neruda genus) (Turner 1976; Beltrán et 23 

al. 2007; Kozak et al. 2015; Cicconardi et al., 2022). As Heliconius is the most speciose genus of the 24 

tribe, their novel ability to use pollen has likely contributed to their diversification, opening new niches 25 

to be exploited (i. e. through habitat partitioning, foodplant preference, foraging behaviour) and 26 

providing them with the energetic resources necessary for the maintenance of complex traits (Estrada 27 

and Jiggins 2002; Montgomery et al. 2016; Young & Montgomery, 2020; Couto et al. 2022). Indeed, 28 

the pollen-feeding behaviour of Heliconius butterflies has been associated with several aspects of their 29 

biology that diverge from the other heliconiine genera, including an elongated adult-lifespan (Dunlap-30 

Pianka et al. 1977), prolonged fertility (Boggs et al. 1981; O’Brien et al. 2003), enlarged mushroom-31 

bodies (Montgomery et al. 2016), foraging site fidelity (Moura, Corso, Montgomery, & Cardoso, 2022) 32 

and increased adult toxicity (de Castro et al. 2020) 33 

Lepidopterans generally acquire most, if not all, of their nutrients during larval feeding. By supplying 34 

butterflies with amino acids, pollen feeding may have decoupled this partition (Boggs, 2009), providing 35 

a mechanism for further investment in adult behavioural strategies. Indeed, while most Lepidoptera 36 

tend to live relatively long lives as larvae and shorter lives as adults, Heliconius adults that have access 37 

to pollen can live up to 6 months, which is much longer than the regular average life-span of other 38 

heliconiines (~1 month)(Brown, 1981), despite a similar larval period (Hebberecht, Melo-Flórez, 39 

Young, McMilllan, & Montgomery, 2022). Alongside this increased longevity, Heliconius butterflies 40 

also maintain their fecundity for longer than other heliconiines, such as Dryas iulia, showing limited 41 

evidence of reproductive senescence, unless deprived of pollen (Dunlap-Pianka et al., 1977). This 42 

prolonged fertility is energetically costly: a female butterfly can lay up to 9-18 eggs a day and they can 43 

live for many months, such that total resources allocated to oviposition exceed their own body mass. 44 

Indeed, O’Brien et al. (2003) used isotopic labelling to demonstrate the direct transfer of essential 45 

amino acid from pollen ingested by females to their eggs. Males also contribute to the cost of fertility 46 
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by transferring nuptial gifts to the female during mating (Boggs and Gilbert, 1979; Cardoso, Roper, & 47 

Gilbert, 2009) which can exceed 5% of male body weight, and pollen resources may also be used for 48 

this purpose (Boggs, 1990). Although the relationship between diet, body weight, fertility and 49 

longevity seems obvious, there is a lack of empirical data about how pollen-feeding affects weight 50 

maintenance and how is this associated with the prolonged fertility of these butterflies. 51 

Finally, the evolution of pollen feeding has also been associated with toxicity, a critical trait for 52 

chemically defended aposematic butterflies. Heliconius tend to have higher total concentrations of 53 

cyanogenic glucosides (CG) than other heliconiines (de Castro et al. 2019; Sculfort et al. 2020) and 54 

mature adults have higher concentrations than larvae and young adults (Nahrstedt and Davis 1983; 55 

de Castro et al. 2020). This is unusual in aposematic butterflies, which normally acquire their chemical 56 

defences from plants during larval feeding and therefore have more toxins as final instar larvae 57 

(Nishida, 2002). Whereas larvae of Heliconius balance between CG biosynthesis and sequestration 58 

from their obligatory Passifloraceae hostplants (de Castro et al. 2021), adults can only biosynthesize 59 

these defence compounds, for which they need the amino acids valine and isoleucine. It has been 60 

hypothesized that Heliconius butterflies use the essential amino acids from pollen for CG biosynthesis 61 

(Nahrstedt and Davis 1983). However, studies comparing the CG content of young Heliconius 62 

butterflies fed only sugar to those whose diet was supplemented with amino acids/pollen did not 63 

show any significant differences (Nahrstedt and Davis 1985; Cardoso and Gilbert 2013). This suggests 64 

that Heliconius butterflies might biosynthesize CGs initially using amino acids acquired  during the 65 

larval stage, with resources from pollen-feeding only used later in adulthood.  66 

Here, we explore how a dietary novelty can ease energetic constraints on life-history traits, using 67 

pollen feeding Heliconius as a case study. We investigate the effect of pollen-feeding on H. erato body 68 

weight, chemical defences, and fertility controlling for sex and age, and specifically comparing young 69 

adults (14d) with mature adults (45d). We therefore tested the hypothesis that mature butterflies that 70 

only had access to sugar during adulthood would have lower fertility, body weight and depleted 71 

chemical defences.  72 

Methods 73 

Rearing conditions of H. erato stock population 74 

All experiments were performed using individuals from a stock population of H. erato demophoon 75 

kept at University of Cambridge. This population was sourced from Panamá city (Panama) and has 76 

been kept under insectary conditions for about 7 years. Adults were kept in breeding cages (60x60x90 77 

cm) containing plants of Passiflora biflora for oviposition, as well as flowering Lantana sp. and few 78 

Psiguria sp. for adult feeding. Cages included feeders with artificial nectar made from 10% sucrose 79 

solution (m/v) with 1.5% (m/v) Vetark Critical Care Formula (CCF). P. biflora shoots with eggs were 80 

collected from the breeding cages and used to set up larval cages. Larvae were fed with fresh P. biflora 81 

shoots ad libitium until pupation. Larval cages were checked every other day and encountered pupae 82 

were transferred to pupal cages, where pupae were hung under a stick covered with a microfiber cloth 83 

Freshly emerged individuals in the pupal cages were transferred to breeding cages. All cages are kept 84 

at 25-28°C, 60-80% humidity and 12h day/night cycle. 85 

 Experimental Design and Diet treatments 86 

Recently emerged adults (0-1 day after eclosion) were transferred to the experimental cages 87 

(60x60x90 cm). Only adults that had morphologically healthy, with uncrumpled dry wings were used 88 

in these experiments. In addition, only individuals with a forewings between 3.0 to 3.5 cm in length 89 

were used to control for potential size effects. One experimental cage was set up for each treatment 90 
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(diet/age) and each had initially 8 males and 8 females (N=16). Butterflies that died during the first 91 

week of experiment were replaced to control for density. Butterflies were placed on feeders when 92 

added into the experimental cages to ensure that they would be able to find their food source. Each 93 

experimental cage received one of the diet treatments: 1) three feeders with artificial nectar made of 94 

10% sucrose; or 2) three feeders with artificial nectar made of 10% sucrose + 1.5% amino acid 95 

supplement (CCF); or 3) three feeders with artificial nectar made of 10% sucrose and freshly collected 96 

Lantana flowers, as a natural source of pollen. Butterflies were fed ad libitium, with feeders and 97 

flowers were replaced every other day. Males and females in each treatment were allowed to mate 98 

freely. Experimental cages were kept for 14 days to assess the importance of amino acid on young 99 

butterflies and for 45 days to assess this effect on mature butterflies. All other heliconiines live for ~1 100 

month, therefore 45 days is the beginning of an adulthood period that is specific of mature Heliconius 101 

butterflies. All experimental cages were kept at the same environmental conditions used for 102 

husbandry (25-28°C, 60-80% humidity and 12h day/night cycle). The protein concentration of Lantana 103 

pollen extracts and the CCF supplement was determined using the Pierce method (Supplementary 104 

Methods, Table S3). 105 

Fertility assays 106 

At the end of the experiments, female butterflies were individually assayed for oviposition to evaluate 107 

the effect of the diet treatments on fertility, while males were kept in the experimental cages until 108 

sample collection. For the fertility assays, female butterflies were transferred into individual cages 109 

(30x30x40 cm) containing their previous diet (one feeder per cage, with one flower bouquet for the 110 

pollen treatment) and a P. biflora cutting with 5 expanded leaves for oviposition. After 48h of assay, 111 

eggs were counted, weighed, and collected for further analyses.  112 

Sample collection, metabolite extraction and HPLC-MS conditions 113 

The weight of each butterfly was recorded at the end of the experiment (14 days or 45 days). 8 males 114 

and 8 females of freshly emerged butterflies (unfed, after 0-1 day of eclosion) were also weighed and 115 

collected as a baseline.  Afterwards, butterflies were collected in 1 mL methanol 80% (v/v) for chemical 116 

analyses. All samples were kept at -20 °C until further processing. For the metabolite extraction, 117 

butterfly samples were homogenized (1mL methanol 80% (v/v)) using a porcelain mortar and pestle. 118 

Egg samples were homogenised in 300 µL methanol 80% (v/v) into their own collection tube using a 119 

small pestle. Extracts were centrifuged at 14,000 g for 5 min, filtered (45 µm) and collected for 120 

analyses in a LC-Orbitrap-MS/MS. LC-MS methods and analyses were conducted as described in de 121 

Castro et al. (2019). The de novo biosynthesized CGs linamarin, lotaustralin and epilotraustralin were 122 

quantified in the analysed samples, which had no other CGs. The absolute amount of each compound 123 

in each sample was calculated using the peak area of their sodium adduct applied to a regression curve 124 

stablished using pure standards. Raw chemical data as well as quantification methods can be found in 125 

https://doi.org/10.17863/CAM.92867) 126 

Statistical analyses 127 

Statistical analyses and plots were performed in R. Shapiro-Wilko test was used to analyses if the 128 

variables were normally distributed (Table S1) and Levene’s test for the homogeneity of the variances 129 

(Table S2). ANOVA was used to evaluate the effect of diet, age and sex, as well as their interaction, on 130 

butterfly weight (Table 1, Table S3 for females only). Tukey HSD was used for pairwise comparisons 131 

between the different diet:age treatments in males and females. ANOVA was used to examine the 132 

effect of diet and age on CG per laid egg with Tukey HSD for pairwise comparisons. Kruskall-Wallis was 133 
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used on variables that were not normally distributed: to analyse the effect of age and diet on laid eggs; 134 

and the effect of diet, age and sex on butterfly CG content.  135 
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Results  136 

Females are more affected than males by the lack of pollen  137 

Age, diet and sex significantly influenced the body weight of H. erato butterflies (Table 1). There was 138 

also a significant interaction between age and sex, which indicates that the body weight of males and 139 

females were differently affected through adulthood (Table 1). Indeed, overall females were heavier 140 

than males and they were more affected by the absence of nitrogen on their adult diet (Figure 1). 141 

Mature females had lower weights by mid adulthood without access to nitrogen, but adult diet did 142 

not affect the weight of mature males (Figure 1). Mature females that had access to pollen were 143 

heavier than mature females fed sugar only, which had lower weights than freshly eclosed females 144 

(Figure 1). Males and females eclosed with similar weight (0d) (Figure S1). 145 

Table 1. Effect of diet, age and sex on weight (grams per 146 
individual) of H. erato butterflies.  The variables that have a 147 
significant effect on butterfly weight are marked in bold, 148 
with a * near their p value (p > 0.05). Diet treatments: sugar 149 
only, sugar + amino acid supplement, and sugar + pollen. 150 
Sex: female and male. Age: young (14d) and mature(45d). 151 
  152 

 153 

 154 

 155 

 156 

 157 

Access to pollen only affects the chemical defences of females 158 

Males and females increased their CG content after eclosion (Figure S2) and kept their defences 159 

through adulthood, indicating that they intensively biosynthesize these compounds. Curiously, diet 160 

only affected the CG content of females (Figure 2. Kruaskal-Wallis, Females: X2= 6.35, p= 0.048*; 161 

Males: X2= 2.115, p= 0.347), with butterflies having access to amino acids (supplement or pollen) 162 

showing greater CG content than those fed sugar alone. Young and mature butterflies of both sex had 163 

similar CG content (Figure 2. Kruaskal-Wallis, Females: X2= 1.441, p= 0.23; Males: X2= 0.198, p= 0.656). 164 

 165 
Access to pollen delays reproductive senescence 166 

Adult diet affected egg laying in mature butterflies of H. erato (Figure 3. Kruskal-Wallis, X2= 0.569, p= 167 

0.017*), but not in young ones (Figure 3. Kruskal-Wallis, X2= 0.569, p= 0.752). Young females (14d) laid 168 

similar numbers of eggs regardless of their diet. In contrast, mature females (45d) that had access to 169 

pollen laid more eggs than butterflies that had access to sugar only, or sugar + supplement. This 170 

indicates that access to pollen delays reproductive senescence in Heliconius.  171 

In contrast to our expectations, adult diet did not affect parental allocation in the chemical defences 172 

(CG) of their eggs. Eggs of young (ANOVA, F2-10= 0.56, p= 0.588) and mature butterflies (ANOVA, F2-17= 173 

0.09, p= 0.914) had similar concentrations of CG regardless of the diet of their parents.  174 

The nutritional uniqueness of pollen 175 

Variables Three-way ANOVA 

Diet F2-95= 4.597, p= 0.012* 

Age F1-95= 7.287, p= 0.008* 

Sex F1-95= 25.055, p= 2.5 x 10-6* 

Diet:Age F2-95= 2.016, p= 0.139 

Diet:Sex F2-95= 0.486, p= 0.617 

Age:Sex F1-95= 4.520, p= 0.036* 

Diet:Age:Sex: F2-95= 1.791, p= 0.172 
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Although the CCF supplement had far more proteins (651.70 ± 19.97 µg per mg DW)  than the Lantana 176 

flower extract (pollen and nectar) (1.71 ± 0.45 µg per mg DW) (Table S3), it did not lead to 177 

improvements in the butterfly fitness traits. Thus, pollen might have an amino acid profile that fits 178 

better the nutritional needs of Heliconius and/or have them in a more acessible way (free amino acids 179 

instead of proteins/peptides).  180 

 181 
 182 
 183 

184 
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Discussion 185 

When does access to pollen start to be important and for whom? 186 

Pollen-feeding eases energetic constraints and allows Heliconius to optimize multiple life-history traits 187 

simultaneously, aiding the maintenance of fertility, body weight and chemical defences during their 188 

prolonged adult-lifespan (Fig. 1, 2 and 3), as we hypothesized. Nevertheless, we found age-specific 189 

responses to this dietary novelty, as access to pollen has an effect on old butterflies (45d) of H. erato, 190 

but not on the young ones (14d). This is the first time to our knowledge that the effect of pollen 191 

deprivation on multiple life-history traits of Heliconius has been evaluated controlling for age.  Studies 192 

supplementing the diets of other nectar-feeding long-lived nymphalids (Polygonia c-album, Maniola 193 

jurtina) with amino acids have not found an improvement in life-history traits (Karlsson and Wickman 194 

1989; Grill et al. 2013). Our results therefore emphasize that adaptations were required to make use 195 

of pollen-derived amino acids in Heliconius butterflies (Dunlap-Pianka et al. 1977; Boggs et al. 1981).  196 

The age-effects also reveal that the balance between larval and adult derived resources changes over 197 

the life course (Boggs, 2009). It is possible that the physiology of young Heliconius butterflies, including 198 

their fertility, initially relies mostly on resources acquired during larval feeding, as in the vast majority 199 

of butterflies and moths. Nevertheless, as Heliconius butterflies live relatively long adult lives, the 200 

reservoir of larval derived resources likely becomes depleted over time, such that the presence of 201 

amino acids in their adult diet becomes a crucial factor for the maintenance of the homeostasis. This 202 

is consistent with field data showing that older Heliconius butterflies generally collect more pollen 203 

then the young ones (Boggs et al., 1981; Boggs et al, 1990), which may indicate greater motivation as 204 

larval resources deplete. 205 

This implies that studies evaluating the importance of pollen-feeding during adulthood for Heliconius 206 

butterflies likely need to be performed for periods longer than a month. Cardoso and Gilbert (2013) 207 

did not observed differences between the cyanide concentration from 20 day old Heliconius 208 

butterflies (H. ethila, H. hecale and H. charithonia) fed only sugar and supplemented with amino acids, 209 

as we observed here for females. The authors discussed the importance of larval diet shaping the 210 

chemical defences of young Heliconius butterflies. Additionally, the pheromone bouquet of 14 day old 211 

Heliconius males (genital and androconia) was also not affected by access to pollen during adulthood, 212 

only by the hostplant species used during larval feeding (Darragh et al., 2019). Indeed, the results seen 213 

here would probably be more striking if we have maintained the experiment for more than 45 days. 214 

Combined, these studies emphasize that the importance of the resources accumulated during larval 215 

feeding for young butterflies and the latter importance of pollen during adulthood. 216 

It is a common knowledge among researchers breeding Heliconius under insectary conditions that 217 

they die sooner without access to pollen/amino acids in their adult diet. In this study, 45 days was not 218 

enough to observe differences in mortality between diet treatments (1-3 butterflies died in each 219 

treatment, mostly within the first week of eclosion), contrary to previous findings (Dunlap-Pianka et 220 

al. 1977). As previous experiments used H. charithonia (Dunlap-Pianka et al. 1977) while we used H. 221 

erato, this could indicate that different Heliconius species might rely on the amino acids acquired 222 

during adult-feeding sooner than others. Nevertheless, the previous work had few replicates (N=8 in 223 

total, N=3 after 40 days.) and might have underestimated how long H. charithonia can live on average 224 

without pollen. How different Heliconius species respond to the lack of pollen is an interesting 225 

question for the future.  226 

Do females pay a higher cost for reproduction than males when recourses as scarce?  227 
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This study demonstrates that access to amino acids delays reproductive senescence in H. erato 228 

females, as old females (45 d) supplemented with pollen lay as many eggs as young females (14d), 229 

whereas females fed only sugar lose fertility throughout adulthood (Fig. 3). Boggs (1990) observed 230 

that females of H. charithonia and H. cydno drastically increase pollen collection between  15-20 days 231 

old, possibly to maintain their fertility and chemical defences. This corroborates with the earlier work 232 

of Dunlap-Pianka et al. (1977) demonstrating that H. charithonia that have access to pollen can keep 233 

daily egg-laying rates until their natural death (up to 72d), however they continuously decrease their 234 

egg-production and reach ovarian depletion when pollen is absent.  235 

The disparity between how females and males of the same species alter their life-history dynamics in 236 

response to resource availability has intrigued evolutionary ecologists. Without pollen-feeding, H. 237 

erato females lose weight (Fig. 1) and decrease their chemical defences (Fig. 2) as they get older, 238 

whereas males do not. As females collect significantly more pollen than males in the wild (Boggs et 239 

al., 1981), it could be that females feed more than males and therefore their fitness is more impacted 240 

by diet. Regardless, only females of H. erato were strongly affected by adult diet and this was reflected 241 

in their fertility, which might suggest that females are paying a higher energetic cost for reproduction 242 

than males when access to amino acids is limited. Even though diet did not affect male weight or CG 243 

content, we cannot discard the possibility that the effect of diet on fertility might be associated with 244 

other male fitness traits, such as sperm viability and quality of nuptial gifts (Boggs & Gilbert, 1979; 245 

Boggs, 1990).   246 

Some of the old female butterflies in the cage supplemented with pollen had a strong smell of anti-247 

aphrodisiac (personal observations) suggesting that they recently re-mated. Although re-mating was 248 

not expected in this experiment, since H. erato belongs to the monoandrous clade of Heliconius 249 

(Beltrán, Jiggins, Brower, Bermingham, & Mallet, 2007) and rarely re-mates in the wild (Cardoso et al. 250 

2009; Walters et al. 2012), the insectary conditions might have induced them to re-mate.  Re-mating 251 

would allow the transference of more nuptial gifts, which includes CGs, from the male to the female 252 

(Cardoso and Silva 2015), diluting the effect of pollen supplementation on male chemical defences 253 

and body weight. Further studies of spermatophore quality will be necessary to unravel the effect of 254 

pollen deprivation on the fitness of Heliconius males. 255 

Do high condition adults lay better protected eggs? 256 

Many insects protect their eggs by transferring defensive compounds to them, which can improve 257 

offspring establishment. Thus, we hypothesized that butterflies with access to pollen would produce 258 

eggs with more CGs, as these compounds are not toxic when intact and can be stored in high 259 

concentrations. Old females of H. erato that had access to pollen are heavier (Fig. 1), had more CGs 260 

(Fig. 2) and laid more eggs (Fig. 3) than old females that had access to sugar only. Contrary to our 261 

predictions, this does not translate into a higher investment in the chemical defences of their offspring 262 

(Fig. 3). Eggs of butterflies from all ages and diets have similar CG content which suggests that this 263 

process is tightly regulated - butterflies might lay less or more eggs depending on their diet, but all 264 

eggs have a similar level of chemical defences. The amount of CG per egg observed here is similar to 265 

other heliconiines (Nahrstedt and Davis 1983; Nahrstedt and Davis 1985; Castro et al. 2020). 266 

Our data demonstrate how strongly H. erato biosynthesize CG during adulthood to maintain their 267 

defences while also investing in the protection of their offspring, corroborating previous findings 268 

(Castro et al. 2020; Mattila et al. 2022). Considering that a Heliconius female lays ca. 10 eggs per day 269 

(Dunlap-Pianka et al. 1977), each egg has on average 3 µg of CG (Fig. 3) and  they can live for 45 days. 270 

Egg-laying would therefore result in a depletion of over 1000 µg of CG from a female butterfly, which 271 

can be more than their whole reservoir of chemical defences at any one time (Fig. 3). In contrast, male 272 
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contributuions for offspring chemical defences seems minimal (Cardoso & Gilbert, 2007). Pedigree 273 

experiments with H. erato also found strong maternal effects on offspring toxicity, but no paternal 274 

effects (Mattila et al., 2021). 275 

Mattila et al. (2022) demonstrated that Heliconius butterflies keep their CG concentration at high 276 

levels during adulthood until their natural death. Indeed, if these aposematic butterflies lost their 277 

toxicity as they age, this would dilute the protection signal of their colour pattern. Thus, there is 278 

probably strong selection for Heliconius to maintain toxicity as they age, but it is likely challenging to 279 

maintain these levels while reproduction depletes their chemical reservoir (Fig. 2 and 3).  280 

Moreover, valine and isoleucine are used as substrate for the biosynthesis of aliphatic CGs (Nahrstedt 281 

and Davis 1983). These are essential amino acids that have to be acquired by diet (not produced by 282 

animals) (O’Brien et al., 2002) and they tend to be abundant in pollen (Gilbert 1972). This suggests a 283 

strong effect of pollen-feeding on chemical defences in Heliconius. Yet, a lack of pollen/amino acids 284 

during adult-feeding does not affect the chemical defences of young Heliconius butterflies. As already 285 

discussed, access to pollen would become crucial at later stages of adulthood, but the remaining 286 

question is: where did the valine and isoleucine used for CG biosynthesis come from during the first 287 

weeks of Heliconius adulthood in the control group (sugar only)? A recent comparative genomic study 288 

has found that two hexamerins, storage proteins, have been duplicated multiple times in heliconiines 289 

(Cicconardi et al., 2022). Hexamerins might provide valine and isoleucine for CG biosynthesis during 290 

the beginning of their adulthood, if pollen is not available. Moreover, valine and isoleucine might be 291 

produced by bacteria in the microbiome of these butterflies, as happens for other insects (Jing, Qi, & 292 

Wang, 2020), a hypothesis that can be investigated in the future.  293 

In summary, although the link between pollen-feeding, fertility and chemical defences in Heliconius 294 

butterflies is clear, these interactions are more complex than initially predicted. We demonstrated 295 

that there is an age-specific and sex-specific effect of pollen-feeding on life-history traits. Older 296 

females supplemented with pollen were heavier, more toxic and laid more eggs than those in the 297 

control diets, suggesting that this dietary innovation has eased energetic constraints and led to 298 

optimization of multiple life-history traits.   299 
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 471 

FIGURE LEGENDS 472 

Figure 1. Effect of diet and age on the fresh weight of females (top) and males (bottom) of H. erato. 473 

Butterflies were fed either sugar or sugar + supplement (Critical Care Formula) or sugar + pollen (from 474 

Lantana flowers). Young butterflies were collected after 14d of trial while mature butterflies after 45d. 475 

Legend: Different letters over the boxplots correspond to statistically significant differences (Two-476 

ways ANOVA, Tukey HSD). NS = not statistically significant (p> 0.05). Lines in the middle of boxplots 477 

correspond to the median and  boxes to the lower and upper quartile. Dots correspond to values of 478 

each analysed replicate/individual butterfly. 479 

Figure 2. Effect of diet and age on cyanogenic glucosides content of females (top) and males 480 

(bottom) of H. erato. Butterflies were fed either sugar or sugar + supplement (Critical Care Formula) 481 

or sugar + pollen (from Lantana flowers). Young butterflies were collected after 14d of trial while 482 

mature butterflies after 45d. Statistical analyses on the top of the plots correspond to Kruskal-Willis 483 

on Diet and Age for the subsets. Lines in the middle of boxplots correspond to the median and  484 

boxes to the lower and upper quartile. Dots correspond to values of each analysed 485 

replicate/individual butterfly. 486 

 487 
Figure 3. Number of laid eggs per female during fertility test (top) and cyanogenic glucose content per 488 

egg (bottom). Butterflies were fed either sugar or sugar + supplement (Critical Care Formula) or sugar 489 

+ pollen (from Lantana flowers). Young butterflies were collected after 14d of trial while mature 490 

butterflies after 45d. Lines in the middle of boxplots correspond to the median and  boxes to the lower 491 

and upper quartile. Dots correspond to values of each analysed replicate/total eggs laid by each 492 

butterfly. 493 

 494 
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Young butterflies (14d) Mature butterflies (45d)

Kruskal-Wallis, X2= 0.569, Df= 2, p= 0.752

sugar sugar +

supplement

sugar +

pollen

Kruskal-Wallis, X2= 0.569, Df=2, p= 0.017*

sugar sugar +

supplement

sugar +

pollen

ANOVA, F2-10= 0.56, p= 0.588 ANOVA, F2-17= 0.09, p= 0.914
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