
Answers to reviewers
Faster model-based estimation of ancestry proportions

Comments and questions from the reviewers are colored black, while our answers are colored
green.

Reviewer #1
The authors introduce a software tool, fastmixture, which infers ancestry proportions and allele
frequencies within the same likelihood framework used by the frequently used ADMIXTURE
software. They propose three novel computational enhancements to speed up the analysis of
large datasets. These improvements include:

- An SqS3 acceleration scheme for the EM algorithm,
- A randomized singular value decomposition (SVD) for better initialization of allele frequencies
and ancestry proportions,
- Mini-batch updates for the EM algorithm.

Although these improvements do not reduce the computational complexity, the authors state
that together, they result in a 20-fold speedup. (Could not check this yet, see comment 5 below)

We thank the reviewer for their time and efforts in reviewing our manuscript, leaving us with the
opportunity to provide clarifications that have significantly improved our work. We have
addressed their comments and questions sequentially.

Main Comments:

1. It would be valuable to understand which of the three improvements contributes most to the
performance gains. If the authors could provide details on the individual impact of each
enhancement, this would add useful context.

Authors’ reply: We thank the reviewer for the excellent comment. Since our initial submission,
we have implemented multiple major computational updates to our fastmixture software.
Specifically, we now employ a quasi-Newton acceleration scheme, similar to ADMIXTURE,
instead of the SqS3 scheme. Additionally, we have now expanded our analyses by incorporating
a new, more complex demographic model (Scenario C) in our simulations. This model includes
evaluations starting with random parameter settings in Q and P, allowing us to assess the
effectiveness of the SVD initialization and mini-batch updates. The random parameter
initialization will capture the effectiveness of the mini-batch updates in comparison to a standard
accelerated approach like ADMIXTURE. Furthermore, the difference in runtimes between
random initialization and SVD initialization runs illustrates the efficiency gains from our SVD



initialization. We have included the new analysis and added the following text to the Results
section:

“We further evaluated the effectiveness of our SVD initialization by comparing it to random
parameter initialization inside the fastmixture framework for Scenario C. We reported
computational runtimes, log-likelihoods, RMSE, and JSD measures in Table S7, where the two
initializations performed similarly but the SVD initialization approximately halves the runtime on
average in comparison to having a random initialization. Therefore, our observed runtime gains
relative to ADMIXTURE could largely be attributed to our proposed mini-batch optimization.”,
page 9, paragraph 4.

2. The performance improvement is substantial and could significantly enhance the workflow of
many large-scale genomic studies, without requiring the adoption of an entirely new and
potentially less comparable modeling framework. However, for fastmixture to become a viable
replacement for ADMIXTURE in future studies, additional tests and direct comparisons with
ADMIXTURE would be beneficial.

For instance, I am curious whether the SVD initialization step affects the number of modes (see
https://doi.org/10.1093/bioinformatics/btw327) inferred by FastMixture in comparison to
ADMIXTURE.

Authors’ reply: We thank the reviewer for the comment. In all analyses performed in our study,
fastmixture, ADMIXTURE, and SCOPE consistently converge to the same solution (mode)
across runs. There is only one exception, where ADMIXTURE found a single suboptimal
solution in the new Scenario C for one of its K = 4 runs (model misspecification). However,
Neural ADMIXTURE is repeatedly finding different suboptimal solutions (five different modes) in
all scenarios, as the only software.
Our SVD initialization step enhances fastmixture robustness by yielding similar parameter
initializations across different seeds, thereby significantly reducing the variance of the obtained
solutions. This can also clearly be seen in the very low variance in log-likelihoods and other
assessment measures across the runs reported by fastmixture.

Additionally, over- or under-specifying the number of populations, K, might affect fastmixture
differently than ADMIXTURE.

Authors’ reply: We thank the reviewer for the great comment on model misspecification.
Evaluating the impact of underspecifying the true ancestral courses is indeed insightful, as
results should ideally reflect the demographic processes (population splits) in the simulated
scenario. Consequently, we have run all software for the new Scenario C using K = 2, 3, 4, while
the number of true ancestral sources was K = 5. However, we find that using an overspecified K
is less meaningful for evaluation purposes, as it does not correspond to a single correct or
optimal solution, making such results challenging to interpret. We have added a subsection to

https://doi.org/10.1093/bioinformatics/btw327


the Results section named “Robustness to model misspecification”, where we report the results
for each software and include admixture plots for K = 2, 3, 4. We show that fastmixture,
ADMIXTURE, and SCOPE behave as expected by detecting older population splits. However,
SCOPE introduces more noise, likely due to the increased complexity of the simulation
scenario.

“For most scenarios in ancestry estimation, the true number of ancestral sources is rarely
known. We therefore tested and compared all software and their capabilities to deal with model
misspecifications related to the number of ancestral sources used for Scenario C, which had a
ground truth of K = 5. Here we would expect the ancestry estimations to capture older events in
the demographic model for K < 5. The results comparing the software for K = {2,3,4} are
displayed in Figures S6, S7 and S8, respectively, and their corresponding log-likelihoods are
reported in Table S8. We note that ADMIXTURE only found the optimal solution in four out of
five runs, thus showcasing its vulnerabilities due to random parameter initialization and a
standard optimization approach. Due to the increased complexity of the simulation scenario,
SCOPE exhibited an even further increased noise level in its ancestry estimates across all three
values of K.”, page 9, paragraph 5.

3. The simulated scenarios appear to be fairly narrow, and expanding the range of population
structures could provide more insights. For example, all the scenarios presented (Figures S1
and S2) involve just one admixed population, with variations only in the number of non-admixed
populations. There seems to be no ongoing migration between simulated populations. It would
be interesting to see whether FastMixture performs similarly to ADMIXTURE in more complex
population histories, such as those with multiple admixed populations or constant migration.

Authors’ reply: We thank the reviewer for the great suggestion and the opportunity to expand
our manuscript. We have constructed a new simulation scenario with multiple admixture events,
including continuous migration between the non-admixed populations. We simulate five
non-admixed populations, a population with four-way admixture, a population with three-way
admixture, and a population with two-way admixture. As anticipated by the reviewer, this
scenario provided further insights into the benefits of the likelihood-based approaches in
comparison to the likelihood-free approach. fastmixture and ADMIXTURE once again perform
comparably. We have added text regarding the simulation in the Methods, Results and
Discussion sections:

“In Scenario A, B and D, we sample 1000 individuals, while in the more complex Scenario C, we
sample 1,600 individuals. We perform standard filtering on minor allele frequencies at a
threshold of 0.05, resulting in datasets consisting of 689,563 SNPs, 687,107 SNPs, 685,592
SNPs and 500,114 SNPs for Scenario A, B, C and D, respectively.”, page 6, paragraph 2.

“We further evaluated the different software in a more complex simulation scenario, Scenario C,
which includes five ancestral sources (K = 5) with symmetric migration patterns and three
admixed populations(Figure 1). Consistent with results from the simple scenarios, fastmixture



and ADMIXTURE outperformed the two other approaches, with fastmixture being ~28x times
faster than ADMIXTURE. Due to the increased complexity of the simulation scenario, SCOPE
exhibited an even greater increase of noise in its ancestry estimates, while Neural ADMIXTURE
again failed to detect one of the unadmixed population sources and modeled two admixed
populations as ancestral sources. Examining the accuracy of the ancestry estimates in each of
the eight populations, we observed that fastmixture and ADMIXTURE performed similarly
across the unadmixed and admixed populations, whereas SCOPE inferred more accurate
ancestry estimates in the admixed populations in comparison to the unadmixed populations
(Table S4 and S5).”, page 8, paragraph 4.

“Our findings suggest that the added noise in the ancestry proportions estimated in SCOPE are
likely to increase further in scenarios with a larger K or more complex demographic models, as
demonstrated in scenario C. This limits the utility of SCOPE in association studies and precision
medicine.”, page 12, paragraph 3.

4. I am also curious why NeuralAdmixture performs poorest among the evaluated methods. In
the NeuralAdmixture paper, performance did not seem to drop significantly for admixed
populations. Perhaps the authors could provide more insights here.

Authors’ reply: We thank the reviewer for raising this concern, which we share. The initial results
from Neural ADMIXTURE were unexpected, prompting us to reach out to the authors regarding
its poor performance on the 1000 Genomes Project. Unfortunately, after over a year, our
concerns remain unresolved (https://github.com/AI-sandbox/neural-admixture/issues/20). The
poor performance appears to stem from their defined convergence criterion, in which
log-likelihoods are averaged across batches, samples and variants, leading to suboptimal
optimization.
In the GitHub issue, the first author of Neural ADMIXTURE tested the software on the 1KGP
data, yielding 10 different results (modes: based on the pong tool), whereas ADMIXTURE
reliably finds the same solution 10 out of 10 times with a much better log-likelihood on the same
data. We have found it hard to validate their results from the original paper as all methods
appear to have been run once, thus using a single seed. In most of their analyses, they use a
combined dataset of the Human Genome Diversity Project, Simons Genome Diversity Project
and the 1000 Genomes Project, where they defined ground truth labels by super population
definition, thus not a real ground truth. They hereby completely disregard the accuracies of
estimated ancestry proportions in admixed individuals and punish accurate methods in their
assessments (these results can be found in their Supplementary Material).

5. The tool on GitHub was easy to install. However, the script produced an error when we ran it
on our example files. This could be due to issues with the local package versions, but currently,
there is no way to verify this, as I couldn't find clear version requirements in the github
repository. It would be helpful if the GitHub repository included explicit requirements and a
minimal working example to make installation verification easier.

https://github.com/AI-sandbox/neural-admixture/issues/20


Authors’ reply: We thank the reviewer for the comment and bringing this to our attention. We
have now provided detailed guidelines on how to install from GitHub directly, using PyPI.
Additionally, we have provided a Conda environment (including version requirements of
packages) and a Docker container to streamline installation and ensure compatibility.

The Manuscript:
The manuscript is well-organized, with a clear explanation of the motivation behind the research
and the methods employed. I found it easy to place the manuscript within the broader context of
related work. Other than the lack of detail on the impact of individual improvements, the
manuscript does a good job explaining the concepts. A short paragraph on the principles behind
SVD, similar to the description of the SqS3 algorithm, could make the ideas more accessible to
readers.

Authors’ reply: We thank the reviewer for their suggestion. We have now provided more
information on the principles behind SVD and why it is useful in our case.

“We initialize Q and P using individual allele frequencies estimated from randomized singular
value decomposition (SVD) performed on the genotype matrix, combined with an alternating
least squares (ALS) approach. SVD is a widely used dimensionality reduction approach in
population genetics, which infers continuous structure by extracting axes of genetic variation.”,
page 4, paragraph 2.

Apart from this, I found the manuscript easy to follow and enjoyed reading it.
Further Comments Regarding the Figures:
Figure 1: Sorting individuals within each subpopulation by the ancestry proportions inferred by
fastmixture could help make the distribution of ancestry proportions in the admixed population
more visually clear. This suggestion applies to the other figures as well, especially Figure 2.

Authors’ reply: We thank the reviewer for this input. We have now sorted the ancestry estimates
of individuals in the same superpopulation based on the fastmixture results for the two 1000
Genomes Project datasets (Figure 2 and Figure S9).

Figure 3: This would be more effective as a table.

Authors’ reply: We thank the reviewer for the comment and apologize for any confusion, as the
table (Table S1) already contains the relevant information. To clarify, we have now referenced
this table in the figure caption. Since the first submission, we have made major computational
updates to our algorithm and all the runtimes of fastmixture are updated. Figure 3 now includes
an additional zoomed-in runtime plot, which makes it easier to compare the runtimes of
fastmixture, Neural ADMIXTURE and SCOPE.



Reviewer #2
1. Does the abstract present the main findings of the study? Not completely, expansion of the
abstract is needed

Authors’ reply: We thank the reviewer for the comment. The abstract now provides a more
accurate summary of our findings by addressing the issues of noise in the likelihood-free
approaches and updated runtime numbers.

2. A more detailed introduction

Authors’ reply: We thank the reviewer for the suggestion. In response, we have now expanded
on previous literature in the introduction:

“Due to scalability issues, the Bayesian approach was later replaced by maximum likelihood
models, which were optimized using expectation-maximization (EM) and block relaxation
algorithms, this includes the widely used software ADMIXTURE [4,5].”, page 2, paragraph 1.

“The SCOPE software [10] has gained increased popularity due to its efficient implementation of
an ALS approach, which is well-suited for biobank-scale datasets.”, page 2, paragraph 2.

3. Perhaps build in a step to convert large-scale whole genome sequencing VCFs to binary plink
files.

Authors’ reply: We thank the reviewer for the comment. We expect researchers to have already
performed preprocessing on their data prior to running fastmixture. The binary PLINK file format
is one of the most used data-formats in population and statistical genetics, and since the PLINK
software itself has very easy and efficient options to perform the conversion from VCF or BCF to
binary PLINK files (“plink2 –bcf <file.bcf> –make-bed –out <file>“), we therefore advise
researchers to use PLINK for this conversion during the data preprocessing.

4. A more detailed explanation on what preprocessing steps are assumed to be completed is
necessary. This will affect the algorithms accuracy.

Authors’ reply: We thank the reviewer for their suggestion. We point researchers to follow
standard preprocessing steps for population genetic analyses. This includes standard quality
control steps for sequencing or SNP chip data, variant and sample filtering to obtain a final
curated genotype dataset in binary PLINK format of common variants in unrelated individuals. In
our study, we only focus on the highly curated 1000 Genomes Project and simulated datasets.
We have expanded on the expected preprocessing steps in our manuscript:



“We assume that the user has performed standard quality control and preprocessing, (e.g.,
variant filtering based on a minor allele frequency threshold and to only include unrelated
samples).”, page 5, paragraph 2.

5. I would recommend increasing the sample number for each demographic scenario used for
the simulations.

Authors’ reply: We thank the reviewer for the comment. We have now included a more complex
simulation scenario that includes 1,600 individuals distributed across 5 ancestral populations
and 3 admixed populations. We have kept the rest of the sample sizes at 1,000 individuals for
the other simulation scenarios due to simple feasibility and complete comprehensiveness for the
ADMIXTURE software.

“In Scenario A, B and D, we sample 1000 individuals, while in the more complex Scenario C, we
sample 1,600 individuals. We perform standard filtering on minor allele frequencies at a
threshold of 0.05, resulting in datasets consisting of 689,563 SNPs, 687,107 SNPs, 685,592
SNPs and 500,114 SNPs for Scenario A, B, C and D, respectively.”, page 6, paragraph 2.

“We further evaluated the different software in a more complex simulation scenario, Scenario C,
which includes five ancestral sources (K = 5) with symmetric migration patterns and three
admixed populations(Figure 1). Consistent with results from the simple scenarios, fastmixture
and ADMIXTURE outperformed the two other approaches, with fastmixture being ~28x times
faster than ADMIXTURE. Due to the increased complexity of the simulation scenario, SCOPE
exhibited an even greater increase of noise in its ancestry estimates, while Neural ADMIXTURE
again failed to detect one of the unadmixed population sources and modeled two admixed
populations as ancestral sources. Examining the accuracy of the ancestry estimates in each of
the eight populations, we observed that fastmixture and ADMIXTURE performed similarly
across the unadmixed and admixed populations, whereas SCOPE inferred more accurate
ancestry estimates in the admixed populations in comparison to the unadmixed populations
(Table S4 and S5).”, page 8, paragraph 4.

“Our findings suggest that the added noise in the ancestry proportions estimated in SCOPE are
likely to increase further in scenarios with a larger K or more complex demographic models, as
demonstrated in scenario C. This limits the utility of SCOPE in association studies and precision
medicine.”, page 12, paragraph 3.

6. Whilst I understand the rationale behind not including the results for the ADMIXTURE run for
full 1000 Genomes dataset, I still think including the results is needed for transparency. How
long did ADMIXTURE take to run the full 1000 Genomes dataset? Please include the
log-likelihood in Table S3.



We thank the reviewer for the comment and great suggestion. We have now provided the
results of a single ADMIXTURE run for the full 1000 Genomes Project, which took > 40 hours to
complete further showcasing the scalability issues of ADMIXTURE. We have added and edited
the text in the Results and Discussion sections of our manuscript to accommodate the changes:

“For the full 1KGP dataset, we only performed a single run for ADMIXTURE due to its excessive
computational runtime of > 40 hours, in comparison to the other software with runtimes of < 2
hours (Figure 3 and Table S1). Here fastmixture was ∼30x faster on average than the
ADMIXTURE run.”, page 11, paragraph 1.

“The results of ADMIXTURE are only based on a single seed in the full 1KGP SNP set due to
exhibiting a prohibitively excessive computational runtime of more than 40 hours, in contrast to
~74 minutes using fastmixture. We have therefore evaluated all software on a downsampled
version as well, with 10x less SNPs, which is a common procedure in population genetic
studies.”, page 12, paragraph 1.

2. An explanation of the admixture plot populations abbreviations is needed.

Authors’ reply: We thank the reviewer for the comment. We have now included a description of
the population abbreviations in the caption of the 1000 Genomes Project ancestry plots to
enhance clarity for readers.

“AFR: African, EUR: European, EAS: East Asian, AMR: American and SAS: South Asian
ancestry.”, captions of Figure 3 and S9.

Reviewer #3 (Oscar Lao Grueso)
The method proposed in this study combines various machine learning and optimization
algorithms to significantly reduce the time required for estimating ancestry proportions while
producing cutting edge results. The article presents an innovative approach to minimizing
computation time by integrating different techniques from the field of machine learning, which I
found very insightful and enjoyable to read. I agree with the authors that this methodology has
the potential to "be the preferred alternative to ADMIXTURE in future population genetic
studies".

Authors’ reply: We thank the reviewer for their kind words, time, and efforts in reviewing our
manuscript. We have addressed their comments and questions sequentially.

However, my main concern lies in how the proposed methodology compares with other existing
algorithms. Many established methods assume marker independence and unrelated individuals
(for instance, see Methods Mol Biol. 2020; 2090: 67–86. doi:10.1007/978-1-0716-0199-0_4). In
contrast, based on the simulation study, it appears that only markers with a minor allele



frequency (MAF) below 0.05 are excluded from the analysis. Even when the authors use a
subset of markers from the 1000 Genomes Project, this subset is selected randomly. I believe
that some of the discrepancies observed between methods could stem from this bias.

Authors’ reply: We thank the reviewer for the excellent comment. We agree that LD pruning has
been a common approach for reducing the SNP set, even when working with structured or
admixed populations. However, it has recently been shown that standard LD pruning biases
downstream measures for population differentiation as it removes variants that contribute to
large allele frequency differences between the ancestral sources
(https://doi.org/10.1101/2024.05.02.592187). The study shows that this also affects the
FST-measures of ADMIXTURE. The variants removed are therefore not in LD in the ancestral
populations. Standard LD pruning will artificially make unadmixed populations more genetically
similar, and should therefore be ill-advised.

Additionally, the simulated models considered in the study raise some concerns. While these
models are relevant for studying human demography, they seem rather specific. It would be
beneficial to include other, more complex models, especially since the authors assert that 'Our
findings suggest that the added noise in the ancestry proportions estimated in SCOPE will only
increase for scenarios with a larger K and for more complex demographic models.

Authors’ reply: We thank the reviewer for the great suggestion and opportunity to improve our
manuscript. We have constructed a new simulation scenario with multiple admixture events
including having continuous migration between the non-admixed populations. We simulate five
non-admixed populations, a population with four-way admixture, a population with three-way
admixture and a population with two-way admixture. As the reviewer also expected, this
scenario provided more insights into the benefits of the likelihood-based approaches in
comparison to the likelihood-free approach. fastmixture and ADMIXTURE perform comparably
once again. We have added text regarding the simulation in the Methods, Results and
Discussion sections:

“In Scenario A, B and D, we sample 1000 individuals, while in the more complex Scenario C, we
sample 1,600 individuals. We perform standard filtering on minor allele frequencies at a
threshold of 0.05, resulting in datasets consisting of 689,563 SNPs, 687,107 SNPs, 685,592
SNPs and 500,114 SNPs for Scenario A, B, C and D, respectively.”, page 6, paragraph 2.

“We further evaluated the different software in a more complex simulation scenario, Scenario C,
which includes five ancestral sources (K = 5) with symmetric migration patterns and three
admixed populations(Figure 1). Consistent with results from the simple scenarios, fastmixture
and ADMIXTURE outperformed the two other approaches, with fastmixture being ~28x times
faster than ADMIXTURE. Due to the increased complexity of the simulation scenario, SCOPE
exhibited an even greater increase of noise in its ancestry estimates, while Neural ADMIXTURE
again failed to detect one of the unadmixed population sources and modeled two admixed
populations as ancestral sources. Examining the accuracy of the ancestry estimates in each of

https://doi.org/10.1101/2024.05.02.592187


the eight populations, we observed that fastmixture and ADMIXTURE performed similarly
across the unadmixed and admixed populations, whereas SCOPE inferred more accurate
ancestry estimates in the admixed populations in comparison to the unadmixed populations
(Table S4 and S5).”, page 8, paragraph 4.

“Our findings suggest that the added noise in the ancestry proportions estimated in SCOPE are
likely to increase further in scenarios with a larger K or more complex demographic models, as
demonstrated in scenario C. This limits the utility of SCOPE in association studies and precision
medicine.”, page 12, paragraph 3.

I have some additional comments and questions regarding the tests conducted:
Please provide references for the values mentioned, 'constant recombination rate of 1.28 ×
10−8 and a mutation rate of 2.36 × 10−8.' Additionally, it would be helpful to describe (where do
they come from, for example) the demographic parameters in the Materials and Methods
section and include the msprime code.

Authors’ reply: We thank the reviewer for the comment and for bringing it to our attention. We
have now added citations, and the code for replicating the entire simulation study (including the
msprime code) is available in the data repository on Zenodo as stated in the “Code availability”
statement.

In Scenario C (Figure 1), using the American-Admixture demographic model, the study states
that 'we consistently observed that ADMIXTURE and fastmixture perform similarly in accuracy,
with results closest to the ground truth (Table 1 and Table S2).' However, I believe the standard
error should also be taken into account. ADMIXTURE shows a standard error ten times smaller
than fastmixture.

Authors’ reply: We thank the reviewer for the comment. We note that we are reporting the
standard deviations for all assessment measures and not standard errors. We agree that
examining the standard deviations is useful for assessing the variation across different runs,
however, in our results for Scenario D (formerly C), the standard deviations for both fastmixture
and ADMIXTURE are <1e-5, which amount to differences on the fifth and sixth decimal places
between runs, thus next to none.

To present the results from Table 1 more visually, consider calculating the KL divergence
between the predicted admixture values and the ground truth for each individual in each
population and study for each evaluated method. This could help identify if any particular
method exhibits more bias toward certain genetic backgrounds. For instance, the Neural
ADMIXTURE paper observed that their method produces harder cluster predictions compared
to ADMIXTURE, potentially impacting admixture proportions in mixed populations, as suggested
by the authors of this study.



Authors’ reply: We thank the reviewer for their input, which provides a great approach to further
explore the differences between the software. We have now added the population-specific
performance metrics in the new simulated Scenario C with 5 unadmixed and 3 admixed
populations. The results are reported in Table S4 and S5 for RMSE and JSD, respectively.

“When looking closer at the accuracy of the ancestry estimates in each of the eight populations,
we could observe that fastmixture and ADMIXTURE performed similarly across the unadmixed
and admixed populations, whereas SCOPE inferred more accurate ancestry estimates in the
admixed populations in comparison to the unadmixed populations (Table S4 and S5).”, page 8,
paragraph 4.

In the legend of Figure 2, please specify that it uses the downsampled version (I understand this
applies to all methods, not just ADMIXTURE).

Authors’ reply: We thank the reviewer for the comment. With the addition of an ADMIXTURE run
on the full 1000 Genomes Project, the ancestry plot on the full dataset is now included as a
main figure in our manuscript, while the ancestry plot on the downsampled dataset is in the
supplementary material. The distinction is described in the captions of the ancestry plots.

It would also be very interesting to evaluate the performance of the proposed algorithm
concerning the hyperparameters it requires.

Authors’ reply: We thank the reviewer for the comment. We have now evaluated a broad range
of initial mini-batches used in fastmixture for the complex simulation scenario, Scenario C. We
have tested B = 8, 16, 32, 64, 128, where B = 32 is the default choice in fastmixture. We show
that fastmixture is very robust to changes in its hyperparameter, where all the different choices
of initial mini-batches converge to the same optimal solution across all seeds. We have plotted
the admixture plots and reported assessment measures in Figure S4 and Table S6, respectively.
We have also added the following text to the Results section under a new subsection “Testing
hyperparameters”:

“The number of initial batches in fastmixture, used for its mini-batch optimization, is a
hyperparameter. We tested the effect of changing the number of mini-batches in the more
complex simulation scenario, Scenario C, having multiple admixture events and five source
populations. We utilized B = {8,16,32,64,128}, including the default choice of B=32, and reported
the computational runtimes, log-likelihoods, RMSE and JSD measures. Our results showed that
fastmixture was robust to changes in B, as all evaluated choices consistently captured the same
solutions with highly comparable assessment measures (Figure S4 and Table S6). Based on
these findings, we conclude that B=32 was an optimal choice, balancing both fast runtimes and
highly accurate ancestry estimations.”, page 9, paragraph 3.


