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Abstract

Knowledge of fine -scale spatial genetic structure, i.e., the distribution of genetic diversity 

at short distances, is important in evolutionary research and in practical applications such 

as conservation and breeding programs. In trees, related individuals often grow close to 

each other due to limited seed and/or pollen dispersal. The extent of seed dispersal also 

limits the speed at which a tree species can spread to new areas.

We studied the fine -scale spatial genetic structure of Scots pine (Pinus sylvestris) in two 

naturally regenerated sites located 20 km from each other located in continuous south-

eastern Finnish forest. We genotyped almost 500 adult trees for 150k SNPs using a 

custom made Affymetrix array. While wWe detected some pairwise relatedness at short 

distances, but the average relatedness was low and decreased with increasing distance, 

as expected. Despite the clustering of related individuals, the sampling sites were not 

differentiated (FST = 0.0005). According to our results, Scots pine has a large neighborhood

size (Nb = 1680–31210), but a relatively short gene dispersal distance (σg = 36.5–71.3 m). 

Knowledge of Scots pine fine-scale spatial genetic structure can be used to define suitable

sampling distances for evolutionary studies and practical applications. Detailed empirical 

estimates of dispersal are necessary both in studying post-glacial recolonization and 

predicting the response of forest trees to climate change.
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Introduction

Understanding the fine -scale spatial genetic structure of species is important in a wide 

range of fields. It builds up, through gene flow, from an interplay between: i) externalThe 

structure builds up from the interaction of gene flow and extrinsic factors, such as 

fragmented habitats and differences in growth conditions, which in turn affect selection, 

population size and density,. and ii) internal On the other hand, intrinsic factors, such as 

dispersal ability and mating patterns of the species also have an influence (Loveless & 

Hamrick 1984; Vekemans & Hardy 2004). Gene flow takes place between individuals in 

physical space (Bradburd & Ralph 2019), often leading to an isolation-by-distance pattern 

(Wright 1943; Málecot 1967). Thus, individuals close to each other are commonly 

expected to be more closely related than a random sample from within the species. In 

sedentary species, likesuch as trees, spatial aggregation of related individuals often 

results from limited seed and/or pollen dispersal (Hardy & Vekemans 1999). In wind -

pollinated species, pollen can disperse long distances, from hundreds of meters to 

hundreds of kilometers (e.g., Kremer et al. 2012; Desilva & Dodd 2021), whereas seed 

dispersal has shorter average distances (Kremer et al. 2012). Pollen dispersal distances in

animal -pollinated species are commonly shorter—from a few meters to a few kilometers 

(e.g., Levin & Kerster 1974; Kremer et al. 2012; but see Ahmed et al. 2009). As a result of 

the differences in dispersal distances, strong fine-scale spatial genetic structure is 

common in animal -pollinated and rare in wind -pollinated tree species (Vekemans & Hardy

2004; Hardy et al. 2006; Born et al. 2008; Vakkari et al. 2020). Thus, tThe distribution of 

genotypes at a short distances is usually transient, largely impacted by life-history traits 

and can be evaluated through estimating relatedness between individuals.

In evolutionary research, spatial genetic information is valuable for inferring the strength of 

the evolutionary forces—genetic drift, selection, and gene flow—that participate in forming 

the genetic structure (Rousset 2003; Slatkin 1985). The fine-scale spatial genetic structure
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of populations needs to be considered in many applications too. For example, in genotype-

phenotype association analyses, spurious associations may arise due to correlation of 

allele and trait frequencies in different populations, but also within a population, if the 

underlying genetic structure is not corrected for (Pritchard & Rosenberg 1999; Persyn et 

al. 2018). Also iIn practical applications, wheren individuals are chosen from natural 

populations for conservation, population management or breeding programs from natural 

populations, it is essential to know how genetic diversity and, for example, rare alleles are 

distributed in space to maintain high genetic diversity, avoid inbreeding and, on the other 

hand,  yunnecessarunintended mixing of differentially adapted populations (Desilva & 

Dodd 2021; Escudero et al. 2003; Smith et al. 2018). When the span of spatial 

autocorrelation is known, sampling can be adapted to the needs of each application.

Knowledge of fine -scale spatial genetic structure can recursively be used to infer dispersal

distances (Málecot 1967; Rousset 1997 & 2003). The ability to disperse becomes 

increasingly important in the light of climate change, as when  plant  species and their 

locally adapted populations may become maladapted to their current locations (Gougherty

et al. 2021). Dispersal information can be used, for example, in predicting species’ 

potential for adaptation (Kuparinen et al. 2010; Kremer et al. 2012; Barton 1979; Slatkin 

1973), bearing in mind that dispersal rates in, e.g., the open landscapes of colonization 

stage may be different than those estimated here. If the natural dispersal rate is estimated 

to be too slow tofor responding to the challenges of climate change, human assisted 

migration is one possible way to aid adaptation (Marris 2009; Aitken & Whitlock 2013).

Scots pine (Pinus sylvestris) is a keystone conifer species in large parts of the forests of 

Northern Eurasia and, thereforeus, important for the ecosystem functioning (Pyhäjärvi et 

al. 2020 and references therein). As a major source of timber, paper and pulp, Scots pine 

holds also has high economic value, especially in Fennoscandia (e.g., in Finland, 

https://www.luke.fi/en/statistics/wood-consumption/forest-industries-wood-consumption-

2021). Due to its continuous and wide distribution, wind-pollination and predominantly 
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outcrossing mating system (Muona & Harju 1989), Scots pine shows very weak genetic 

population structure at the global scale;, largely in the form of subtle isolation-by-distance 

across its distribution range (Tyrmi et al. 2020). Less is known about within-population 

genetic structure as only small, fragmented populations have been studied forin this 

arespect so far (Robledo-Arnuncio & Gil 2005; Sofletea et al. 2020). Although artificial 

regeneration with genetically improved seedlings ishas becomeing more common in 

forestry, natural regeneration has been the predominant regeneration method in forests, 

making the patterns described here common inacross Fennoscandia. Since Scots pine 

has such a dominant role in the boreal forest ecosystems, even small changes in its 

distribution or adaptationadaptive ability may have large consequencesroll-down effects.    

Here we investigate the fine-scale spatial genetic structure of Scots pine in two naturally 

regenerated sites that are located in south-eastern Finland. We use a genome-wide 400k 

single nucleotide polymorphism (SNP) array (Kastally & Niskanen et al. 2022), which 

allows us to estimate relatedness in a large sample of 469 trees. We estimate the 

parameters of the isolation-by-distance model and use this information to derive estimates 

of gene dispersal distance. We Tthen we investigate the spatial spread and sharing of rare

alleles that can have a distinct profile of, for example,different fitness effects and average 

allele age compared to more common alleles. The knowledge of fine-scale spatial genetic 

structure and dispersal distance areis useful in practical applications of Scots pine 

breeding and in associating genetic and trait variation in natural populations, but also for 

modeling adaptation and making predictions on how widely- distributed wind -pollinated 

trees can respond to climate change.                                                                                     
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Material and Methods

Samples and genotypes

Our study population at the Punkaharju intensive study site (ISS, 

https://www.evoltree.eu/resources/intensive-study-sites/sites/site/punkaharju) is a naturally

regenerated site in south-eastern Finland and includes two sampling sites, Mäkrä 

(61°50’16.8’’N, 29°23’39.5’’E) and Ranta-Halola (61°39’19.7’’N, 29°17’14.7’’E) located 21 

km apart (Figure 1). The landscape in south-eastern Finland has mostly continuous pine 

forest cover, lakes and some agricultural areas. The study site stands arose through 

natural regeneration after seed tree cuttings (i.e., retaining only part of the mature trees to 

provide seed for establishing the next generation) 60–70 years ago in Mäkrä and an 

unknown, but probably a few decades longer, time ago in Ranta-Halola. We sampled 469 

adult (33–145 years) Scots pines at approximately at 20 m distances, with the shortest 

within -sampling site distance between trees ofbeing 10 and 14 m and the longest 464 and

1164 m in Mäkrä and Ranta-Halola, respectively. We selected trees that were similar in 

size by eye—113 trees from Mäkrä and 356 trees from Ranta-Halola. The mean age, 

estimated by counting the tree rings from a core sample at breast height, was 60.6 (range: 

33–112.5) and 90.3 (range: 43–144.5) years in Mäkrä and  Ranta-Halola, respectively 

(Figure S1). We could not estimate the age for two trees from Ranta-Halola.

Needle samples from the adult trees were genotyped on a custom-made Affymetrix SNP 

array including 407 540 markersSNPs. Development of the SNP array and genotyping of 

the samples is described in detail in Kastally & Niskanen et al. (2022). In short, of the 407 

540 SNPs we used a dataset of 157 325 polymorphic SNPs with the ThermoFisher 

conversion types Poly High Resolution (three well-separated genotype clusters) and No 

Minor Homozygote (two well-separated genotype clusters, homozygous and 

heterozygous) as a starting point for filtering the loci. We used four embryo samples and 

their parents (described in Kastally & Niskanen et al. 2022) to estimate Mendelian errors 
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for each locus using PLINK (v. 1.9; Purcell et al. 2007) and excluded SNPs with more than 

one Mendelian error. Since pines have a high proportion of repetitive and paralogous 

genome sequence (Wegrzyn et al. 2014), we excluded SNPs with more than one 

seemingly heterozygous genotype in haploid megagametophyte samples (described in 

Kastally & Niskanen et al. 2022) to avoid SNPs in potentially paralogous genomic 

regions.We filtered for Mendelian errors and errors likely arising from paralogy common in 

conifers (Neale et al. 2014).  Further filtering of the genotype data was done according to 

the requirements of each analysis as described below.                                                          
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Figure 1. Maps of the sampling sites in the Punkaharju intensive study site located in 
south-eastern Finland. Sampled trees are indicated as red dots. Mäkrä and Ranta-Halola 
are located 21 km apart. The maps were drawn in R using the package ggmap (Kahle & 
Wickham 2013).

                                                                                                      

Spatial data and pairwise distances

We recorded the coordinates for each tree using a portable GPS locator in August–

October 2020. The initial coordinates in the ETRS-TM35FIN geodetic coordinate system 

were transformed to the coordinates in the EUREF-FIN-GRS80 geodetic coordinate 

system using a Finnish map service on the web (https://kartta.paikkatietoikkuna.fi/). One of

the study trees from Ranta-Halola had died between the needle sample collection and 

coordinate recording and was excluded from the spatial analyses. We estimated the 

pairwise spatial distance matrix for 468 adult trees with coordinates using the R (v. 3.6.3, R

core team 2020) package fields (Nychka et al. 2017) function “rdist.earth” (Nychka et al. 

2017).

Population structure

To get an overall picture of the genetic structure of our study population, we conducted 

principal component analysis (PCA) using the R package pcadapt (Privé et al. 2020). We 

ran PCA for two sets of individuals, first for all 469 individuals, and second for 332 

individuals excluding: i) individuals used in the SNP discovery (Kastally & Niskanen et al. 

2022), ii) individuals related to the SNP discovery individuals (pairwise relatedness, 

genomic relationship matrix (GRM) ≥ 0.044;  Yang et al. 2011; see details below), and iii) 

one individual from each pair with pairwise relatedness ≥ 0.044. We excluded closely 

related individuals and SNP discovery individuals from the PCA to detect the underlying 

population structure without the signal of family structure or SNP ascertainment effects. 

We used a set of 65 498 SNPs with the following characteristics: minor allele frequency 

(MAF) ≥ 0.05, close to Hardy Weinberg equilibrium (HW; exact test p value ≥ 0.001), and 

relatively lownot in high linkage disequilibrium (LD) r2 < 0.9 with other SNPs in 10 kb 
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windows within a contig (using PLINK v. 1.9; Purcell et al. 2007), unless stated otherwise. 

We used four embryo samples and their parents (described in Kastally et al. 2022) to 

estimate Mendelian errors for each locus in PLINK and excluded SNPs with more than one

Mendelian error. Since Scots pine has a high proportion of repetitive and paralogous 

genome sequence (Wegrzyn et al. 2014), we excluded SNPs with more than one 

seemingly heterozygous genotype in haploid megagametophyte samples (described in 

Kastally et al. 2022) to avoid SNPs in potentially paralogous genomic regions.

We estimated pairwise FST (Weir & Cockerham 1984) between the two study sites using 

the R package StAMPP (Pembleton et al. 2013) and performed 1000 bootstraps to 

estimate its 95% confidence interval (CI). We also estimated ϕST (Excoffier et al. 1992), 

which measures population differentiation at molecular level, using Nei’s D pairwise 

genetic distances (Nei 1972) between individuals and 10 000 permutations to gain a p-

value in StAMPP.

Fine-scale spatial genetic structure

We estimated pairwise relatedness between all 469 samples as a genomic relationship 

matrix (GRM; Yang et al. 2011) using the PLINKGCTA (Yang et al. 2011) command “–

make-grm--make-grm-gz”. GRM was estimated between individuals j and k over SNP loci 

from i to N using the formula

A jk=
1
N∑

i=1

N (x ij−2 p i)(x ik−2 pi)

2 p i(1− pi)
,

where xij and xik are the numbers of reference (major) alleles in an individuals j and k, and 

pi is the reference allele frequency. Since inclusion of closely related individuals may 

inflate the relatedness estimates, we used allele frequencies estimated for 387 unrelated 

adult individuals (GRM < 0.0625, the mean of relationship class for, e.g., first cousins once

removed) as reference allele frequencies in the estimation of GRM. We classified each 
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pair of individuals into family relationship classes (e.g., see Manichaikul et al. 2010 for 

kinship relationship estimates (F), which are equal to half of the corresponding relatedness

estimates) based on pairwise GRM: second degree between [0.177,0.354), e.g., half-

siblings, third degree between [0.088, 0.177), e.g., first cousins, fourth degree between 

[0.044, 0.088), e.g., first cousins once removed, and unrelated below 0.044. We also 

estimated the genomic inbreeding coefficient (FGRM
 ) for each individual based on genomic 

relationship matrix in GCTA (Yang et al. 2011).

The Mantel test (Mantel 1967) is a traditional test of spatial autocorrelation where the 

relationship of two dissimilarity (i.e., distance) matrices is investigated. In spatial genetics, 

the null hypothesis of a Mantel test is that genetic distance, or similarity when measured 

as relatedness or kinship, and spatial distance are not correlated. To study the relationship

between relatedness and spatial distance, we estimated their correlation using 

Spearman’s correlation coefficient (ρ) separately for the two sampling sites Mäkrä and 

Ranta-Halola. We conducted the Mantel test separately for both sites using the R package

ecodist (Goslee & Urban 2007) with 10 000 permutations. The use of the Mantel test in 

spatial genetics has been criticized because of the lackrequirements of homoscedasticity 

and linear correlation between genetic and spatial distances for the data (Legendre et al. 

2015). These problems are, however, less severe in the Mantel correlogram analysis 

where samples are divided into pre–-defined spatial distance classes and each distance 

class is compared separately to joint data from other distance classes. We therefore also 

used also Mantel correlograms (10 000 permutations) to evaluate the correlation between 

relatedness and distance within distance classes.

Neighborhood size and dispersal distance

We estimated neighborhood size (Nb), the effective number of  potentially mating 

individuals belonging to a within-population neighborhood  (Wright 1946)panmictic 

breeding unit, and gene dispersal distance (σg) using an iterative approach implemented in
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SPAGeDi (Hardy & Vekemans 2002). To attainobtain σg, SPAGeDi first estimates a 

starting value for neighborhood size using the formula

Nb=−(1−FN )/blog ,

where FN is the mean kinship (Loiselle et al. 1995) of the first distance class (0–50 m in 

Mäkrä and 0–60 m in Ranta-Halola) and blog is the regression slope of the regression of 

kinship on the natural logarithm of spatial distance over all distance classes (Rousset 

2000; Hardy & Vekemans 2002). Kinship was estimated with 28 378 SNPs with MAF ≥ 

0.20 (due to computational limitations), using the formula

 

Fij=
∑l [∑a (p ila−pla)( p jla−pla)+∑a

p la(1− pla)

(nl−1)
]

∑l∑a (p la(1− pla))
,

where pi la and p  j  l  a   areis the frequencyies of allele a at locus l in individuals Ii and j, pl  a   is 

the reference al  lele frequency of allele   a   at locus   l  ,   and nl is the number of gene copies 

defined in the sample at locus l (Loiselle et al. 1995; Hardy & Vekemans 2002). Then gene

dispersal distance was estimated using the formula

                                                                                

σ g=[Nb /(4 πDe)]
1/2 ,

where De is the effective population density that accounts for differences in the 

reproductive success of individuals (Hardy & Vekemans 2002). The Nb estimation 

procedure was repeated using blog from kinship~distance regression up to the distance of 

the chosen maximum σ value. Census density (D) estimates of unmanaged Finnish Scots 

pine forests vary between 608–4470 trees per hectare (Lönnroth 1926), and Based on the 

census density (D) estimate in commercial forests is about of  2 000 trees/ha per hectare 
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(200 000 trees per km2) in commercial forests (; Fahlvik et al. 2005; Väisänen et al. 1989),.

Our study sites have regenerated naturally after cutting to an unknown, but likely lower 

than 2000 trees/ha density of seed trees. However, as pollen and seed dispersal from 

surrounding forests (Jiménez-Ramírez et al. 2021) likely increases the effective density, 

we used 2000 trees/ha as our starting point, and we estimated σg assuming ratios of 

effective to census density of 0.25 (De = 500 trees/ha) and 0.5 (De = 1 000 trees/ha). 

Census density estimates of unmanaged Finnish Scots pine forests vary between 608-

4470 trees/ha (Lönnroth 1926); moist forests have lower densities than dry forests at the 

same age due to faster growth. Gene dispersal distance can reliably be estimated within a 

distance that is assumed to be in mutation-drift-equilibrium that should be reached in a few

generations within the distance σg/(2µ)1/2 (µ = mutation rate; Rousset 1997 & 2000). Based

on a 10-3 mutation rate of microsatellites, this distance is approximately 20*σg. Since the 

SNP mutation rate (10-9; Willyard et al. 2007) is lower than the microsatellite mutation rate,

we estimated Nb (and thus also sigma) using both 20*σg and a higher value of 60*σg. 

However, since the maximum distances within our study sites are shorter than the 

estimated 20*σg distance, increasing the maximum distance does not affect our estimates 

of sigma nor Nb. To measure the strength of the fine-scale spatial genetic structure, we 

estimated the intensity of spatial genetic structure (Sp; Vekemans & Hardy 2004) using the

formula

Sp=−blog /(1−FN) .

We used 1 000 permutations of individual locations in estimating blog to test how probable

it is to get higher Sp by chance.

Rare alleles

To study the spatial spread of rare alleles, we investigated sharing of rare alleles with MAF

< 0.01 (23 623 SNPs after removing singletons) between individuals and correlated 

(Spearman’s ρ) this with pairwise relatedness and spatial distance. To avoid the SNP 
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discovery ascertainment bias in rare allele sharing, we estimated the correlation using only

426 individuals excluding: i) individuals used in the SNP discovery and ii) individuals with 

pairwise relatedness (GRM) >= 0.044 with the SNP discovery individuals. We used within 

sampling site Mantel correlograms to study the correlation between rare allele sharing and 

spatial distance within distance classes. P-values for the correlations were 

constructedobtained with Mantel’s test using 10 000 permutations. For illustrative 

purposes, we fitted a local (LOESS) regression in R for the proportion of shared rare 

alleles on relatedness and included sampling site as a fixed predictor.
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Results

Spatial genetic analyses

On the population scale with all 469 adult trees, we identified a very weak structure 

between Mäkrä and Ranta-Halola based on PCA (Figure 2). The majority of the samples in

both Mäkrä and Ranta-Halola clustered together along principal components (PC) 1 and 2 

(Figure 2a). However, we detected one outlying cluster of samples from Ranta-Halola on 

PC1 and one on PC2, and a group of samples from Mäkrä dispersed along PC2. These 

outlying samples consisted of related individuals, and the outliers disappeared when we 

conducted PCA only for 332 individuals that were unrelated (GRM < 0.044) and not used 

in the SNP discovery (Figure 2b). Concordantly, we found a low FST of 0.0005 (95% CI: 

0.0004–0.0005) between Mäkrä and Ranta-halola and a low but significant between-study 

site variance component (ϕST) of 0.0019 (p < 0.001).

Figure 2. Principal component analysis (PCA) for Mäkrä and Ranta–Halola for a) all 469 
adult trees and b) only 332 trees; excluding individuals used in the SNP discovery 
(Kastally & Niskanen et al. 2022), individuals with pairwise relatedness higher than 0.044 
pairwise relatedness with the SNP discovery individuals, and one individual of each pair 
with pairwise relatedness ≥>= 0.044.

We found that pairwise relatedness was low within the study sites (Figure 3; Table S1). 

Even in the class with the shortest distance between individuals, the mean GRM was only 

0.0004 in Mäkrä and 0.00218 in Ranta-Halola. However, relatedness still decreased with 
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increasing distance in both sampling sites withat a similar rate (Figure 3; see Figure S2 for 

distance restricted to Mäkrä’s maximum distance). We used relatedness (GRM) or kinship 

(F, Loiselle) to estimate pairwise relatedness depending on the analysis, and both 

methods gave similar estimates of relatedness (Pearson’s r = 0.842, p < 0.0001; Figure 

S3). The spatial genetic structure was evident individuals in closer distance classes were 

more related to each other compared to individuals in other distance classes until ~65 m in

Mäkrä and ~200 m in Ranta-Halola. In these distance classes, there was a negative 

correlation between relatedness and distance as shown by the Mantel correlograms 

(Figure 4; Figure S4). The Mantel test indicated a subtle but significant decay of 

relatedness withby spatial distance at Ranta-Halola (Spearmann’s ρ = -0.044, one-tailed p 

< 0.0001) but not at Mäkrä (Spearmann’s ρ = -0.010, one-tailed p = 0.216). We also 

estimated the intensity of spatial genetic structure and found that, despiteeven when there 

wasis evidence for spatial genetic structure, its intensity wasis low in both study sites 

(Ranta-Halola Sp = 0.0008, one-tailed p < 0.001, and Mäkrä Sp = 0.0005, one-tailed p < 

0.001). The Llow intensity wasis caused by the smallmild decrease in the pairwise kinship 

with distance over each sampling site and by the low average kinship in the first distance 

class.                                                           

Among the 69 163 pairwise comparisons, 24 closely related pairs (GRM >≥ 0.177) were 

identified (Figure 5). All closely related individuals (GRM ≥ 0.044) were growing oin the 

same sampling site. The highest relatedness (GRM) for a between sampling site pair was 

0.031, whereas the highest within site relatedness was 0.332 in Mäkrä and 0.349 in Ranta-

Halola. When the trees were divided into family relationship classes, the median distance 

of the most related family relationship class found here (GRM = 0.177–0.354, indicating 

second-degree relatedness) was 51 m in Mäkrä and 59 m in Ranta-Halola, compared to 

the respective median distances of 166 m and 357 m offor unrelated individuals (GRM < 

0.044; Figure 5). This illustrates that the spatial aggregation of closely related individuals is

comparablesimilar in both the smaller and the larger study area. Family relationship 
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classes categorized using relatedness vs. kinship estimates were very similar, with a few 

pairs categorized in the neighboring classes (Table S2). We did not find any sign of close 

inbreeding in our sample; the highest inbreeding coefficient (FGRM) was 0.035 in Mäkrä and

0.080 in Ranta-Halola.

Figure 3. Decay of pairwise relatedness with distance in Mäkrä (turquoise) and Ranta-
Halola (orange) sampling sites. Mean (circles and squares) and standard deviation 
(vertical lines) of relatedness is plotted for each distance class; the number of pairwise 
individuals comparisons, the mean GRM and the mean distance inof each distance class 
are shown in Table S1.

Depending on the effective population density (De) estimate we used, the mean 

neighborhood size (Nb) over the two Scots pine sites was 3210 (with De = 500 trees/ha; 

Table 1) or 1680 trees (with De = 1 000 trees/ha). We estimated the mean gene dispersal 

distances (σg ) togetherjointly with Nb and found that the mean σg were 71.3 m (De = 500 

trees/ha; Table 1) and 36.5 m (De = 1 000 trees/ha).
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Figure 4. Mantel correlogram showing the Ccorrelation (measured as Mantel r) between 
pairwise relatedness and distance within each distance classes estimated as Mantel 
correlogram in a) Mäkrä (circles, turquoise) and b) Ranta-Halola (squares, orange). Filled 
circlesshape indicates a p-value smaller than< 0.05. Two of the longest distance classes 
from Mäkrä and one from Ranta-Halola have been left out due to including less than 100 
pairwise comparisons.

Table 1. Gene dispersal distance (σg) and neighborhood size (Nb) estimates for Mäkrä 
and Ranta-Halola for two different ratios of effective (De) andto census (D) population 
densityies. In this study, De/D ratio of 0.5 equals De = 1 000 trees/ha and 0.25 equals De = 
500 trees/ha.  Examples of Nb and σg for animal- and wind -pollinated tree species from 
previous studies below.                                                  

Nb Nb Pollinator Reference

Mäkrä 1404 33 3673 76 wind this study

Ranta-Halola 1957 39 2747 66 wind this study

Species

Dicorynia guianensis 116 222 203 insects

Moronobea coccinea 20 134 195 birds

Milicia excelsa 370 3755 wind

Pinus pinaster* 97 30 wind

Araucaria angustifolia 381 140 wind

Thuja occidentalis* 65 55 wind Pandey & Rajora 2012
*Only core or continuous populations included.
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Figure 5. The relationAssociation between family relationship classes and spatial 
distance. The pPairwise distances of the second degree related individuals in a) Mäkrä 
and b) Ranta-Halola are shown as red lines. The distribution of all pairwise distances of 
individuals in different family relationship classes are shown in c) for Mäkrä (turquoise) and
Ranta-Halola (orange). Boxplots show the median (central vertical line), the lower and 
upper quantiles (boxes), and up to 1.5 interquartile range (whiskers) distances. The 
fFamily relationships are classified based on pairwise GRM: second degree between 
0.177–0.354 (e.g., half-sibling; n = 7 in Mäkrä and n = 17 in Ranta-Halola), third degree 
between 0.088–0.177 (e.g., first cousin; n = 12 in Mäkrä and n = 38 in Ranta-Halola), 
fourth degree between 0.044–0.088 (e.g., first cousin once removed; n = 33 in Mäkrä and 
n = 164 in Ranta-Halola), and unrelated below 0.044 (n = 6276 in Mäkrä and n = 62 616 in
Ranta-Halola).    

2nd degree

3rd degree

4th degree

unrelated

0 300 600 900 1200

D istance (m )

F
a

m
il
y

 r
e

la
ti

o
n

s
h

ip

Mäkrä
Ranta-Halola

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●
● ●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

0 100 200 m

Ranta-Halolaa) b)

c)

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

0 50 100 m

Mäkrä

2nd deg.
related

354

355
356
357
358
359
360
361
362
363
364
365
366



Rare alleles

In line with overall relatedness, we found that more related individuals also shared a higher

proportion of rare alleles than unrelated individuals (n = 426, ρ = 0.049, one-tailed p < 

0.0001 estimated using Mantel’s test; Figure 6), but this relationship iswas only visible in 

higher relatedness values. Rare allele sharing and distance had a weak negative 

relationship within study sites (ρ = -0.010, p = 0.057 in Ranta–Halola and ρ = -0.028, p = 

0.084 in Mäkrä; Figure S15). Mantel correlograms showed that pairwise sharing of rare 

alleles decreased with increasing spatial distance—similarly to the decrease of 

relatedness with spatial distance (Figure S26).

Figure 6. The rRelationship between proportion of shared rare alleles of all rare alleles 
and relatedness (GRM). Pairwise comparisons between individuals (dots) and LOESS 
curve fitted to the proportion of shared rare alleles on relatedness (GRM).
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Discussion

Large continuous Finnish population of Scots pine has weak fine -scale 

genetic structure

Species with a very subtle structure betweenat the among populations level are often 

consideredreferred as panmictic, which indicatesi.e., mating completely randomly  mating 

patternsalso within populations. While Scots pine’s genotypic frequencies follow HW 

frequencies equilibrium at the adult stage similarly to a panmictic species (Muona & Harju 

1989, Pyhäjärvi et al. 2020), itsthe mating patterns are not completely random in space 

(Robledo-Arnuncio & Gil 2005; Torimaru et al. 2012). In concordanceConcordant with 

spatially restricted mating patterns, we showed that fine -scale spatial genetic structure—

albeit very weak—is maintained in adult Scots pine stands (Figures 3 & 4). This was 

evident in the spatial proximity of individuals with higher pairwise relatedness (Figure 5). 

Scots pine has partial selfing (5–10% of mature seeds), but only a part of the selfed 

offspring survive to the mature seed stage (Koski 1971, Kärkkäinen & Savolainen 1993), 

and even fewer survive to the adult stage (Koelewijn et al. 1999). The average mortality of 

the selfed seeds is 75–85%, compared to 20–30% for the open-pollinated seeds 

(Kärkkäinen et al. 1996, Koelewijn et al. 1999). In our samples, we did not find high 

inbreeding estimates or pairwise relatedness values close to 1, which are expected in 

selfed progeny. Thus, relatedness patterns of adult trees found here are not a result of 

selfing. Fine scale genetic structure has previously been found in smaller fragmented 

Scots pine populations (Robledo-Arnuncio & Gil 2005; Sofletea et al. 2020), but here we 

show this pattern for the first time within a large continuous population for the first time.

We found that the spatial genetic structure reached somewhat longer distance in Ranta-

Halola than Mäkrä (Figure 4; Figure S4). This may partly be caused by differences in the 

shape and size of the sampled areas. In addition, each distance class includes 

considerably more pairwise comparisons in Ranta-Halola, which results in more statistical 
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power. The mean age of Ranta-Halola is higher (Figure S1), which allows multiple 

generations of dispersal events after the seed tree cuttings were done and, therefore, a 

longer extent of spatial genetic structure. On the other hand, Mäkrä had proportionally 

more pairs in the second degree family relationship class, which could be caused by the 

more recent or possibly more intense seed tree cutting. There are likely differences in the 

fecundity of individual trees (Torimaru et al. 2012), which can cause differences between 

the sites. Nevertheless, the patterns of relatedness (Figures 3 & 5) and spatial genetic 

structure were very similar between the study sites, which suggests that the dispersal 

patterns are similar between the sites.

Long-distance pollination events and the continuous distribution range, allowing constant 

gene flow, are likely major contributors to the extremely low intensity of spatial genetic 

structure we detected in our study (Sp from 0.0005 to 0.0008). In addition, the high 

population density increases the neighborhood sizenumber of potential breeders, and all of

these factors so thatkeep the fine -scale spatial genetic structure stays weak even 

withwhen the relatively short average gene dispersal distance is relatively short. In 

contrast, when populations are far from each other and disjunctnon-continuous, the 

chance of pollination from nearby trees is higher, which leads to stronger spatial genetic 

structure. This effect of population fragmentation is evident in previous Scots pine studies 

where Sp has ranged from up to 0.0098 in Scotland (González-Díaz et al. 2017) to the 

mean of as high as 0.02071 onin the Carpathian Mountains (Sofletea et al. 2020). Our 

study sites showed low intensity of spatial genetic structure also when compared to other 

conifers (Sp = 0.001–0.0349; Desilva & Dodd 2021; Kitamura et al. 2018; Sant’Anna et al. 

2013; De-Lucas et al. 2009; Vekemans & Hardy 2004) and other tree species (Sp = 

0.002–0.075; Bizoux et al. 2009; Hardy et al. 2006; Vekemans & Hardy 2004). The Llow 

intensity of population spatial genetic structure is in line with strong gene flow through 

pollen. ndIt also indicates that Scots pine populations evenr example,, fo at the northern 

distribution edge receive ample gene flow, and do not suffer from decreasedhave high 
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genetic variation as long as they are connected to the main population. Varis et al. (2009) 

showed that the Finnish Scots pine populations at different latitudes are receptive for 

pollen before their own pollen shedding starts, but the pollen from more southern 

populations is already available for fertilization. This potential for gene flow from southern 

to northern populations (Varis et al. 2009) also aidsfacilitates adaptation to climate change.

However, the situation is different in populations that are more fragmented and isolated, 

such as the Spanish and Scottish populations, where the pollen dispersal is more 

restricted and, thus, the spatial genetic structure is stronger (Hampe & Petit 2005).

Relatively short dispersal distance of Scots pine and its implications for 

selection

We estimated that the average gene dispersal distance in our Scots pine stands was 

53.94 meters (average of 71.3 m and 36.5 m), which is relatively short compared to the 

gene dispersal distance estimates of other wind–-pollinated trees, typically between 30 

and 3755 meters (Table 1; Pandey & Rajora 2012; Sant’Anna et al. 2013; Bizoux et al. 

2009; De-Lucas et al. 2009), and of animal–-pollinated trees up to 1296 meters (Hardy et 

al. 2006). although, However, population density (estimate) plays a large role in estimating 

the dispersal distances. While estimating population density in Scots pine stands is 

straightforward, it is more complicated to assess the density of a forest in the past, i.e., 

during establishment of seedlings that resulted in the current stand. As an early 

succession species, regeneration mainly occurs in pulses after disturbances (e.g., forest 

fires, storms and loggings; Linder et al. 1997; Lundqvist et al. 2017). Studies on 

regeneration of seed and shelterwood stands also suggest that seedling establishment of 

Scots pine occurs in sparse stands (50–200 trees/ha;  Beland et al. 2010; Rautio et al. 

2023). In the estimation of gene dispersal distances, the effective density estimate should 

also take into account the breeding contribution of adult trees surrounding the cut area. It 

should also be noted that the effective density of the study sites has varied greatly over 
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time, and trees germinating 33 or 143 years ago have faced very different fertilization and 

germination conditions. We used the effective densities of 500 and 1000 trees/ha. By 

assuming lower effective density, the estimated dispersal distance would increase. 

However, a very long average dispersal distance does not seem probable given the 

relatively sharp decay of the mean relatedness with distance and the observed pairwise 

distances of the related individuals (Figures 3, 4 & 5). Further, Eearlier Scots pine seed 

(10–20 m; Debain et al. 2007) and pollen dispersal (47.6–53 m; Koski 1970, based on 

radioactively labelled pollen; Robledo-Arnuncio & Gil 2005) estimates are relatively close 

to our dispersal distance estimate, bearing in mind that our estimate includes both seed 

and pollen components. Most dispersal distance estimates—including ours—assume that 

the distribution of dispersal distances (i.e., the dispersal kernel) is Gaussian. However, 

especially pollen is able to disperse very long distances (Lindgren et al. 1995; Robledo-

Arnuncio 2011) leading to potentially more leptokurtic dispersal kernels that are 

challengingdifficult to estimate. Theseand would result in higher mean dispersal distances 

(Robledo-Arnuncio & Gil 2005; Debain et al. 2007). Taken together, our gene dispersal 

estimates can be taken as minimum estimates given the potential for lower effective 

density and leptokurtic pollen dispersal.

UnderstandingKnowing the dispersal distance of thea species’ dispersal distance is crucial

for understandingpredicting how quickly it can spread to new suitable habitats but also for 

estimating its ability to respond to selection and to adapt. The balance between the 

amount of gene flow and the strength of selection defines the probability of local 

adaptation as a response to spatially diversifying selection, (Lenormand 2002). When the 

environment is heterogeneous, locally adapted individuals are more likely to produce 

offspring which succeed in the proximity of their parents. However, as gene flow from 

differentiated populations causes migration load and hinders local adaptation (gene 

swamping; Lenormand 2002). Selection can be very efficient in species with large Ne, such

as Scots pine, and phenotypic climatic adaptation to different latitudes is well known 
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(Mikola 1982; Aho 1994; Notivol et al. 2007; Kujala & Knürr et al. 2017). Early mortality is 

very high, and even when it is largely random, it also provides much opportunity for 

selection. However, the question is not just how strong the selection is but also on what 

spatial scale the species can track the environmental differences and adapt through 

changes in allele frequencies. According to Slatkin (1973), A a population can only 

respond to selection only if the underlying environmental heterogeneity occurs over a 

distance longer than the characteristic length (L = σ / √s, where σ is the offspring mean 

dispersal distance and s is the strength of selection; Slatkin 1973) that is determined by 

the length of offspring mean dispersal distance (σ) and the strength of selection (s). With 

our refined estimates of mean gene dispersal distance (53.9 m36.5-71.3 m, depending on 

the effective population density used in estimation) and hypothetical selection coefficients 

s = 0.01 or s = 0.001, the characteristic length would be 539 m and 1 705 m, respectively. 

strong selection (Thurman & Barrett 2016), which is possible in steep ecological gradients 

(Scotti et al. 2023) but unlikely in a homogeneous landscape such as our study area.rather

spatial scale would thus require smallAdaptation to a very  a very fine local scale 

(environmental change over 100 meters), the selection coefficient should be 0.29 (s = (σ / 

L)2, where L = 100 m and σ = 53.9 m). no a population to adapt to For instance, in order , it

is possible to estimate the size of the selection coefficient needed for a particular 

characteristic length.

No evidence for fine-scale adaptation has been found in Scots pine. Reciprocal transplant 

experiments showed no evidence of local adaptation to different soils at the scale of some 

kilometers (Jimenez-Ramírez et al. 2023). Furthermore, a nine-year common garden study

with progeny of Punkaharju ISS showed that selection at the local population scale was 

rather weak on the adaptive seedling traits, even if fitness was lower in populations from 

further north and south (Kujala et al. 2023). As adaptive traits are often polygenic, 

selection on individual loci would be expected to be rather weak, yielding little potential to 

respond to different selection in close-by sites. In some other European and 
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Mediterranean conifers, considerable selection coefficients were reported for individual loci

across steep ecological gradients, with at least 1 km distance and often hundreds of 

meters of altitudinal difference (Scotti et al. 2023).

Fitness and practical implications of the fine -scale spatial genetic structure

Aggregation of relatives leads to a higher chanceprobability of inbreeding and inbreeding 

depression. The Scots pine carries a high number of lethal equivalents (Koski 1971; 

Savolainen et al. 1992), which makes selfing and more distant forms of inbreeding 

detrimental. Our results indicate that related individuals carry an excess of shared rare 

alleles. A large number of loci in Scots pine have very low minor allele frequencies (Tyrmi 

et al. 2020). Rare alleles are typically young and also enriched for recessive deleterious 

variants,. Thus, spatial genetic structure may lead to more homozygosity and fitness 

reduction than expected in a totally panmictic population, where these alleles would 

rarelyseldom appear as homozygotes.

Fine-scale spatial genetic structure also has practical implications, e.g., in tree breeding. 

When closely located trees are also more likely to be related, determining a suitable 

collection distance of potential breeding individuals is very important in order to avoid 

introduction of related individuals into breeding programs. Possible inbreeding also needs 

to be avoided in  and production and deployment populations. Due to strong inbreeding 

depression, manifesting as lowered yield of viable seeds and reduced viability and growth 

of the seedlings, accidental selection of related individuals to seed orchards would likely 

lead to lowered yield of viable seedscause problems. Furthermore, information on spatial 

genetic structures can help to define a minimum distance between trees to be used for 

collecting seed or cuttings in practical gene conservation work. Knowledge on the extent 

and intensity of fine-scale spatial genetic structure is of importance also tofor forest 

management onof naturally regenerating sites as it can guide the optimization of distance 

between spared seed trees during harvesting. 
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Conclusions

Here, we carefully described in detail the extent of fine-scale spatial genetic structure and 

average dispersal distance in a large population of Scots pine from a continuous part of 

the distribution. We demonstrated that even a wind -pollinated widely distributed species 

with large effective population size can have detectable, although weak, fine -scale 

population spatial genetic structure. Our estimates of dispersal distance are relevant for 

understanding the balance between gene flow and other evolutionary factors, especially 

selection,practical applications, as well as in  predicting responses to environmental 

changes, and understanding the balance between gene flow and other evolutionary 

factors, especially selection.
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Figure S1. The distribution of Scots pine age in Mäkrä (turquoise; n = 113) and Ranta-

Halola (orange; n = 354) sampling sites.

Figure S2. Decay of pairwise relatedness with distance in Mäkrä (turquoise) and Ranta-

Halola (orange) sampling sites. Mean (circles and squares) and standard deviation 
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(vertical lines) of relatedness is plotted for each distance class; number of pairwise 

comparisons in each distance class are shown in Table S1. The estimates of Ranta-Halola

have been moved two metres forward in the plot to avoid overlap with the estimates of 

Mäkrä.

Figure S3. Pairwise relatedness (GRM; Yang et al. 2011) plotted against pairwise kinship 

(Loiselle; Loiselle et al. 1995) estimated for 468 Scots pines in the Punkaharju research 

area. The red line shows the expected relationship of 2:1 for these estimates.

Figure S4. Correlation (measured as Mantel r) between pairwise relatedness and distance

within each distance class estimated as Mantel correlogram in a) Mäkrä (circles, turquoise)

and b) Ranta-Halola (squares, orange). Filled shape indicates a p-value smaller than 0.05.

Ranta-Halola and Mäkrä are divided into equally long distance classes. Two of the longest 

distance classes from Mäkrä and three from Ranta-Halola have been left out due to 

including less than 100 pairwise comparisons.

Figure S5. Decay of the proportion of shared rare alleles with spatial distance in Mäkrä 

(turquoise) and Ranta-Halola (orange) sampling sites. Mean (circles and squares) and 

standard deviation (vertical lines) of relatedness is plotted for each distance class. 

Figure S6. Mantel correlogram for rare allele sharing and pairwise distance in a) Mäkrä 

and b) Ranta-Halola. Filled circles indicate p-value smaller than 0.05.

Table S1. The mean and standard deviation (SD) of pairwise relatedness (GRM) in each 

distance class for Ranta-Halola and Mäkrä sampling sites (Figure 3; Figure S2). The last 

two and three distance classes for Ranta-Halola (upper panel) and Mäkrä, respectively, 

are combined so that each class has at least 100 comparisons. The lower panel for Ranta-

Halola shows the relatedness values for Ranta-Halola, when distances are classified 

according to Mäkrä’s 14 distance classes.
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Table S2. Comparison of family relationship classes estimated for 468 Scots pines in the 

Punkaharju research area using relatedness (GRM; Yang et al. 2011) or kinship estimate 

(Loiselle; Loiselle et al. 1995). Estimates on the darker green background show the same 

degree of family relationship and ligher green shows one degree difference in the 

estimated class. Relatedness was estimated using 65 498 SNPs with MAF ≥ 0.05 and 

kinship using 28 378 SNPs with MAF ≥ 0.20 due to computational reasons.

Data availability statement

The data supporting the findings of this study are available in Figshare (DOI: 

10.6084/m9.figshare.23531142; the data will be open to public after this manuscript has 

been accepted for publication).
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