
slendr: a framework for spatio-temporal
population genomic simulations on
geographic landscapes

Martin Petr1, Benjamin C. Haller2, Peter L. Ralph3, Fernando Racimo1

1. Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
2. Department of Computational Biology, Cornell University, Ithaca, NY, USA
3. Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA

Abstract

One of the goals of population genetics is to understand how evolutionary forces shape patterns
of genetic variation over time. However, because populations evolve across both time and
space, most evolutionary processes also have an important spatial component, acting through
phenomena such as isolation by distance, local mate choice, or uneven distribution of
resources. This spatial dimension is often neglected, partly due to the lack of tools specifically
designed for building and evaluating complex spatio-temporal population genetic models. To
address this methodological gap, we present a new framework for simulating spatially-explicit
genomic data, implemented in a new R package called slendr (www.slendr.net), which
leverages a SLiM simulation back-end script bundled with the package. With this framework, the
users can programmatically and visually encode spatial population ranges and their temporal
dynamics (i.e., population displacements, expansions, and contractions) either on real Earth
landscapes or on abstract custom maps, and schedule splits and gene-flow events between
populations using a straightforward declarative language. Additionally, slendr can simulate data
from traditional, non-spatial models, either with SLiM or using an alternative built-in coalescent
msprime back end. Together with its R-idiomatic interface to the tskit library for tree-sequence
processing and analysis, slendr opens up the possibility of performing efficient, reproducible
simulations of spatio-temporal genomic data entirely within the R environment, leveraging its
wealth of libraries for geospatial data analysis, statistics, and visualization. Here, we present the
design of the slendr R package and demonstrate its features on several practical example
workflows.

1

Introduction

Most evolutionary processes in nature have a spatial dimension. Indeed, since its beginnings,
the field of population genetics has aspired to build interpretable models of spatial population
dynamics (Guillot et al., 2009; Barton, Etheridge and Véber, 2013). These include classic
theoretical models such as Fisher’s wave-of-advance model (Fisher, 1937), Wright's
isolation-by-distance model (Wright, 1943), Kimura’s stepping-stone model (Kimura, 1953;
Kimura and Weiss, 1964), and Malecot’s lattice model (Malécot, 1951; Nagylaki, 1976; Rousset,
1997). The field also has a long history of modeling continuous spatial genetic variation
(Levene, 1953; Slatkin, 1973; Barton, 1979; Beerli and Felsenstein, 2001; McRae, 2006;
Duforet-Frebourg and Blum, 2014; Bradburd, Coop and Ralph, 2018), inferring spatial
covariates associated with genetic patterns (Hanks and Hooten, 2013) and detecting spatial
barriers to migration (Safner et al., 2011; Petkova, Novembre and Stephens, 2016; Ringbauer et
al., 2018; Al-Asadi et al., 2019; Marcus et al., 2021). However, these latter efforts are hampered
by a lack of good theoretical predictions for continuous, two-dimensional models (Felsenstein,
1975; Barton, Depaulis and Etheridge, 2002), and simulations can provide a valuable tool in the
absence of analytical theory.

The dramatic increase in the number of published whole-genome sequences in the last 20
years (1000 Genomes Project, 2010; Mallick et al., 2016; Palkopoulou et al., 2018; Feuerborn et
al., 2021), and the advent of ancient genomics (Green et al., 2010; Rasmussen et al., 2010),
have revealed previously unknown migration events in the history of several species, such as
dogs (Bergström et al., 2020), horses (Librado et al., 2021), elephantids (Meyer et al., 2017),
and humans (Lazaridis et al., 2014; Fu et al., 2016). Since migration of populations involves
spatial displacement, populations trace their ancestry to different geographic locations (Ralph
and Coop, 2013; Osmond and Coop, 2021; Wohns et al., 2022). In the context of human history,
processes including past migration, gene flow, and population turnovers have been shown to
have had a major influence on the present-day distribution of genomic variation (Pickrell and
Reich, 2014; Slatkin and Racimo, 2016). Properly anchoring these past demographic events in
both time and space has been a focus for new modeling approaches (Racimo et al., 2020;
Osmond and Coop, 2021; Wohns et al., 2022), and is a question of high interest not only in
genetics (Bradburd and Ralph, 2019) but also in ecology (Frachetti et al., 2017; Loog et al.,
2017; Crabtree et al., 2021; Delser et al., 2021).

Despite the key role of geography in population genetics, tools specifically designed for
describing and simulating complex spatio-temporal processes are still lacking. Spatial
simulations are important not just for rigorous testing and evaluation of existing inference tools
and facilitating the development of new inference methods (Liu et al., 2006; Currat and
Excoffier, 2011; Delser et al., 2021; Osmond and Coop, 2021; Wohns et al., 2022), but also for
gaining intuition about the expected behavior of the processes influencing the patterns of
genetic variation under various scenarios of spatial population dynamics (Felsenstein, 1975;
Slatkin and Excoffier, 2012). While powerful simulation approaches based on coalescent theory
have been developed (Hudson, 2002; Ewing and Hermisson, 2010; Staab et al., 2015; Kelleher,
Etheridge and McVean, 2016), these have little or no notion of spatiality due to fundamental

2

obstacles to incorporating space into the coalescent framework (Barton, Depaulis and
Etheridge, 2002; Barton, Etheridge and Véber, 2010, 2013), although recent algorithmic
advances are promising (Kelleher, Etheridge and Barton, 2014). The first pioneering attempt at
simulating spatial population genetic data was the software package SPLATCHE (Currat, Ray
and Excoffier, 2004; Currat et al., 2019). However, SPLATCHE’s simulation engine is limited to
discrete demes based on the stepping-stone model, allows simulation of no more than two
populations co-existing at a time, and is not suitable for simulating sequence data at a
whole-genomic scale (Currat et al., 2019). The most advanced simulator with spatial capabilities
is currently the forward population genetic simulation framework SLiM (Haller and Messer, 2017,
2019). Highly popular in the population genetics community, SLiM contains a vast library of
features for simulating individuals in continuous space (as opposed to older approaches based
on discrete demes), including spatial interactions between individuals, neighborhood-based
mate selection, and customisable offspring dispersal (Haller and Messer, 2019). Moreover, the
recent implementation of tree-sequence recording in SLiM has opened up the possibility of
efficient simulation of massive genome-scale and population-scale datasets (Haller et al., 2019).

Despite these advances in population genetic simulations, geospatial data analysis remains a
complex field with a steep learning curve. Performing even basic manipulations of spatial
cartographic objects, handling diverse data formats, and transforming data between different
projections and coordinate reference systems (CRS) requires a non-trivial amount of
domain-specific knowledge (Lovelace, Nowosad and Muenchow, 2019). Moreover, because the
technicalities of geospatial computation are generally not within the scope of population genetic
software, available tools do not provide dedicated functionality for building complex and
dynamic spatial population models in a straightforward manner. Developing such models and
simulating data from them currently requires hundreds of lines of custom code, which is
error-prone and hinders reproducibility. Additionally, the lack of specific frameworks for
analyzing and visualizing spatially-explicit genomic data further hinders the methodological and
empirical progress in spatial population genetics. A flexible and easy-to-use simulation
framework specifically designed for developing spatio-temporal population models and
analyzing spatial genomic data would expand the horizons of the field, allowing researchers to
evaluate the accuracy of novel spatial methods, to test detailed hypotheses about demography
and selection, and to answer entirely new kinds of questions about the interactions between
organisms across space and time. For instance, many conceptual models and visualizations of
past migration events involve depictions of movements of large population ranges across a map
as various environmental or cultural conditions change; however, there is currently no easy way
to simulate these movements and generate realistic spatio-temporal genomic data.

To address these issues, we have developed a new programming framework, called slendr,
designed for simulating and analyzing spatially-explicit genomic data (available at
www.slendr.net with extensive documentation and tutorials). The core component of this
framework is an R package which leverages real Earth cartographic data (or, alternatively, an
abstract user-defined spatial landscape) to programmatically and visually encode spatial
population boundaries and their temporal dynamics across time and space, including
expansions, migrations, population splits, and gene flow. Because of the challenges involved in

3

testing and validating complex models, slendr encourages an interactive workflow in which each
component of the model can be inspected and visualized as the model is incrementally
constructed in a “bottom-up” fashion. Spatio-temporal models programmed in slendr can then
be executed using a SLiM back-end script which is bundled with the package and can be
controlled by a dedicated R function without leaving the R environment. Additionally, traditional,
random-mating, discrete-deme, non-spatial population models can also be simulated, either in
forward time using the aforementioned SLiM script or using an alternative coalescent msprime
(Baumdicker et al., 2022) back-end script which is also bundled with the R package and can
provide a more efficient simulation engine for non-spatial models. Both simulation engines of
slendr save genomic outputs in the form of an efficient tree-sequence data structure (Kelleher et
al., 2018), and the slendr R package provides a set of functions for loading and processing
tree-sequence output files and computing population statistics on them by seamlessly
integrating the tskit tree-sequence analysis Python module into its R interface. Additional
functionality includes conversion of individual trees to a standard R ape phylogenetic format
(Paradis and Schliep, 2019), and automatic transformation of spatial tree-sequence table data
to the standardized sf format for geospatial data analysis in R (Pebesma, 2018).

Overall, the slendr R package facilitates reproducibility by providing a unified framework
for writing complete spatial simulation and analysis pipelines entirely in R, which we
demonstrate with several concrete examples.

Overview of the slendr design and typical workflow
From a software design perspective, the slendr R package represents a tight integration of three
distinct parts. First, it implements an interactive and visually-focused R interface for encoding
spatio-temporal population dynamics focused on building arbitrarily complex models from small
individual components (i.e., simple R objects), designed to require only a minimum amount of
code. Second, slendr includes two back-end simulation scripts implemented in SLiM (Haller and
Messer, 2019) and msprime (Baumdicker et al., 2022). These scripts are bundled with slendr,
are specifically tailored to interpret slendr demographic models, and produce tree-sequence
files as output (Haller et al., 2019). Lastly, slendr provides an interface to the tskit tree-sequence
analysis library (Kelleher et al., 2018). Although this library is written in C and Python, slendr
exposes its functionality to the R environment in an R-idiomatic way, blending it naturally with
the popular “tidyverse” philosophy of data analysis (Wickham et al., 2019).

Although these three parts operate at fundamentally different levels under the hood, this
integrated approach allows all steps of a slendr workflow—from specifying spatio-temporal
demographic models, to executing simulations and analyzing simulation results—to be
performed without leaving the R environment (Figure 1). This allows the user to leverage R’s
features for visualization and interactive data analysis at every step of the analytic pipeline, and
facilitates reproducibility by eliminating the need to manually integrate disparate software tools
and programming languages (Sandve et al., 2013). In this way, slendr follows the footsteps of
the original design of the S (and later R) languages: to present a consistent and convenient
data-analysis–focused domain-specific front end to more efficient and faster tools written in
other languages and frameworks (in this case SLiM and msprime) (Chambers, 2020).

4

In the remainder of this section we outline the individual steps of a typical slendr simulation and
analysis workflow, as well as describe the individual building blocks of the three main
components of the slendr framework mentioned above.

Figure 1. Schematic overview of a hypothetical slendr simulation and analysis workflow.
The colored rectangles on the left indicate individual steps of a hypothetical slendr workflow.
Short code snippets in matching colors on the right show examples of slendr’s declarative
interface used in each step, focusing only on a selected few relevant functions and their most
important arguments (additional optional arguments are replaced by the “...” ellipsis symbol). The
full function reference index can be found at slendr.net/reference. Note that regardless of whether
a spatial or non-spatial slendr model is being defined and simulated, the workflow remains
identical: the same functions are used for both types of models, and the spatial or non-spatial
nature of a model is automatically detected by slendr.

Defining the world
At the beginning of a slendr workflow, the user defines the parameters of the world that the
simulation will occupy using the function world() (Figure 1). If the simulated world represents
a region on Earth, the appropriate set of vectorised spatial features will be automatically
downloaded from a public-domain cartographic database (www.naturalearthdata.com). The user
can also specify a dedicated coordinate reference system (CRS) appropriate for the projection
of the geographic region of interest in order to minimize the distortion of distances and shapes
inherent to transforming geometries (in this case population ranges and landscape features)

5

from the three-dimensional Earth surface to its two-dimensional representation on a map.
Alternatively, the world can be represented by an abstract landscape, optionally with custom
features such as islands, barriers, or corridors. If a non-spatial deme-based model is to be
simulated, this step can be omitted and no changes to the downstream steps described below
are needed.

Creating populations and scheduling demographic events
Populations in slendr are created with the population() function which creates a simple R
object containing the parameters of the population that was created (Figure 1). In addition to
specifying the name, time of appearance, and initial number of individuals for the new
population, the user can also specify a world object and, if desired, a set of coordinates for the
spatial range that the population will occupy. For convenience, the coordinates of all spatial
objects in slendr (maps, geographic regions, population ranges) are always specified in the
global geographical CRS (i.e., degrees of longitude and latitude) but are then automatically
internally transformed into the chosen projected CRS (which uses units of meters) if it was
specified when creating the world (Figure 1). This way, users can encode spatial coordinates
in familiar units of longitude and latitude while slendr internally maintains the proper shapes and
distances of spatial features by performing all spatial transformations in the projected CRS.

All slendr spatial objects are internally represented using a data type implemented by the
R package sf (Pebesma, 2018), which has emerged as the de facto standard for geospatial data
analysis in R (Lovelace, Nowosad and Muenchow, 2019). Despite the convenience of the sf
framework, manipulation of geospatial objects in sf still requires writing a non-trivial amount of
code dealing with low-level technical details (manipulating and transforming the coordinates of
points, lines and polygons). Because most of these technical details are not relevant for
specifying population genetic models, we designed a set of domain-specific functions for
encoding spatial population dynamics which are expressed in terms of population genetics
concepts rather than geometric transformations (Figure 1). For instance, the move() function
accepts a slendr population object (i.e., internally an sf object, encapsulating the low-level
geometric coordinates of the population), a trajectory given as a list of coordinates in longitude
and latitude, and a timespan over which the population displacement should occur (Example 3
and Figure 4). Other kinds of dynamic spatial events (population range expansions and
contractions, for example) are implemented in an analogous manner. Other demographic
events, such as population size changes and gene flow, can be scheduled similarly with another
set of straightforward functions (Figure 1).

For spatial models, the user has the option to fine-tune the within-population individual
dispersal and mating dynamics (described in detail in Example 2 and Figure 3) using a set of
parameters such as the maximum mating distance between individuals, the dispersal distance
of offspring from their parents (and the kernel function of this dispersal), or the parameter
influencing the uniformity of the dispersal of individuals within their population’s spatial
boundary. These can be assigned for each population separately or kept at their default values
given in the compile_model() step (as we show in Example 2). The competition
parameter determines the maximum neighborhood distance in which individuals in a SLiM
simulation compete with each other for space. If this distance is small, then individuals with

6

nearby neighbors have much lower fitness. If the distance is larger, then the effects of crowding
are more diffuse. However, if this distance is larger than the dispersal distance (as in Example
2), populations tend to self-organize into an evenly-spaced grid of patches. (Figure 3C). Using
the competition parameter, within-population dynamics can thus be fine-tuned to represent
various levels of individual clustering into sub-groups (Figure 3C). In addition to the competition
parameter, a mating parameter determines the maximum distance to which an individual will
look for a mate to produce offspring. Finally, a dispersal parameter determines how far an
offspring can end up from its parent, and a related dispersal_fun argument characterizes
the density function for this dispersal: "normal" (default), "uniform", "cauchy", "exponential", or
"brownian"; more details are available in the slendr R package documentation at
slendr.net/reference. We note that changes in all three spatial interaction and dispersal
parameters can be also scheduled dynamically at specific times throughout the run of a model
with a slendr function set_dispersal().

A standard feature of many population genetic frameworks is the specification of the times of
various demographic events in terms of generations, either forwards in time starting from
generation 1 (as is the case with SLiM) or backwards in time starting from time 0 “in the present''
(as is the case with coalescent frameworks such as msprime). This can be cumbersome in
cases when the events or samples of interest are traditionally specified in times of “years before
present” (such as dated ancient DNA samples), or in situations in which it would be desirable to
simulate future outcomes, as in ecological predictive modeling. Moreover, because these
standard times often need to be converted into generations by a factor specifying the length of
the generation time of the species of interest, this can easily lead to frustrating bugs in
simulation scripts. To ameliorate this situation, slendr allows the users to specify times in
whichever time units they would prefer, in either the forward or backward direction. The time
direction is automatically detected by slendr from the sequence of demographic events specified
for a model (but can also be set explicitly), and the conversion of event times into generations is
performed in the compilation step via the provided generation_time argument to
compile_model() (described below). Similarly, times of the tree-sequence nodes in slendr’s
outputs (which are specified by most simulation software in terms of generations backwards in
time) are automatically converted by slendr back into the units of time used by the user during
model specification.

Because every slendr demographic event function returns a modified population object which
can be further used as an input to other slendr functions, the R interface encourages a workflow
in which complex models are composed incrementally from smaller components (Figure 1,
Examples 1-3). Importantly, because each slendr function assures the consistency of the model
by enforcing appropriate constraints during the model definition process (e.g., a population
cannot be moved or participate in a gene-flow event at a time when it would not yet exist), this
workflow facilitates the early discovery of bugs before the simulation (which can be extremely
computationally costly) is even executed. This is further facilitated by a convenient set of plotting
functions, such as plot_map() and plot_model(), which can visualize the spatio-temporal
dynamics of the specified model (or its individual components) as the model is being
incrementally developed.

7

Model compilation
Having defined all the individual components of a population model (i.e., created all the
necessary population and gene-flow events), the user calls the function compile_model() to
compile the model configuration to a single R object (Figure 1)—a step in which slendr performs
additional checks for model consistency and correctness. Furthermore, this operation also
transforms the model components from their R representation into a set of files on disk, written
in a format interpretable by the built-in SLiM and msprime simulation back-end scripts which are
used to execute slendr models in the next phase, as described below. The compiled model
object can also be used as input for a built-in R-based interactive browser app built using the
shiny R package (Chang et al., 2021) which allows the user to “play” the defined spatial model
dynamics over time and explore the “admixture graph” implied by the model (Patterson et al.,
2012) for additional verification of the model’s correctness. The functions plot_map() and
plot_model() mentioned above also accept a compiled model object as their input and
produce a static visualization of the model.

Scheduling sampling events and simulation
The slendr package comes bundled with two simulation back-end scripts which were tailored to
interpret the configuration files produced by the compile_model() function and simulate the
model, triggering all of the encoded population dynamics in the course of the simulation run.

The first back-end script is written in SLiM’s programming language Eidos (Haller and
Messer, 2019), and can execute both spatial and non-spatial slendr models in a Wright–Fisher
setting by calling slendr’s slim() function. The second back-end script is implemented using
msprime (Baumdicker et al., 2022) and is designed to interpret the compiled slendr model in a
non-spatial setting as a standard coalescent simulation by calling slendr’s msprime() function.
Both simulation engines can interpret the same slendr model without a need to make any
changes. For instance, a spatial model can be run with the msprime back end, in which case the
spatial component of the model is simply ignored. Because coalescent simulations are generally
much more computationally efficient than their forward-time counterparts, the msprime back end
of slendr can be useful for R users who would like to run a large number of traditional,
non-spatial simulation replicates efficiently without having to write custom Python msprime code
or use its ms-like command-line interface (Hudson, 2002). Importantly, the correctness of both
slendr simulation engines is validated using a set of automatic statistical tests on non-spatial
models which ensure that when a slendr model is run in both SLiM and msprime, the
demographic events specified by the model (population splits, population size changes, and
gene-flow events) result in equivalent site-frequency spectra and f-statistics (Patterson et al.,
2012) between both back ends.

Leveraging the ability to save simulation outputs as a tree sequence (Kelleher et al.,
2019; Speidel et al., 2019) from both SLiM (Haller et al., 2019) and msprime (Baumdicker et al.,
2022), slendr embraces the tree sequence as its primary output format. This is powerful not only
because the tree sequence represents an extremely efficient representation of even large-scale
population genomic data, but also because it provides an elegant way to calculate many
population genetic statistics of interest, a feature which we describe in more detail in the next
section. To specify which simulated individuals should be recorded in the output tree sequence,

8

slendr provides two alternative approaches. First, if no explicit sampling schedule is specified,
all individuals living at the very end of a SLiM simulation run are explicitly sampled (i.e.,
“remembered”) in the tree sequence output, matching the default behavior of SLiM. If a slendr
model is simulated with the msprime back end, the number of recorded individuals will be equal
to the population size of each population at the start of the coalescent process looking
backwards in time (i.e., in “the present”). Alternatively, slendr provides a flexible way to trigger
sampling events via its schedule_sampling() function, which allows one to specify the time
(and, optionally, the location) at which a sample comprising a given number of individuals from a
given population should be taken and recorded in the tree sequence (Example 3). To improve
readability and interpretation of slendr analysis code, every sampled individual can be referred
to using its readable name during tree-sequence processing and computation of statistics
(Examples 1, 2, and 4) rather than just by numeric identifiers as is the case with the default
tree-sequence analysis workflow with tskit (Kelleher et al., 2018).

Data analysis
The default output of a slendr simulation is a tree sequence. However, because processing and
analysis of tree-sequence files requires a non-trivial knowledge of Python or C (Kelleher et al.,
2018) which many R users might not have, slendr provides an R-idiomatic interface to the most
commonly used tskit tree-sequence methods such as the allele frequency spectrum, Patterson’s
f-statistics, and various summary statistics of population diversity (Patterson et al., 2012; Ralph,
Thornton and Kelleher, 2020). This way, users can design population genetic models in R,
execute them from R using the built-in slim() or msprime() functions, and analyze the
resulting tree sequence data without having to leave the R environment for downstream
statistical analyses and plotting, and without the need to convert outputs to other bioinformatic
or population genetic file formats. Although primarily designed for analysis of tree sequences
generated from slendr models, the R-tskit interface can operate also on tree sequences without
slendr-specific metadata. Therefore, users who would prefer to run simulations with standard
msprime or SLiM scripts but are interested in analyzing their tree-sequence results in R will still
find the slendr R package useful. The reference manual at slendr.net/reference contains a
complete list of tskit tree-sequence methods that have been integrated into slendr’s R interface.
If integration with traditional tools such as PLINK (Purcell et al., 2007) or ADMIXTOOLS
(Patterson et al., 2012) is required, functions for exporting to VCF (Danecek et al., 2011) and
EIGENSTRAT (Patterson et al., 2012) are also provided.

During a spatial simulation in SLiM, each sampled individual’s location on the simulated
landscape is tracked and recorded in the tree sequence, encapsulating the full spatio-temporal
genealogical history that has been simulated. When the tree-sequence output file is then loaded
by slendr, slendr processes the spatial locations of nodes in the tree sequence (which represent
chromosomes of past and present individuals), and transforms them back into the original
coordinate system of the simulated world, adding additional annotation data such as readable
names of sampled individuals, population assignments of each individual and node, etc.
Furthermore, this information is exposed in an sf-compatible format, meaning that the
spatio-temporal information about ancestral relationships between simulated samples can be
processed, analyzed, and visualized using a wide range of R packages including sf, ggplot2,

9

and dplyr (Pebesma, 2018; Wickham et al., 2019). Additionally, individual trees in the tree
sequence can be extracted by a slendr function, ts_phylo(), which converts tskit-formatted
tree objects into the format defined by the R phylogenetics package ape, which has been the
standard for phylogenetics in the R ecosystem for nearly two decades (Paradis and Schliep,
2019). This gives slendr users even more options to analyze tree-sequence results with a large
array of standard phylogenetics tools available for the R environment (Paradis, 2011).

Installation and software dependencies
slendr is currently developed for macOS and Linux. It is available on the CRAN R package
repository at https://CRAN.R-project.org/package=slendr, and can be installed from the
interactive R console with the standard command install.packages("slendr").
Development versions of slendr which contain latest bug fixes and new experimental features
can be installed from its GitHub repository using the R package devtools with the R command
devtools::install_github("bodkan/slendr").

Two external software dependencies must be present on a user’s system to leverage the
full functionality of slendr: a forward population genetic simulator SLiM (Haller and Messer,
2019) (which is required for running spatial simulations and non-spatial simulations in the
forward-time setting) and a trio of Python modules msprime (Baumdicker et al., 2022), tskit
(Kelleher et al., 2018) and pyslim (github.com/tskit-dev/pyslim) (which are needed to run slendr
models as coalescent simulations and to analyze tree-sequence data).

The SLiM software is available for all major operating systems and its installation
instructions can be found at messerlab.org/slim. Importantly, the current version of slendr
requires the latest release of SLiM 4.0. In order to use SLiM for simulations in slendr, the R
session needs to be aware of the path to the directory containing the SLiM binary. Calling
library(slendr) for the first time provides an informative message for the user on how this
can be accomplished by modifying the $PATH variable by editing the ~/.Renviron file.

Because some users might find the experience of setting up a dedicated Python
environment with the necessary Python modules challenging (especially users who exclusively
work with R), slendr provides an R function setup_env() which automatically downloads a
completely separate Python distribution and installs the required versions of tskit, msprime, and
pyslim Python modules in their correct required versions into a dedicated virtual environment
without any need for user intervention. Moreover, this Python installation and virtual
environment are isolated from other Python configurations that might be already present on the
user's system, thus avoiding potential conflicts with the versions of Python and Python modules
required by slendr. Once this isolated Python environment is created by setup_env(), users
can activate it in future R sessions by calling a helper function init_env() after loading slendr
via library(slendr). Therefore, although slendr uses Python modules for internal handling
of tree-sequence data and coalescent simulation, direct interaction with Python is not necessary.

10

Relationship of slendr to SLiM and msprime
Given that slendr’s simulation engines are implemented in SLiM and msprime, it is worth
elaborating on its relationship to these simulation frameworks, particularly in terms of the
features supported by slendr. First, it is important to note that slendr is not simply a wrapper for
SLiM and msprime in the strict sense of the word, since slendr does not provide an R equivalent
of every function and method provided by SLiM and msprime. Instead, slendr aims to provide a
user-friendly, R-idiomatic way to encode a particular class of “traditional” Wright-Fisher
population genetic models frequently used in evolutionary biology and population genetics,
allowing users to employ such models with a minimal amount of coding. Most importantly, slendr
models currently assume that populations evolve via random mating, and that the genomes of
individuals evolve neutrally, with mutations overlaid on top of the simulated genealogies after
each simulation run. This applies also to spatial slendr demographic models, with the caveat
that interaction and dispersal distance parameters can—depending on the exact
parametrization of each spatial slendr model—cause individuals to only mate locally, which can
have interesting implications for the behavior of standard population genetic statistics (as shown
in Example 2).

The complete set of models supported by slendr is likely to slightly expand over time as
new features are implemented. Details of new features, such as customized recombination
maps and non-neutral mutation types, are being discussed with the community on the GitHub
page of slendr (https://github.com/bodkan/slendr), and users are encouraged to provide
feedback there. The four practical examples (Examples 1–4 below) have been designed to
demonstrate the full range of slendr’s features at the time of writing.

Finally, because slendr’s forward and coalescent simulation back ends are implemented
as fairly standard SLiM and msprime scripts, the performance of slendr simulations and
tree-sequence analyses can be assessed using already-existing benchmarks and guidelines
provided by publications describing SLiM and msprime (Haller et al., 2019; Baumdicker et al.,
2022; Haller and Messer, 2022).

Practical examples
In the following sections, we present the features of the slendr R package with several practical
examples, each of which focuses on a different aspect of the slendr simulation framework. We
start by showing how traditional, non-spatial, random-mating models can be specified with a
minimum amount of R code (Example 1). We then proceed with two examples of spatial models:
first, a model showing how the degree of the spatial spread of a population can be adjusted by
setting the within-population individual-based dispersal dynamics (Example 2); second, a model
which schedules the movements of entire population ranges across a landscape (Example 3).
These examples are intended to demonstrate slendr’s ability to define complex spatio-temporal
models incrementally, building them from simpler components. We also emphasize how slendr
model configuration and simulation steps naturally flow into data analysis, all within the R
environment. In the final demonstration (Example 4), we tap into the rich information embedded
in spatial tree sequences to visualize individual trees on a landscape, tracing the complex
spatio-temporal ancestry of an individual on the simulated map. Extended versions of these and

11

many other examples with complete reproducible code for simulation, analysis, and plotting can
be found as standard R package vignettes at slendr’s website (www.slendr.net).

Example 1: Traditional non-spatial model
Regardless of whether a spatial or non-spatial model is defined and simulated, the slendr
workflow remains the same. Therefore, before we explore spatial models, we begin by showing
how a traditional, non-spatial population genetic model can be constructed with slendr and how
users can compute population genetic statistics on simulated tree-sequence outputs using
slendr’s R interface to the tskit tree-sequence analysis library (Kelleher et al., 2018)
(represented by functions with the ts_*() prefix, Figure 1).

First, we define an abstract demographic model similar to that which is commonly used
in teaching the principles behind the -ratio ancestry proportion estimator (Patterson et al.,𝑓

4

2012). In slendr, we define the model with a straightforward sequence of population() calls
that schedule the order of splits for several populations, taking care of parent–daughter
population relationships by providing the appropriate population object as a parent argument
when creating each daughter population (Figure 2A). We then schedule a single gene-flow
event between the populations “b” and “x1” by calling the gene_flow() function. After
compiling the model with compile_model(), we verify its correctness by visualizing the
embedded population relationships with plot_model() (Figure 2B). Although only a single
gene_flow() event is featured in this example, more complex gene-flow networks can be
specified with slendr. Conveniently, strict consistency checks validate each encoded gene-flow
event before the computationally costly simulation is run. Examples of complex models with
dozens or hundreds of gene-flow events can be found in the documentation available on the
slendr website (www.slendr.net).

As stated before, slendr provides two simulation back ends; here we use the coalescent
msprime back end to simulate the model, since SLiM's spatial capabilities are not required for
this simple non-spatial model. However, we note that the function slim() could be used in
place of the msprime() call to perform the equivalent forward-time simulation just as easily.
By default, slendr automatically loads the simulated tree-sequence object which can be
immediately used for analysis. In this example, we compute the pairwise divergence between
random samples of 100 individuals from each population with the function ts_divergence()
(Figure 2C). Finally, we use the function ts_f4ratio() to compute the values of the -ratio𝑓

4

estimate of “b” ancestry in populations “x1” and “x2”, which differ in whether or not they
experienced gene flow from “b” (Figure 2D). All other tree sequence analysis functions of slendr
(Figure 1) can be accessed in the same way. We note that because slendr assigns symbolic,
permanent names to individuals during sampling, the users can refer to them with these names
during tree-sequence operations such as simplification and when computing tree-sequence
statistics.

12

Figure 2. Example 1: specifying a non-spatial model and computing statistics on
tree-sequence output. (A) A script which defines a model of a simple demographic history of six
populations, simulates it with the msprime back end by calling the function msprime(), and
performs analyses shown in B–D. (B) A visual overview of the compiled slendr model produced
by plot_model() prior to simulation. (C) Visualization of the data frame produced by
ts_divergence() on the output tree sequence simulated. (D) Ancestry proportions estimated
with ts_f4ratio() directly from the tree sequence output. As expected from the model
definition, the -ratio statistic estimates indicate ~10% ancestry from “b” in the population “x1”,𝑓

4

but 0% ancestry in population “x2”; this agrees with the model overview shown in panel B. Full
ggplot2 visualization code for the figures can be found in a vignette dedicated to this paper at
www.slendr.net. The runtime for the simulation and analysis shown in A was ~5 minutes, as
measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro chip, 32 GB RAM, and
running macOS Ventura 13.1.

Example 2: Model with population dispersal dynamics

In our second example, we move from a non-spatial, random-mating model to a model which is
explicitly spatial. First, we create an abstract, circular world map using the function world(),
producing a completely featureless landscape (see Example 3 for a more elaborate world map).
We then create a series of eight populations which all occupy that map, as specified by the map
argument to population(), but do not interact with each other. For simplicity, each population
forms its own evolutionary lineage without additional splits or gene-flow events. Importantly, we

13

set the competition parameter of each population to a value which forces the individuals to
assume an increasing degree of spatial subdivision which, in turn, affects the amount of
diversity expected in each population. Finally, we compile the model to a single object with
compile_model() and run it with the slim() back end, simulating 16.000 diploid genomes
of 10 megabases each (Figure 3A). After the simulation finishes, we simplify the produced tree
sequence, overlay mutations on the simulated genealogies, and use the slendr function
ts_diversity() to compute the expected heterozygosity in a sample of 100 individuals from
each population, inspecting how heterozygosity is affected by the emergent spatial arrangement
of each population (Figure 3B, C). We note that some of the values of the spatial competition
distance parameter used in this example are quite large, especially compared to the much
shorter maximum distance of individual dispersal and mating. Although biologically rather
unrealistic, the competition distances have been chosen to give rise to very different degrees of
spatial subdivision and, consequently, to varying levels of population genetic diversity, with the
intention to demonstrate the ease with which a wide range of model dynamics can be
configured by the user.

14

Figure 3. Example 2: a spatial model which involves the parametrization of
within-population dispersal dynamics. (A) A complete script which defines eight populations
as independent lineages or species, each with constant size and each defined with a different
value of slendr’s spatial competition parameter, with analysis code to produce panels B–C. The
simulation is run with slendr’s SLiM back end for 5000 generations, after which a tree sequence
recording the genealogical history of 2000×8 diploid individuals is loaded, simplified, and
mutated. Heterozygosity is then computed for 100 individuals randomly sampled from each
population at the end of simulation. (B) Distribution of heterozygosities of individuals observed in
all eight populations. (C) A snapshot of the spatial distributions which emerged as a result of the
competition parameter value set for each population. Full visualization code for the figures can
be found in a vignette dedicated to this paper at www.slendr.net. The runtime for the simulation
and analysis shown in A was ~12 minutes, as measured on a 16’’ MacBook Pro (2021) equipped
with the Apple M1 Pro chip, 32 GB RAM, and running macOS Ventura 13.1.

15

Example 3: A toy model of movements and expansions of human
populations in West Eurasia over the last 50,000 years

In this example we further expand on the slendr functionality demonstrated in the first two
examples, introducing programming of expansions and migrations of entire population ranges
across a realistic landscape—perhaps the most distinctive feature of slendr. The model we
implemented here is inspired by large-scale population migrations and turnover events inferred
from ancient DNA analyses of human remains from across West Eurasia (Lazaridis et al., 2014;
Allentoft et al., 2015; Haak et al., 2015), although we caution that it is an extremely simplified toy
model intended only as an illustrative example.

Similarly to Example 2, we begin by defining a world map for the simulation (Figure 4A),
in this case using realistic Earth cartographic data provided by the Natural Earth project
(naturalearthdata.com). Because we focus on the broad region of West Eurasia, we select the
most appropriate coordinate reference system (CRS) for projecting this region on a two
dimensional map which is EPSG:3035. We then define a series of populations, specifying their
approximate geographic ranges using simple polygons. We then use the functions move() and
expand_range() to schedule when and where populations should migrate, and by what
distance and how quickly their population ranges should expand across the landscape during
simulation. We again use plot_model() to visualize the demographic history embedded in
the slendr model as a non-spatial tree-like structure with gene-flow edges (Figure 4B); here, we
also use plot_map() to get a “compressed” overview of the spatio-temporal population range
dynamics on the simulated map (Figure 4C). We note that unlike in the two previous examples,
which were specified in forward time units, this example expresses the timing of demographic
events in units of “years before present” which is more natural to this model.

In the previous two code examples (Figure 2A, 3A) we used the default tree-sequence
sampling of slendr, which implicitly records the genomes of all the diploid individuals alive at the
end of a simulation. In this example, we instead use schedule_sampling() to specify a
series of sampling events from each population every 1,000 years. We then execute the
compiled model and the sampling schedule specified using the slim() back-end, which
records only the scheduled set of sampled individuals in the tree-sequence output file.

16

Figure 4. Example 3: a demographic model on a real Earth landscape. (A) A slendr script
which defines a toy spatio-temporal model of human prehistory in West Eurasia, with analysis
code that produces panels B–C. For brevity, we do not specify the full set of coordinates for each
spatial demographic event or population range polygon, instead indicating them as ”...”; the
complete reproducible code can be found in a vignette dedicated to this paper at www.slendr.net.
(B) Visual summary of the non-spatial component of the demographic model, produced by
plot_model() with arrows indicating gene flow events. (C) A “compressed” view of
spatio-temporal snapshots of population ranges throughout the course of the model prior to the
simulation, produced by plot_map(). The runtime for the simulation shown in A was ~3
minutes, as measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro chip, 32
GB RAM, and running macOS Ventura 13.1.

Example 4: Visualization of individual trees and spatio-temporal ancestral
lineages across a landscape

In our final example (Figure 5), we return to the abstract toy model of West Eurasian prehistory
developed in Example 3. To leverage slendr’s power to simulate genomic data from complex
spatial demographic models, slendr makes it easy to tap into the large library of geospatial data
science packages available for R (Lovelace, Nowosad and Muenchow, 2019) by automatically

17

converting simulated spatial locations to an sf-compatible tabular format (Pebesma, 2018), as
we will see here.

To demonstrate the richness of the spatio-temporal information recorded in the tree
sequence, we use the full tree sequence produced by the code in Figure 4A and simplify it so
that it contains only the history of a small subset of the thousands of individuals sampled during
the spatio-temporal simulation (Figure 5A). We then extract the 20th tree in the tree sequence
with slendr’s function ts_phylo(), which converts a tree from the tskit tree sequence into an
R phylo format defined by the ape R package, a standard tool for phylogenetics in R (Paradis
and Schliep, 2019). Such tree objects can be analyzed by any of the dozens of R packages
which operate on ape’s phylo trees—for instance, in Figure 5B we show a visualization of this
tree using the R package ggtree (Yu et al., 2017). Furthermore, because the tree was generated
from a spatially-annotated tree sequence, the user can extract information about the location of
each individual (or node) in the tree across space and time, as well as ancestral relationships
between nodes in the tree, using ts_nodes() and ts_edges() respectively. Crucially,
because these functions automatically convert locations into sf’s geospatial representation
(including the appropriate CRS projection), the results can be immediately plotted on a map with
ggplot2, which has built-in support for sf data (Figure 5C).

In addition to extracting and visualizing single trees representing a genealogy of a set of
sampled genomes descending from a common ancestor (spatial or non-spatial), slendr also
provides a way to extract the complete spatio-temporal ancestry of a single sample going back
in time across the entire tree sequence, potentially spanning many trees with thousands of the
sample’s ancestors. This can be accomplished with the function ts_ancestors() which, in
an analogous way to ts_nodes() and ts_edges(), exposes the spatio-temporal information
in the tree sequence as an sf object which can be visualized on a map with ggplot2. In this
example, we use ts_ancestors() to reconstruct the spatio-temporal ancestry distribution for
a single simulated European individual (“EUR_578”, represented by the black dot in Figure 5D).
Because this individual is diploid, we can trace the ancestry carried by its one chromosome
through an expansion from Anatolia (Figure 5D, right panel), while its other chromosome clearly
traces its ancestry to a population which migrated to central Europe from an eastern population
(Figure 5D, left panel).

Note that by default, the tree sequence output of a slendr simulation only contains
information about ancestors which are represented by coalescent nodes in some marginal
tree—i.e., nodes which are a most recent common ancestor of some pair of sampled nodes. In
this example, in Figure 5B and C we can see that the most immediate ancestor (node number
9) of one chromosome of the sampled individual “EUR_578” lived in the region of Anatolia, but
the ancestor of its second chromosome lived in Europe (node number 8); but we do not know
where all the ancestors along the edges between nodes 9-7 and 8-6, since they were simplified
away. Similarly, Figure 5D shows the distributions of locations of most recent common
ancestors, not all ancestors. The distribution of ancestors at a particular point in time could be
obtained by adding an appropriate sampling event to slendr’s sampling schedule and then
extracting ancestors from that time.

18

Figure 5. Example 4: accessing and visualizing spatio-temporal information encoded in
trees and tree sequences simulated with the slendr. (A) A continuation of the script from
Example 3, showing how a (potentially very large) tree sequence generated from a slendr model
can be simplified to a subset of individuals with ts_simplify(). A single tree from the tree
sequence is then extracted with ts_phylo(), the tables of spatio-temporal locations of nodes
and branches of the tree are extracted by ts_nodes() and ts_edges(), and ancestry
information for one individual across the entire tree sequence is extracted with
ts_ancestors(), in order to produce the data plotted in B–D. (B) A visualization of the tree
extracted by ts_phylo() using standard visualization features of the ggplot2 and ggtree R
packages. Dotted lines indicate shortened branches of ancient samples. (C) Visualization of the
tree from panel B as a network across the original spatial simulation landscape, with each node
indicating the location of a particular individual who lived at some point during the simulation.
Labels with two numbers correspond to the locations of sampled individuals, each carrying two

19

chromosomes which are represented by two nodes in the tree sequence. All node numbers
correspond to those shown in the tree in panel B. The plot was generated with ggplot2 using the
sf-formatted data extracted by ts_nodes() and ts_edges(). (D) A visualization of the
spatio-temporal ancestry of a single simulated European individual, “EUR_578”, using the
information from the entire tree sequence. Each sub-panel shows the spatial ancestry distribution
of one of the two chromosomes carried by this individual (the location of whom is indicated by a
black dot), tracing its ancestry through different lineages all the way back to a population in Africa.
For easier reference, the same black dots indicate the two chromosomes of this individual also in
the tree in panel B. The ggplot2 code for the figures is omitted for brevity. Full reproducible code
examples including the visualization code can be found in a vignette dedicated to this paper at
www.slendr.net. The runtime for the code shown in A was ~1 second, as measured on a 16’’
MacBook Pro (2021) equipped with the Apple M1 Pro chip and 32 GB RAM, running macOS
Ventura Version 13.1.

Discussion
The slendr R package provides a new programmable framework for simulating complex
spatio-temporal genomic data. The package implements a set of features for defining spatial
population range dynamics with a declarative and visually-focused R interface and uses a
tailor-made SLiM script as an efficient population genetic simulation engine. Additionally, slendr
provides a convenient new way to simulate and analyze large-scale genomic data sets even
from traditional, non-spatial demographic models using msprime entirely within the R
environment.

Owing to its declarative interface, which requires little code even for complex models, the
slendr package is highly accessible even to researchers or students with little or no prior
experience in programming. One of the major challenges for novice population geneticists is
having to learn how to integrate multiple different software tools and programming frameworks.
R (R Core Team, 2021) is often the first language that biology and bioinformatics students learn,
since it offers a large number of libraries for data analysis, statistics, and plotting (Wickham and
Grolemund, 2016). For these users, slendr provides the opportunity to explore population
genetic concepts and simulate realistic population genomic data as soon as they learn the most
basic principles of R (i.e., how to call R functions and work with data frames), without first having
to learn Python for msprime simulations (Baumdicker et al., 2022), shell scripting for simulators
from the ms family (Hudson, 2002; Staab et al., 2015), or Eidos for SLiM (Haller and Messer,
2019).

Tree sequences provide an efficient way to compute many commonly used population
genetic statistics directly on the simulated genealogies (Ralph, Thornton and Kelleher, 2020);
because slendr uses the tree sequence as its default output format (Kelleher et al., 2018; Haller
et al., 2019), in many cases users do not need to convert simulation outputs to external file
formats such as VCF or EIGENSTRAT for analysis in other software. This way, slendr
simulations can be readily used in model fitting and population genetic analyses in situations
which have traditionally required converting simulated data to genotype files before analyzing
them with population genetics tools such as PLINK (Purcell et al., 2007) or ADMIXTOOLS
(Patterson et al., 2012). That said, export to VCF and EIGENSTRAT genotype file formats is
supported with a single function call (ts_vcf() and ts_eigenstrat()) if needed.

20

A key principle in the design of slendr has been reproducibility (Sandve et al., 2013): a
complete slendr simulation and analysis workflow can be written as a single R script.
Additionally, the compilation of any slendr module produces a self-contained “bundle directory”
containing all model configuration files and simulation back-end scripts required to execute the
model from the command-line. Although accessing this directory is not necessary for standard
workflows because slendr operates entirely from R, these bundles can be checked into a git
history and provided as supplementary files along with a publication, allowing independent
replication even without relying on slendr itself.

Moving forward, we expect that the slendr framework will become a useful tool to
produce ground-truth data for comparing and benchmarking inference methods for modeling
spatial genomic processes (Peter and Slatkin, 2013; Petkova, Novembre and Stephens, 2016;
Marcus et al., 2021; Muktupavela et al., 2022), as well as for the development of new
approaches to spatial problems in population genomics. There is great potential for deploying
slendr in simulation-based inference methods, like Approximate Bayesian Computation (ABC)
(Beaumont, Zhang and Balding, 2002; Csilléry et al., 2010), thanks to its tight integration with
the rest of the R modeling landscape. A major challenge in ABC is the significant amount of
coding needed to program simulations of demographic history and integrate them with software
for computing population genetic statistics. slendr can program complex models and compute
relevant statistics using its tree-sequence interface with a relatively small amount of code, all
within a single R workflow. Furthermore, although slendr does not currently include features for
implicit, automated parallelism (an important aspect of computation-heavy modeling approaches
such as ABC), users can rely on numerous R packages providing a wide range of parallelization
techniques (Eddelbuettel, 2021).

Nonetheless, inference of spatial dynamics from genetic data remains an open research
problem with many potential pitfalls, and we strongly caution users to avoid overinterpretation.
For instance, slendr models retain a notion of discretely delineated populations, but even a
reasonable fit of such a model to real data does not erase the reality that such groupings are
rarely, if ever, as stable and cleanly distinguished as in idealized models. Indeed, confounding
the simple models used in population genetics with reality can be actively harmful (Coop, 2022;
Khan et al., 2022). Furthermore, population genetic modeling in general is notoriously
challenging due to the many parameters involved (Gravel et al., 2011; Pickrell and Pritchard,
2012; Kamm et al., 2020). In this respect, advanced, explicitly spatial models of the kind
unlocked by slendr present an even bigger challenge. For instance, how can we best do model
comparison, and among what set of models? What would constitute a good “null hypothesis”
when modeling potentially complex spatial population dynamics? Furthermore, even relatively
simple models can be ill-posed or even nonidentifiable: many combinations of spatial
parameters (such as individual dispersal or mating distances) may give rise to similar genetic
patterns. As every demographic inference study makes assumptions about the process which
generated the data, sometimes explicitly and sometimes implicitly, awareness of these
assumptions and careful approach to modeling (Beaumont, 2010; Gerbault et al., 2014; Loog,
2021) are vital for correct interpretation of results. We hope that the ease with which slendr
allows one to explore the impact of spatio-temporal parameters on population dynamics—and
the fact that slendr forces the researcher to state those parameters explicitly—will help guide

21

Original sentence:

(two references suggested by a reviewer added for more information on best practices in modelling)

"Every demographic inference study makes assumptions about the process which generated
the data, sometimes explicitly and sometimes implicitly, and awareness of these
assumptions is vital for interpretation of the results (Loog, 2021)."

researchers in establishing guidelines for good practice, to delineate the limits of what can be
learned and, consequently, avoid overinterpretation (or misinterpretation) of such parameters.

In its current version (v0.5.0 as available on the CRAN repository), slendr’s spatial
simulation maps are limited to landscapes that exhibit binary habitability—i.e., any given
location either is or is not habitable by individuals. A more ecologically realistic simulation could
allow for varying degrees of habitability at different locations, which would affect the size of the
simulated population. Future extensions of the slendr framework could include the incorporation
of fine-scaled geographic maps storing individual habitability values for each pixel of the raster,
allowing for dynamic changes of such maps over time. This would effectively make the size of
the population an emergent consequence of the habitability metric aggregated across the map.
This extension would require significant changes to the slendr back-end code, moving to
modeling population densities per unit of landscape area using non-Wright–Fisher dynamics,
but the necessary software building blocks are already supported by SLiM and examples of
these types of simulations are discussed in the SLiM manual (Haller and Messer, 2022). A
recently published Python module Geonomics provides an interface for simulating genetic data
on arbitrary landscape rasters (Terasaki Hart, Bishop and Wang, 2021). Implementing such
functionality in slendr would have the advantage of using a much more efficient SLiM simulation
engine and a greater ease of use due to slendr’s emphasis on visually-focused interactive
model design in R. The main challenge would therefore lie in making sure that the additional
complexity involved in making the slendr’s SLiM back end more flexible does not compromise
the current simplicity of its declarative interface. The benefits of this extension would be
numerous, including for genomic forecasting and predicting species ranges in the face of
climate change and ecological breakdown (Fitzpatrick and Keller, 2015; Exposito-Alonso et al.,
2019; Theodoridis et al., 2020), and for constructing models of species distribution dynamics in
the ancient past (Wang et al., 2021). Implementation of this extension of slendr is still in the
planning stages, in collaboration with the community on the project’s GitHub page.

At the moment, slendr can only produce genome sequences from a single species
(although with an arbitrary number and spatial arrangement of populations of the species) due
to the restrictions imposed by its simulation back end. However, many types of genomic
resources distributed across space and time are represented by fragmentary mixtures of
genomes from multiple species. This includes ancient microbiomes from human remains
(Rasmussen et al., 2015), sedimentary DNA from permafrost, caves, or lake and marine cores
(Willerslev et al., 2003; Parducci et al., 2017; Armbrecht et al., 2019; Vernot et al., 2021), and
environmental DNA from water, soil, or air samples (Taberlet et al., 2012; Stat et al., 2017;
Lynggaard et al., 2022). Recent developments in SLiM would allow slendr to perform
multi-species simulations, which would facilitate ecological modeling of species distributions
(Fordham et al., 2021) or of past epidemics (Duchene et al., 2020) from a fully genomic
perspective.

Finally, at the time of writing, slendr models are limited to neutral simulations, and this
restriction applies even to simulations performed via its SLiM back end. In particular, slendr
does not currently provide built-in support for specifying mutation types, genomic element types,
recombination maps, or custom SLiM callbacks. Providing an R equivalent for SLiM’s complete
functionality would be a daunting task of limited utility, and would substantially complicate
slendr’s intuitive R syntax for encoding demographic models (Figure 1). An attractive alternative

22

Original text in the parentheses:

"although with an arbitrary number and spatial arrangement of population groups"

(clarifies that although slendr simulates just one species, arbitrary number of populations from this species is
supported — avoiding unnecessary and confusing term "population groups" not used anywhere else in the paper)

for supporting more advanced, customized models could be to retain the behavior of slendr
described in this manuscript as the default, but provide the possibility of overriding different
aspects of this behavior by injecting user-defined SLiM snippets at appropriate locations in
slendr’s SLiM back-end code. We are exploring this possibility for future versions of the
software.

Ultimately, we hope that our new simulation framework will help generate new ideas
about the insights that can be gleaned from the rich spatio-temporal information hidden within
DNA sequences. Furthermore, we aspire to help budding researchers in population genetics get
started with simulations and build their intuition about population genetic concepts by
developing models using more traditional non-spatial methods and statistics, and we believe
that slendr could be a useful tool for teaching population genetics to students. We hope that by
easily generating and visualizing genomic models on real landscapes, we can spark new ways
of thinking about how organisms evolve (Bradburd and Ralph, 2019) and enable clearer
discussions about the fundamental interconnectedness of genomes across space and time
(Mathieson and Scally, 2020).

Acknowledgements
We thank Isabel M. Pötzsch, Mariadaria Kathrine Ianni-Ravn, Emma Prantoni, and Moisès Coll
Macià for testing and feedback on early versions of slendr, and the members of the Racimo
group for valuable comments on the design of the software and this manuscript. FR was
supported by a Villum Young Investigator Grant (project no. 00025300), COREX ERC
Synergy grant (ID 951385), a Novo Nordisk Fonden Data Science Ascending Investigator
Award (NNF22OC0076816) and a Sapere Aude grant (2064-00026B) from Danmarks Frie
Forkningsfond. MP was supported by a Lundbeck Foundation grant (R302-2018-2155) and
a Novo Nordisk Foundation grant (NNF18SA0035006) given to the GeoGenetics Centre.
PR was supported by NIH award R01HG010774.

References

1000 Genomes Project (2010) ‘A map of human genome variation from population-scale
sequencing’, Nature, 467(7319), pp. 1061–1073.

Al-Asadi, H. et al. (2019) ‘Estimating recent migration and population-size surfaces’, PLoS
genetics, 15(1), p. e1007908.

Allentoft, M.E. et al. (2015) ‘Population genomics of Bronze Age Eurasia’, Nature, 522(7555),
pp. 167–172.

Armbrecht, L.H. et al. (2019) ‘Ancient DNA from marine sediments: Precautions and
considerations for seafloor coring, sample handling and data generation’, Earth-Science
Reviews, 196, p. 102887.

Barton, N. (1979) ‘Gene flow past a cline’, Heredity, 43(3), pp. 333–339.

23

Barton, N., Depaulis, F. and Etheridge, A.M. (2002) ‘Neutral evolution in spatially continuous
populations’, Theoretical population biology, 61(1), pp. 31–48.

Barton, N., Etheridge, A.M. and Véber, A. (2013) ‘Modelling evolution in a spatial continuum’,
Journal of Statistical Mechanics: Theory and Experiment, 2013(01), p. P01002.

Barton, N., Etheridge, A. and Véber, A. (2010) ‘A New Model for Evolution in a Spatial
Continuum’, Electronic Journal of Probability, 15.

Baumdicker, F. et al. (2022) ‘Efficient ancestry and mutation simulation with msprime 1.0’,
Genetics, 220(3). Available at: https://doi.org/10.1093/genetics/iyab229.

Beaumont, M.A. (2010) ‘Approximate Bayesian Computation in Evolution and Ecology’, Annual
review of ecology, evolution, and systematics, 41(1), pp. 379–406.

Beaumont, M.A., Zhang, W. and Balding, D.J. (2002) ‘Approximate Bayesian computation in
population genetics’, Genetics, 162(4), pp. 2025–2035.

Beerli, P. and Felsenstein, J. (2001) ‘Maximum likelihood estimation of a migration matrix and
effective population sizes in n subpopulations by using a coalescent approach’, Proceedings of
the National Academy of Sciences of the United States of America, 98(8), pp. 4563–4568.

Bergström, A. et al. (2020) ‘Origins and genetic legacy of prehistoric dogs’, Science, 370(6516),
pp. 557–564.

Bradburd, G.S., Coop, G.M. and Ralph, P.L. (2018) ‘Inferring Continuous and Discrete
Population Genetic Structure Across Space’, Genetics, 210(1), pp. 33–52.

Bradburd, G.S. and Ralph, P.L. (2019) ‘Spatial population genetics: It’s about time’, Annual
review of ecology, evolution, and systematics, 50(1), pp. 427–449.

Chambers, J.M. (2020) ‘S, R, and data science’, Proceedings of the ACM on Programming
Languages, pp. 1–17. Available at: https://doi.org/10.1145/3386334.

Chang, W. et al. (2021) shiny: Web Application Framework for R. Available at:
https://CRAN.R-project.org/package=shiny.

Coop, G. (2022) ‘Genetic similarity versus genetic ancestry groups as sample descriptors in
human genetics’, arXiv [q-bio.PE]. Available at: http://arxiv.org/abs/2207.11595.

Crabtree, S.A. et al. (2021) ‘Landscape rules predict optimal superhighways for the first
peopling of Sahul’, Nature human behaviour, 5(10), pp. 1303–1313.

Csilléry, K. et al. (2010) ‘Approximate Bayesian Computation (ABC) in practice’, Trends in
ecology & evolution, 25(7), pp. 410–418.

Currat, M. et al. (2019) ‘SPLATCHE3: simulation of serial genetic data under spatially explicit
evolutionary scenarios including long-distance dispersal’, Bioinformatics , 35(21), pp.
4480–4483.

Currat, M. and Excoffier, L. (2011) ‘Strong reproductive isolation between humans and
Neanderthals inferred from observed patterns of introgression’, Proceedings of the National
Academy of Sciences, 108(37), pp. 15129–15134.

24

Currat, M., Ray, N. and Excoffier, L. (2004) ‘splatche: a program to simulate genetic diversity
taking into account environmental heterogeneity’, Molecular ecology notes, 4(1), pp. 139–142.

Danecek, P. et al. (2011) ‘The variant call format and VCFtools’, Bioinformatics , 27(15), pp.
2156–2158.

Delser, P.M. et al. (2021) ‘Climate and mountains shaped human ancestral genetic lineages’,
bioRxiv. Available at: https://doi.org/10.1101/2021.07.13.452067.

Duchene, S. et al. (2020) ‘Temporal signal and the phylodynamic threshold of SARS-CoV-2’,
Virus evolution, 6(2), p. veaa061.

Duforet-Frebourg, N. and Blum, M.G.B. (2014) ‘Nonstationary patterns of isolation-by-distance:
inferring measures of local genetic differentiation with Bayesian kriging’, Evolution; international
journal of organic evolution, 68(4), pp. 1110–1123.

Eddelbuettel, D. (2021) ‘Parallel computing with R: A brief review’, Wiley interdisciplinary
reviews. Computational statistics, 13(2). Available at: https://doi.org/10.1002/wics.1515.

Ewing, G. and Hermisson, J. (2010) ‘MSMS: a coalescent simulation program including
recombination, demographic structure and selection at a single locus’, Bioinformatics , 26(16),
pp. 2064–2065.

Exposito-Alonso, M. et al. (2019) ‘Natural selection on the Arabidopsis thaliana genome in
present and future climates’, Nature, 573(7772), pp. 126–129.

Felsenstein, J. (1975) ‘A Pain in the Torus: Some Difficulties with Models of Isolation by
Distance’, The American naturalist, 109(967), pp. 359–368.

Feuerborn, T.R. et al. (2021) ‘Modern Siberian dog ancestry was shaped by several thousand
years of Eurasian-wide trade and human dispersal’, Proceedings of the National Academy of
Sciences of the United States of America, 118(39). Available at:
https://doi.org/10.1073/pnas.2100338118.

Fisher, R.A. (1937) ‘The wave of advance of advantageous genes’, Annals of eugenics, 7(4),
pp. 355–369.

Fitzpatrick, M.C. and Keller, S.R. (2015) ‘Ecological genomics meets community-level modelling
of biodiversity: mapping the genomic landscape of current and future environmental adaptation’,
Ecology letters, 18(1), pp. 1–16.

Fordham, D.A. et al. (2021) ‘poems: R package for simulating species’ range dynamics using
pattern‐oriented validation’, Methods in ecology and evolution / British Ecological Society,
12(12), pp. 2364–2371.

Frachetti, M.D. et al. (2017) ‘Nomadic ecology shaped the highland geography of Asia’s Silk
Roads’, Nature, 543(7644), pp. 193–198.

Fu, Q. et al. (2016) ‘The genetic history of Ice Age Europe’, Nature, 534(7606), pp. 200–205.

Gerbault, P. et al. (2014) ‘Storytelling and story testing in domestication’, Proceedings of the
National Academy of Sciences of the United States of America, 111(17), pp. 6159–6164.

25

Gravel, S. et al. (2011) ‘Demographic history and rare allele sharing among human populations’,
Proceedings of the National Academy of Sciences, 108(29), pp. 11983–11988.

Green, R.E. et al. (2010) ‘A draft sequence of the Neandertal genome’, Science, 328(5979), pp.
710–722.

Guillot, G. et al. (2009) ‘Statistical methods in spatial genetics’, Molecular ecology, 18(23), pp.
4734–4756.

Haak, W. et al. (2015) ‘Massive migration from the steppe was a source for Indo-European
languages in Europe’, Nature, 522(7555), pp. 207–211.

Haller, B.C. et al. (2019) ‘Tree-sequence recording in SLiM opens new horizons for forward-time
simulation of whole genomes’, Molecular ecology resources, 19(2), pp. 552–566.

Haller, B.C. and Messer, P.W. (2017) ‘SLiM 2: Flexible, Interactive Forward Genetic
Simulations’, Molecular biology and evolution, 34(1), pp. 230–240.

Haller, B.C. and Messer, P.W. (2019) ‘SLiM 3: Forward Genetic Simulations Beyond the
Wright-Fisher Model’, Molecular biology and evolution, 36(3), pp. 632–637.

Haller, B.C. and Messer, P.W. (2022) ‘SLiM 4: Multispecies eco-evolutionary modeling’, The
American naturalist [Preprint]. Available at: https://doi.org/10.1086/723601.

Hanks, E.M. and Hooten, M.B. (2013) ‘Circuit theory and model-based inference for landscape
connectivity’, Journal of the American Statistical Association, 108(501), pp. 22–33.

Hudson, R.R. (2002) ‘Generating samples under a Wright-Fisher neutral model of genetic
variation’, Bioinformatics , 18(2), pp. 337–338.

Kamm, J. et al. (2020) ‘Efficiently inferring the demographic history of many populations with
allele count data’, Journal of the American Statistical Association, 115(531), pp. 1472–1487.

Kelleher, J. et al. (2018) ‘Efficient pedigree recording for fast population genetics simulation’,
PLoS computational biology, 14(11), p. e1006581.

Kelleher, J. et al. (2019) ‘Inferring whole-genome histories in large population datasets’, Nature
genetics, 51(9), pp. 1330–1338.

Kelleher, J., Etheridge, A.M. and Barton, N.H. (2014) ‘Coalescent simulation in continuous
space: algorithms for large neighbourhood size’, Theoretical population biology, 95, pp. 13–23.

Kelleher, J., Etheridge, A.M. and McVean, G. (2016) ‘Efficient Coalescent Simulation and
Genealogical Analysis for Large Sample Sizes’, PLoS computational biology, 12(5), p.
e1004842.

Khan, A.T. et al. (2022) ‘Recommendations on the use and reporting of race, ethnicity, and
ancestry in genetic research: Experiences from the NHLBI TOPMed program’, Cell genomics,
2(8). Available at: https://doi.org/10.1016/j.xgen.2022.100155.

Kimura, M. (1953) ‘“Stepping Stone” model of population’, Annual report of the National Institute
of Genetics , 3, pp. 62–63.

26

Kimura, M. and Weiss, G.H. (1964) ‘The Stepping Stone Model of Population Structure and the
Decrease of Genetic Correlation with Distance’, Genetics, 49(4), pp. 561–576.

Lazaridis, I. et al. (2014) ‘Ancient human genomes suggest three ancestral populations for
present-day Europeans’, Nature, 513(7518), pp. 409–413.

Levene, H. (1953) ‘Genetic Equilibrium When More Than One Ecological Niche is Available’,
The American naturalist, 87(836), pp. 331–333.

Librado, P. et al. (2021) ‘The origins and spread of domestic horses from the Western Eurasian
steppes’, Nature, pp. 1–7.

Liu, H. et al. (2006) ‘A geographically explicit genetic model of worldwide human-settlement
history’, American journal of human genetics, 79(2), pp. 230–237.

Loog, L. et al. (2017) ‘Estimating mobility using sparse data: Application to human genetic
variation’, Proceedings of the National Academy of Sciences, 114(46), pp. 12213–12218.

Loog, L. (2021) ‘Sometimes hidden but always there: the assumptions underlying genetic
inference of demographic histories’, Philosophical transactions of the Royal Society of London.
Series B, Biological sciences, 376(1816), p. 20190719.

Lovelace, R., Nowosad, J. and Muenchow, J. (2019) Geocomputation with R (Chapman &
Hall/CRC The R Series). 1st edn. Routledge.

Lynggaard, C. et al. (2022) ‘Airborne environmental DNA for terrestrial vertebrate community
monitoring’, Current biology: CB, 32(3), pp. 701–707.e5.

Malécot, G. (1951) ‘Un traitement stochastique des problèmes linéaires en génétique de
population’, Ann. Univ. Lyon. Sci. Sec., 14, pp. 79–117.

Mallick, S. et al. (2016) ‘The Simons Genome Diversity Project: 300 genomes from 142 diverse
populations’, Nature, 538(7624), pp. 201–206.

Marcus, J. et al. (2021) ‘Fast and flexible estimation of effective migration surfaces’, eLife, 10.
Available at: https://doi.org/10.7554/eLife.61927.

Mathieson, I. and Scally, A. (2020) ‘What is ancestry’, PLoS genetics, 16(3), p. e1008624.

McRae, B.H. (2006) ‘Isolation by resistance’, Evolution; international journal of organic
evolution, 60(8), pp. 1551–1561.

Meyer, M. et al. (2017) ‘Palaeogenomes of Eurasian straight-tusked elephants challenge the
current view of elephant evolution’, eLife, 6, p. e25413.

Muktupavela, R.A. et al. (2022) ‘Modeling the spatiotemporal spread of beneficial alleles using
ancient genomes’, eLife, 11, p. e73767.

Nagylaki, T. (1976) ‘The relation between distant individuals in geographically structured
populations’, Mathematical biosciences, 28(1), pp. 73–80.

Osmond, M.M. and Coop, G. (2021) ‘Estimating dispersal rates and locating genetic ancestors
with genome-wide genealogies’, bioRxiv. Available at:

27

https://doi.org/10.1101/2021.07.13.452277.

Palkopoulou, E. et al. (2018) ‘A comprehensive genomic history of extinct and living elephants’,
Proceedings of the National Academy of Sciences of the United States of America, 115(11), pp.
E2566–E2574.

Paradis, E. (2011) Analysis of Phylogenetics and Evolution with R (Use R!). 2nd edn. Springer.

Paradis, E. and Schliep, K. (2019) ‘ape 5.0: an environment for modern phylogenetics and
evolutionary analyses in R’, Bioinformatics . Edited by R. Schwartz, 35(3), pp. 526–528.

Parducci, L. et al. (2017) ‘Ancient plant DNA in lake sediments’, The New phytologist, 214(3),
pp. 924–942.

Patterson, N. et al. (2012) ‘Ancient admixture in human history’, Genetics, 192(3), pp.
1065–1093.

Pebesma, E. (2018) ‘Simple features for R: Standardized support for spatial vector data’, The R
journal, 10(1), p. 439.

Peter, B.M. and Slatkin, M. (2013) ‘Detecting range expansions from genetic data’, Evolution;
international journal of organic evolution, 67(11), pp. 3274–3289.

Petkova, D., Novembre, J. and Stephens, M. (2016) ‘Visualizing spatial population structure with
estimated effective migration surfaces’, Nature genetics, 48(1), pp. 94–100.

Pickrell, J.K. and Pritchard, J.K. (2012) ‘Inference of Population Splits and Mixtures from
Genome-Wide Allele Frequency Data’, PLoS genetics. Edited by H. Tang, 8(11), p. e1002967.

Pickrell, J.K. and Reich, D. (2014) ‘Toward a new history and geography of human genes
informed by ancient DNA’, Trends in genetics: TIG, 30(9), pp. 377–389.

Purcell, S. et al. (2007) ‘PLINK: a tool set for whole-genome association and population-based
linkage analyses’, American journal of human genetics, 81(3), pp. 559–575.

Racimo, F. et al. (2020) ‘The spatiotemporal spread of human migrations during the European
Holocene’, Proceedings of the National Academy of Sciences of the United States of America,
117(16), pp. 8989–9000.

Ralph, P. and Coop, G. (2013) ‘The Geography of Recent Genetic Ancestry across Europe’,
PLoS biology. Edited by C. Tyler-Smith, 11(5), p. e1001555.

Ralph, P., Thornton, K. and Kelleher, J. (2020) ‘Efficiently Summarizing Relationships in Large
Samples: A General Duality Between Statistics of Genealogies and Genomes’, Genetics,
215(3), pp. 779–797.

Rasmussen, M. et al. (2010) ‘Ancient human genome sequence of an extinct Palaeo-Eskimo’,
Nature, 463(7282), pp. 757–762.

Rasmussen, S. et al. (2015) ‘Early divergent strains of Yersinia pestis in Eurasia 5,000 years
ago’, Cell, 163(3), pp. 571–582.

R Core Team (2021) ‘R: A Language and Environment for Statistical Computing’. Vienna,

28

Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.

Ringbauer, H. et al. (2018) ‘Estimating Barriers to Gene Flow from Distorted
Isolation-by-Distance Patterns’, Genetics, 208(3), pp. 1231–1245.

Rousset, F. (1997) ‘Genetic differentiation and estimation of gene flow from F-statistics under
isolation by distance’, Genetics, 145(4), pp. 1219–1228.

Safner, T. et al. (2011) ‘Comparison of Bayesian clustering and edge detection methods for
inferring boundaries in landscape genetics’, International journal of molecular sciences, 12(2),
pp. 865–889.

Sandve, G.K. et al. (2013) ‘Ten simple rules for reproducible computational research’, PLoS
computational biology, 9(10), p. e1003285.

Slatkin, M. (1973) ‘GENE FLOW AND SELECTION IN A CLINE’, Genetics, 75(4), pp. 733–756.

Slatkin, M. and Excoffier, L. (2012) ‘Serial founder effects during range expansion: a spatial
analog of genetic drift’, Genetics, 191(1), pp. 171–181.

Slatkin, M. and Racimo, F. (2016) ‘Ancient DNA and human history’, Proceedings of the
National Academy of Sciences, 113(23), pp. 6380–6387.

Speidel, L. et al. (2019) ‘A method for genome-wide genealogy estimation for thousands of
samples’, Nature genetics, 51(9), pp. 1321–1329.

Staab, P.R. et al. (2015) ‘scrm: efficiently simulating long sequences using the approximated
coalescent with recombination’, Bioinformatics , 31(10), pp. 1680–1682.

Stat, M. et al. (2017) ‘Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life
in a tropical marine environment’, Scientific reports, 7(1), p. 12240.

Taberlet, P. et al. (2012) ‘Towards next-generation biodiversity assessment using DNA
metabarcoding’, Molecular ecology, 21(8), pp. 2045–2050.

Terasaki Hart, D.E., Bishop, A.P. and Wang, I.J. (2021) ‘Geonomics: Forward-Time, Spatially
Explicit, and Arbitrarily Complex Landscape Genomic Simulations’, Molecular biology and
evolution, 38(10), pp. 4634–4646.

Theodoridis, S. et al. (2020) ‘Evolutionary history and past climate change shape the distribution
of genetic diversity in terrestrial mammals’, Nature communications, 11(1), p. 2557.

Vernot, B. et al. (2021) ‘Unearthing Neanderthal population history using nuclear and
mitochondrial DNA from cave sediments’, Science, 372(6542). Available at:
https://doi.org/10.1126/science.abf1667.

Wang, Y. et al. (2021) ‘Late Quaternary dynamics of Arctic biota from ancient environmental
genomics’, Nature, 600(7887), pp. 86–92.

Wickham, H. et al. (2019) ‘Welcome to the tidyverse’, Journal of Open Source Software, p.
1686. Available at: https://doi.org/10.21105/joss.01686.

Wickham, H. and Grolemund, G. (2016) R for Data Science. ``O’Reilly Media, Inc.'', p. 520.

29

Willerslev, E. et al. (2003) ‘Diverse plant and animal genetic records from Holocene and
Pleistocene sediments’, Science, 300(5620), pp. 791–795.

Wohns, A.W. et al. (2022) ‘A unified genealogy of modern and ancient genomes’, Science,
375(6583), p. eabi8264.

Wright, S. (1943) ‘Isolation by Distance’, Genetics, 28(2), pp. 114–138.

Yu, G. et al. (2017) ‘ggtree : An R package for visualization and annotation of phylogenetic trees
with their covariates and other associated data’, Methods in ecology and evolution / British
Ecological Society, 8(1), pp. 28–36.

30

