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Abstract

The reproductive mechanism of a species is a key driver of genome evolution. The
standard Wright-Fisher model for the reproduction of individuals in a population
assumes that each individual produces a number of offspring negligible compared
to the total population size. Yet many species of plants, invertebrates, prokary-
otes or fish exhibit neutrally skewed offspring distribution or strong selection events
yielding few individuals to produce a number of offspring of up to the same mag-
nitude as the population size. As a result, the genealogy of a sample is character-
ized by multiple individuals (more than two) coalescing simultaneously to the same
common ancestor. The current methods developed to detect such multiple merger
events do not account for complex demographic scenarios or recombination, and
require large sample sizes. We tackle these limitations by developing two novel and
different approaches to infer multiple merger events from sequence data or the an-
cestral recombination graph (ARG): a sequentially Markovian coalescent (SMβC)
and a graph neural network (GNNcoal). We first give proof of the accuracy of our
methods to estimate the multiple merger parameter and past demographic history
using simulated data under the β-coalescent model. Secondly, we show that our
approaches can also recover the effect of positive selective sweeps along the genome.
Finally, we are able to distinguish skewed offspring distribution from selection while
simultaneously inferring the past variation of population size. Our findings stress
the aptitude of neural networks to leverage information from the ARG for inference
but also the urgent need for more accurate ARG inference approaches.

Keywords— kingman coalescent, beta coalescent, selective sweep, deep learning, graph
neural networks, population genetics, multiple merger coalescent, sequentially markovian coa-
lescent, ancestral recombination graph
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Introduction1

With the availability of genomes of increasing quality for many species across the tree2

of life, population genetics models and statistical methods have been developed to re-3

cover the past history of a population/species from whole genome sequence data from4

several individuals [87, 58, 82, 88, 85, 5, 4, 90, 43, 44]. Indeed, the inference of the past5

demographic history of a species, i.e. population expansion, contraction, or bottlenecks,6

extinction/colonisation, is not only interesting in its own right, but also essential to cal-7

ibrate genome-wide scans to detect genes under (e.g. positive or balancing) selection8

[90, 45]. A common feature of inference methods that make full use of whole genome se-9

quences is the underlying assumption of a Kingman coalescent process [52] to describe the10

genealogy distribution of a sample. The Kingman coalescent process and its properties11

stem from using the traditional forward-in-time Wright-Fisher (WF) model to describe12

the reproduction mechanism of a population. Besides non-overlapping generations, a key13

assumption of the neutral WF model is that an individual offspring chooses randomly (i.e.14

uniformly) its parents from the previous generation. More precisely, each chromosome15

chooses a parental chromosome from the previous generation. Thus, a key parameter is16

the distribution of the number of offspring that parents can have. In the WF model,17

due to the binomial sampling, the distribution of offspring number per parent is well18

approximated by a Poisson distribution with both mean and variance equal to one. This19

implies that parents will most likely have zero, one, or two offspring individuals, but it is20

improbable that one parent would have many offspring individuals (i.e. on the order of21

the population size, under the Wright-Fisher haploid model the probability for a parent22

to have 10 or more offspring is ≈ 10−8). The assumption of small variance in offspring23

distribution between individual parents is realistic for species with low juvenile mortality24

(so-called type I and II survivorship in ecology, see survivorship curves e.g. by [23]), such25

as mammals.26

As genome sequence data become available for a wide variety of species with different27

biological traits and/or life cycles, the applicability of the Kingman coalescent relying on28

the WF model can be questioned [89, 2, 3, 69, 46, 66, 92, 63, 32]. Indeed, for some species,29

such as fish, with high fecundity and high juveniles mortality (type III survivorship, [23]),30

it is expected that the variance in reproduction between parents can be much larger than31

under the Poisson distribution [92]. This effect is termed as sweepstake reproduction32

[37, 2]. Neutral processes such as strong seed banking [12], high fecundity with skewed33

offspring distribution [37, 27], extremely strong and recurrent bottlenecks [9, 21], and34

strong selective processes (i.e. positive selection) [26, 17, 18, 36, 3] are theoretically35

shown to deviate from the classic WF model in a way that the genealogies can no longer36

be described by a Kingman coalescent process. Under such conditions, a new class of37

processes arise to describe the genealogy distribution, a class where multiple individuals38

can coalesce and/or multiple distinguished coalescence events can occur simultaneously39

[78, 65, 25, 77, 71, 14]. Generally, this class of genealogical processes is called the Multiple40

Merger Coalescent (MMC). MMC models are more biologically appropriate than the41

Kingman coalescent to study many species of fish [28, 2, 3, 37], invertebrates (insects,42

crustaceans, etc.), viruses [61], bacteria [63, 67], plants and their pathogens [92]. While43

we would like to assess which population model best describes the species genealogy, field44

experiments to quantify the underlying reproduction mechanism of a species can be costly45

and time consuming at best, or intractable at worst. Therefore, an alternative solution46
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is to use inference methods based on genome data to identify which model best describes47

the genealogy of a given species/population.48

In this study we use the so-called β-coalescent, a specific class of MMC models. Unlike49

under the WF model, under MMC models the ploidy level strongly affects the distribu-50

tion of genealogies [8]. For simplicity, in this study we focus on haploid organisms. In51

the polyploid case, where each parent contributes multiple genomes, the SMC formula-52

tions of putative intra- and inter-individual coalescence events would need to be carefully53

modelled, since this effect would lead to smaller coalescence probabilities and a change54

of the predicted statistical power for demographic inference. It is demonstrated that if55

the probability of a parent to have k or more offspring is proportional to k−α, where56

1 < α < 2, then the genealogy can be described by a Λ-coalescent [84]. The latter is a57

general class of coalescent process describing how and how fast ancestral lineages merge58

[71, 77]. When using the Beta(2 α,α)
::::::::::
(2− α, α)

:
distribution as a probability measure59

for the Λ-coalescent, the transition rates (i.e. coalescent rate) can be analytically ob-60

tained leading to the β-coalescent, a specific MMC model. If α tends to 2, then the61

coalescent process converges to a Kingman coalescent up to a scaling constant : the
:::
as62

:::::::::
specified

::
in

::
a
::::::
more

:::::::::
detailed

::::
way

:::
in

::::
the

::::::::::::::::
documentation

::
of

::::::::::
msprime

:
(https://tskit.dev/63

msprime/docs/stable/api.html#msprime.BetaCoalescent
::
).

:::::
The effective population64

size calculations for the Beta coalescent yield Ne = (µestimated
µreal

)/scaling constant)
1

(α−1) ,65

where m = 1 + 1
2α−1·(α−1)

, scaling constant = (mα)
(α·β(2−α,α)) ::

(β
::::::
being

::::
the

::::::
Beta

::::::::::
function)

:
and66

µestimated = θ(
2·
∑nind−1

i=1
1
i

)
·L

[8, 55, 56]
::::::::::::::::::
[8, 55, 56, 7, 84] . If α tends to one, the model tends67

to a Bolthausen-Sznitman coalescent process (i.e. dominated by strong multiple merger68

events) [14]. The β-coalescent has the property that the observed polarized Site Fre-69

quency Spectrum (SFS) of a sample of single nucleotide polymorphisms (SNPs) exhibits70

a characteristic U-shape with an excess of rare and high frequency variants (compared to71

the Kingman coalescent) [81]. Current methods to draw inference under MMC models72

leverage information from the summary statistics extracted from full genome data such73

as Site Frequency Spectrum (SFS, or derived summary statistics) [56, 36, 76], minor allele74

frequency [74] or copy number alteration [46]. It is shown that the SFS is robust to the75

effect of recombination [56, 74] and its shape allows to discriminate between simple demo-76

graphic models (population expansion or contraction) under the Kingman coalescent and77

MMC models with constant population size [56, 55, 28]. However, methods relying on78

genome-wide SFS have two main disadvantages. First, in absence of strong prior knowl-79

edge, they can suffer from non-identifiability [43] as several complex neutral demographic80

and/or selective models under the Kingman or MMC models can generate similar SFS81

distributions. Second, as they summarize the collection of underlying genealogies, they82

require high sample sizes (>50) to produce trustworthy results [56, 55, 28], relying on83

experimental designs which are prohibitive for the study of non-model species. To tackle84

these limitations, we develop two methods that integrate recombination events along the85

genome in order to leverage more information from full genome data, thus requiring fewer86

samples.87

In species undergoing sexual reproduction, recombination events break the genealogy88

of a sample at different position of the genome (i.e. the genealogy of a sample varies along89

the genome), leading to what is called the Ancestral Recombination Graph (ARG) [40, 8].90

Because all the genealogical information is contained in the ARG, in this study we aim91

2
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at the interpretation of the ARGs to recover model parameters in presence of multiple92

merger events. With the development of the sequentially Markovian coalescent theory93

[62, 60, 98], it becomes tractable to integrate linkage disequilibrium over chromosomes94

in inferences based on the Kingman coalescent [58]. Hence, we first develop an SMC95

approach based on the β-coalescent named the Sequentially Markovian β Coalescent96

(SMβC). The β-coalescent has the additional property that, under recombination, long97

range dependency can be generated between coalescent trees along the genome if multiple-98

merger events happen in a single generation [8]. In other words, coalescent trees which99

are located at different places in the genome, and expected to be unlinked from one100

another [68], would show non-zero correlation in their topology and coalescent times.101

This is because coalescent trees from different genomic regions may all be affected by102

the same MMC event (merger event of multiple lineages in the past) which then leaves103

traces in the genome at several loci [9]. To overcome the theoretically predicted non-104

Markovian property of the distribution of genealogies along the genome under the β-105

coalescent with recombination [8] and the increasing sparsity of genealogies and ancestral106

nodes with respect to α (see Supplementary Figure S18, S19 and S20), we develop a107

second method based on deep learning (DL) trained from efficient coalescent simulations108

[7]. In evolutionary genomics, DL approaches trained by simulations are shown to be109

powerful inference tools [87, 54]. Previous work demonstrated that DL approach can110

help overcome problems mathematically insolvable or computationally intractable in the111

field of population genetics [87, 6, 96, 101, 31, 22, 72, 19, 42]. The novelty of our neural112

network relies on its structure (Graph Neural Network, GNN) and its training algorithm113

based on the ARG of a sample, or its tree sequence representation [47]. GNNs are an114

emerging category of DL algorithm [16, 99, 20, 104] that benefit by using irregular domain115

data (i.e. graphs). GNNs are designed for the prediction of node features [53, 100], edge116

features (link prediction) [103, 83], or additional properties of entire graphs [102, 57].117

Therefore, GNNs represent a new tool to address the large dimensionality of ARGs,118

while simultaneously leveraging information from the genealogy (namely topology and119

age of coalescent events) as a substantial improvement over convolutions of genotype120

matrices, as currently done in the field [79].121

We first quantify the bias of previous SMC methods (MSMC and MSMC2 [82, 95])122

when performing inference of past population size variation under the β-coalescent. We123

then describe our two methods, SMβC and GNNcoal, and demonstrate their statistical124

power as well as their respective limitations. From simulated tree-sequence (i.e. ARG)125

and sequence (i.e. SNPs) data, we assess the accuracy of both approaches to recover126

the past variation of population size and the α parameter of the Beta-distribution. This127

parameter indicates how frequent and strong multiple merger events occur (see Supple-128

mentary Figure S20). We demonstrate that our approaches can infer the evolutionary129

mechanism responsible for multiple merger events and distinguish local selection events130

from genome-wide effects of multiple mergers. We highlight the limits of the Markovian131

property of SMC to describe data generated under the β-coalescent. Finally, we show that132

both our approaches can model and identify the presence of selection along the genome133

while simultaneously accounting for non-constant population size, recombination, and134

skewed offspring distribution. Thus our methods represents a major and necessary leap135

forward in the field of population genetic inferences.136
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Materials and Methods137

In our study we first assume the true ARG to be known. Hence, the ARG of the sample is138

given as input to our methods to estimate recover model parameters of interest (e.g. the α139

parameter and/or the past variation of population size). We then show the applicability140

of our methods by using as input simulated sequence data (i.e. SNPs) and/or ARG141

inferred using ARGweaver [73] from simulated sequence data.142

SMC-based method143

In this study, we use different SMC-based algorithms: two previously published, MSMC144

and MSMC2 [82, 95], and the new SMβC. In the latter, the software backbone stems from145

our previous eSMC [85, 86] whilst the theoretical framework originates from the MSMC146

algorithm [82] (see Supplementary Text S1). All approaches can either use the ARG or147

sequence data as input. Providing the ARG as input for MSMC and MSMC2 is enabled148

by a re-implementation included in the R package eSMC2 previously published in [86]. It149

is important to mention that there are no theoretical differences in the models whether150

sequence data or ARG is inputted (see [86] and Supplementary Text S1 for details). The151

difference is that in one case the hidden states are inferred from sequence data with a152

forward-backward algorithm, and in the later the sequence of hidden states are directly153

built from reading the inputted ARG (skipping the forward-backward algorithm). The154

MSMC2 algorithm focuses on the coalescence time between two haploid samples along155

the genome. In the event of recombination, there is a break in the current genealogy156

and the coalescence time consequently takes a new value. A detailed description of157

the algorithm can be found in [29, 95]. The MSMC algorithm simultaneously analyses158

multiple sequences (up to 10) and follows the distribution of the first coalescence event159

in a sample of size n > 2 along the sequence based on the Kingman coalescent [52]. A160

detailed description of MSMC can be found in [82].161

Our new approach, SMβC, is a theoretical extension of the MSMC algorithm, simulta-162

neously analyzing multiple haploid sequences and focusing on the first coalescence event163

of a sample size 3 or 4 (this parameter is named M throughout the manuscript). We164

define as M the number of lineages simultaneously modeled by either approach. Hence,165

the SMβC follows the distribution of the first coalescence event of a sample size M along166

sequences assuming a β-coalescent process. Therefore, our SMβC allows for more than167

two ancestral lineages to join the first coalescence event, or new lineages to join an al-168

ready existing binary (or triple) coalescent event. Hence, the SMβC extends the MSMC169

theoretical framework by adding hidden states at which more than two lineages coalesce.170

Currently, the SMβC has been derived to analyze for up to 4 sequences simultaneously171

(due to computational load and mathematical complexity). However the SMβC can172

handle more than M sequences by analyzing all combination of sample size M before173

optimizing the likelihood. The emission matrix is similar to the one of MSMC. As in174

the MSMC software, the population size is assumed piece-wise constant in time and we175

discretize time in 40 bins throughout this study. A detailed description of SMβC can be176

found in Supplementary Text S1. To test and validate the theoretical accuracy of our177

approach, we first study its best case convergence (introduced in [86]) which corresponds178

to the model’s performance when the true (exact) genealogy is given as input, i.e. as if179

the hidden states are known. Additionally, we also validate the practical accuracy of the180
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SMβC on simulated sequence data taking the same input as the MSMC software [82], or181

using the inferred ARGs by ARGweaver [73]. All SMC approaches used in this manuscript182

are found in the R package eSMC2 (https://github.com/TPPSellinger/eSMC2).183

GNNcoal method184

Inspired by results obtained from inferences based on tree sequence data [34, 86], we185

develop a graph neural network (GNN) taking tree sequence data as input. Our GNN186

is designed to infer population size along with the α parameter of the Beta distribution187

describing the distribution of offspring production. In practice, the ARG is reshaped188

into a sequence of genealogies (more precisely a sequence of undirected graphs), and189

then given as input to the GNN (similar to what is described above for the SMβC).190

In our analyses, we fixed the batch size to 500. This value represents the number of191

coalescence trees being processed before updating parameters of the neural network. As192

the batch size is fixed to 500, only simulations displaying at least 500 recombination193

events are considered for the training data sets. If more than 500 recombination events194

occur along the sequence, the ARG is truncated and the GNN will only take as input195

the first 500 genealogies and remove the rest. Thanks to the GNN architecture, the196

algorithm can account for the topology of the genealogy. Hence, the GNN leverages197

information from coalescence time and branch lengths but also from the topology of the198

ARG. This operation is known as a graph convolution. By doing so, the GNN is capable199

of learning from local features of the ARG and extract information from its complex200

structure. To learn from global genealogy patterns (which SMC-based methods cannot201

do), an additional pooling strategy is implemented as part of the network [102]. To202

do so, the ARG is broken into smaller ARGs (i.e. subgraphs) during the forward-pass203

step. To illustrate the GNN strategy, we visualize the compression-like process, from the204

coalescent trees (1) being processed by GNNcoal (2,3) to the inferred variable of interest205

(4, 5) in Figure 1.206
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1. Coalescent
trees with

feature vectors

2. Learned subgraph
with updated feature

vectors

3. Last pooling step
with feature vector

containing inferred variables

4.  Masking of
time-relevant regions

and column-wise mean

5. Visualization of
inferred variables

Fig. 1. Schematic representation of GNNcoal processing an ARG The figure represents
the analogues compression of node embeddings (or feature vectors) as in Fig. 1 of [102]. The
pooling is hierarchical and applied to each coalescent trees until a single embedding per tree
remains, which is fed into a dense neural net to obtain the inferred variable of interest (i.e.
demographic changes). Each coalescent ancestor or leaf node is initialized by this feature vector
(light grey boxes) (1). Sub-graphs are generated by a pooling network with updated feature
vectors and a final compression step is performed until ideally one node per graph remains
(2-3). Lastly, the column-wise mean is taken after applying a time mask (blue - based on
number of coalescent events), so that single feature vector remains (4-5). Detailed description of
the graph convolution, feature vector initialization, pooling methodology, coalescent time mask
construction, and dataset generation can be found in Supplementary Text S2 or [102].

To infer parameters from our neural network, we need to define an objective func-207

tion to be optimized. We use a masked root-mean-squared error (RMSE) loss func-208

tion as objective function which is computed for each inputted ARG (i.e. minimizing209

the average square difference between predicted and true parameter value). In prac-210

tice, time is discretized (as for the SMβC) and time windows are defined. The true211

α value and true demography at 60 predefined time points are given as input to the212

GNN to compute the loss function. The GNN captures the stochastic complexity aris-213

ing from the underlying demographic scenario and model parameters. Furthermore,214

our algorithm naturally defines an appropriate time window to have sufficient obser-215

vation at each time point. A more detailed description of the GNNcoal can be found in216

Supplementary Text S2. The code of the model architecture is implemented in Py-217

torch [70] using the extension Pytorch Geometric [30]. The model is available with218

the simulated training dataset at https://github.com/kevinkorfmann/GNNcoal and219

https://github.com/kevinkorfmann/GNNcoal-analysis.220

ARGweaver and tsinfer221

As the ARG is not known in practice, it needs to be inferred from sequence data. ARG-222

weaver displays the best performance at recovering the ARG from whole genome poly-223

morphism data at the sample sizes employed in this study (i.e. « 50 ) [73, 15]. Briefly,224
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ARGweaver samples the ARG of n chromosomes/scaffolds conditional on the ARG of225

n− 1 chromosomes/scaffolds. To this aim, ARGweaver relies on hidden Markov models226

while assuming a sequentially Markov coalescent process and a discretization of time,227

similarly to the SMC-based methods previously described. For a more detail description228

of the algorithm, we refer the reader to the supplementary material of [73].229

230

For distinguishing between MMC and selection we additionally applied tsinfer to231

estimate undated genealogical topologies in an effort to build a small training dataset232

for a model selection study reframed as classification task. Tsinfer has been chosen due233

to its computational performance and details about the algorithm can be found in the234

respective supplementary information of [48].235

Simulation of data236

Validation dataset for both methods237

The ARG is given as input to the DL approach and the SMβC (see [86]). We use msprime238

[7] to simulate the ARG of a sample (individuals are assumed to be haploid) under239

the β-coalescent based on [84, 8] or under the Kingman coalescent (under neutrality or240

selection using msprime SweepGenicSelection functionality with start and end frequency241

of 1/Ne and 0.99, respectively). We simulate 10 sequences of 100 Mbp under five different242

demographic scenarios: 1) Constant population size; 2) Bottleneck with sudden decrease243

of the population size by a factor 10 followed by a sudden increase of population by a244

factor 10; 3) Expansion with sudden increase of the population size by a factor 10, 4)245

Contraction with sudden decrease of the population size by a factor 10; and 5) "Saw-246

tooth" with successive exponential decreases and increases of population size through247

time, resulting in continuous population size variation (as shown in [93, 82, 86]). We248

simulate data under different α values (i.e. parameters of the β-distribution) including249

values of 1.9 (almost no multiple merger events), 1.7, 1.5, and 1.3 (frequent and strong250

multiple merger events; Supplementary Figure S20). Mutation and recombination rate251

(respectively µ and r) are set to 10−8 per generation per bp in order to obtain the best252

compromise between realistic values and number of SNPs. When specified, some specific253

scenarios assume recombination and mutation rate set to produce sufficient data or to254

avoid violation of the finite site hypothesis. All python scripts used to simulate data sets255

are available at https://github.com/kevinkorfmann/GNNcoal-analysis.
:::::
Note

::::::
that256

:::
the

::::::::
output

::
of

::::::::::
msprime

:::::::
suffers

::::::
from

:
a
::::::::::::::
discontinuity

:::
in

:::::::::::
behaviour

::::::
when

:::::::::::
increasing

::
α

:::::::
above257

:::
1.9

:::::
and

::::::::::::::
transitioning

:::::
from

::::
the

::::::
Beta

:::::::::::
coalescent

:::
to

::::
the

::::::::::
Kingman

:::::::::::
coalescent

:::::::::
(α = 2).

::::::
The258

::::::::::
coalescent

:::::::::
process

:::::::::::
converges

:::
to

::
a

::::::::::
Kingman

::::::::::::
coalescent

:::
up

::::
to

::
a

::::::::
scaling

::::::::::
constant

:::::::
which259

:::
we

::::::::
recover

:::
in

::::
our

::::::::::::
simulations

:::::
and

:::::::::::::
estimations

::::
(see

:::::::::::::
description

::
in

:
https://tskit.dev/260

msprime/docs/stable/api.html#msprime.BetaCoalescent
::
).

:
261

Additionally, to generate sequence data, we simulate 10 sequences of 10 Mbp under262

the five different demographic scenarios described above and for the same α values. For263

each scenario, 10 replicates are simulated. In order to obtain sufficient SNPs for inference,264

we simulate sequence data with mutation and recombination rate (respectively µ and r)265

of 10−8 per generation per bp when α is set to 1.9 and 1.7, 10−7 per generation per bp266

when α is set to 1.5, and 10−6 per generation per bp when α is set to 1.3.267
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Training dataset for the GNNcoal268

In our study we train two GNNs, one to infer past variation of population size through269

time along with α, and one for model selection. The training dataset used for both GNNs270

is described below.271

Training dataset for the GNN inferring α and demography272

We generate an extensive number of ARGs to train our GNN. The ARGs are simulated273

under many demographic scenarios and α values. The model parameters are updated in274

supervised manner. The loss function is calculated for each batch with respect to how275

much the machine-learning estimates differ from to the true parameters used for sim-276

ulation. The simulations strategy to recover past demographic history is based on the277

strategy described and used in [13, 79]. The idea of this approach is to generate a repre-278

sentative set of demographic scenarios over which the network generalizes to consequently279

infer similar demographic changes after training. More details on the training strategy280

can be found in Supplementary Text S2.281

To improve the simulated demographic history before inference, we introduce a smooth-282

ing of the demography allowing to infer continuous variation of population size through283

time. We do so by interpolating I time points cubically, and choosing w (set to 60)284

uniformly spaced new time points of the interpolation in log space. All time points more285

recent than ten generations in the past are discarded, since inference is too imprecise in286

the very recent present under our models. An example of this process can be seen in287

Supplementary Text S2.288

Training dataset to disentangling coalescent and selection signatures289

Beyond parameter inference, deep learning approaches can also be used for clustering.290

Hence, we train a GNN to disentangle between different scenarios and models. In total,291

we define eight classes, namely K (S0) (Kingman, no selection), K (WS) (Kingman, weak292

selection), K (MS) (Kingman, medium selection), K (SS) (Kingman, strong selection)293

and four different β-coalescent classes (1.75 ≤ α < 2, 1.5 ≤ α < 1.75, 1.25 ≤ α < 1.5,294

1.01 ≤ α < 1.25) without selection. The three different selection regimes are defined as:295

0.01 ≤ Ne × s < 0.1 for SS, 0.001 ≤ Ne × s < 0.01 for MS, 0.0001 ≤ Ne × s < 0.001296

for WS and Ne× s = 0 for absence of selection. Demography is kept constant and set to297

104 and 106 individuals for Kingman and β-coalescent respectively and sequence length is298

set to 105 bp. The simulation is discarded if it resulted in less than 2,000 obtained trees299

and is rerun with twice the sequence length until the tree number required is satisfied.300

This procedure avoids simulating large genome segments of which only a small fraction301

of trees is used for the given scenario during training and inference. The selection site is302

introduced in the centre of the respective sequence, so that 249 trees left and 250 right of303

the middle tree under selection form a training sample, using 500 trees for each sample.304

One hundred replicates are generated for each training sample. The complete training305

dataset consists of 4,000 parameter sets: 2,000 for the Kingman cases and 2,000 for the306

β-coalescent cases (90% training dataset and 10% testing dataset). The model itself is307

trained for 20 epochs (number of time the data is analyzed), and the evaluation performed308

afterward on 1,000 randomly generated parameter sets, with one replicate per parameter309

set. Branches of the datasets have been normalized by population size to avoid biases in310
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the dating. Additionally, all tree sequences have been re-inferred with tsinfer to create a311

separated dataset, which has been used for training and evaluation (see results below).312

The same architecture used for demography estimation is employed with additional linear313

layers to reduce the number of output dimensions from 60 to 8. The loss function is set314

to a Cross-Entropy-Loss for the network to be trainable for categorical labels. Otherwise315

all architecture and training parameters is the same as described above and detailed in316

Supplementary Text S2.317

Results318

Inference bias under the wrongly assumed Kingman coalescent319

We first study the effect of assuming a Kingman coalescent when the underlying true320

model is a β-coalescent (i.e. in presence of multiple merger events) by applying MSMC321

and MSMC2 to our simulated data. The inference results from MSMC and MSMC2322

when the population undergoes a sawtooth demographic scenario are displayed in Figure323

2. For α > 1.5 the shape of the past demography is fairly well recovered. Decreasing324

the parameter α of the β-coalescent (i.e. higher probability of multiple merger events325

occurring) increases the variance of inferences and flattens the demography. Yet, both326

methods fail to infer the correct population size, due to the scaling discrepancy be-327

tween the Kingman and β-coalescent.
::::::
While

::::::::
MSMC

::::
and

::::::::::
MSMC2

::::::::
assume

:::
an

::::::::::::
underlying328

::::::::::::::
Wright-Fisher

:::::::
model

:::
as

::::::::::::::
reproduction

::::::::
model,

:::::::
whose

::::::::::
genealogy

:::
is

::::
well

:::::::::::::::
approximated

::::
by

::
a329

:::::::::
Kingman

:::::::::::
coalescent

::::::
with

::::
one

:::::
unit

::
of

:::::::::::
coalescent

:::::
time

:::::::::::::::
corresponding

:::
to

:::
N

:::::::::::::
generations,

::::
the330

:::::::::::::
β-coalescent

:::::::::::
simulation

:::
are

:::::::
based

:::
on

::
a

:::::::::
different

::::::::::::::
reproduction

::::::
model

:::::
[84],

:::::::
whose

:::::::::::
genealogy331

::
is

::::::
given

:::
by

:
a
:::::::::::::
β-coalescent

::::::
with

:
a
:::::::::
different

::::::::::
timescale

:::::
(see

:::::::::::::::
Introduction).

::::::
Even

:::
for

::
α
::::::
close

:::
to332

::
2,

:::::::
where

::::
the

:::::::::::::
β-coalescent

::::::::::
resembles

::::
the

:::::::::::
Kingman

:::::::::::
coalescent,

:::::
one

:::::
unit

::
of

:::::::::::
coalescent

::::::
time333

::
in

::::
the

:::::::::::::
β-coalescent

::::
and

:::::
one

::::
unit

:::
in

::
a

:::::::::::::::
Wright-Fisher

:::::::
model

:::::::::::
associated

::::::::::
Kingman

:::::::::::
coalescent334

::::
still

::::::
differ

:::
by

::
a
::::::::
scaling

::::::
factor

:::::
(see

::::::::::::::
Introduction

::::
and

::::::::::
Methods

:::
for

:::::::::
details).

:
Hence, we per-335

form the same analysis and correct for the scaling effect after the inference of the MMC336

versus a Kingman coalescent to better capture the specific effects of assuming binary337

mergers only. The results are displayed in Figure S1. For α > 1.5 the demography is338

accurately recovered providing we know the true value of α to adjust the y-axis (popu-339

lation size) scale. However, for smaller α values the observed variance is extremely high340

and a flattened past variation of population size is observed.341
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Fig. 2. Performance of MSMC and MSMC2 under a β-coalescent. Averaged esti-
mated demographic history by MSMC (blue) and MSMC2 (red) based on 10 sequences (mean
of random permutations of M=3) of 100 Mb with µ = r = 10−8 per generation per bp over ten
repetitions (while analyzing simultaneously 3 sequences, noted by M=3). Each repetition result
is represented in light red (PSMC’/MSMC2) or in light blue (MSMC). Population undergoes a
sawtooth demographic scenario (black) for A) α = 1.9, B) α = 1.7, C) α = 1.5, and D) α = 1.3.

The limit of the Markovian hypothesis342

As SMC approaches rely on the hypothesis of Markovian change in genealogy along the343

genome, we study the effect of α on the linkage disequilibrium (LD) of pairs of SNPs (r2,344

[75, 64]) in data simulated under the Kingman Coalescent or the β-coalescent (with α =345

1.5 and α = 1.3) and constant population size (Figure 3). LD monotonously decreases346

in average with distance under the Kingman coalescent suggesting the hypothesis of347

Markovian change in genealogy to be a fair approximation of the genealogical process in348

that case [97]. Under the β-coalescent a similar shape of the distribution is observed but349

with a higher average amount of LD. We find a higher variance in LD for smaller α values.350

The increased variance results in the occurrence of high spikes of LD along the genome351

(e.g. Figure 3 B). The stochastic increase of linkage along the genome demonstrates352

that the Markovian hypothesis used to model genealogies along the genome is strongly353

violated under the β-coalescent due to the long range effect of strong multiple merger354

events [8].355
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Fig. 3. Linkage disequilibrium under a Kingman and β-coalescent. Pairwise linkage
disequilibrium between SNPs (r2) under a Kingman and β-coalescent with α = 1.5 and α = 1.3
using 100 sequences of length 0.5 Mb for A) - C) and 1 replicate in D) - F). The population
size is constant at N = 104 for the Kingman model and N = 106 for the β-coalescent, with
µ = 1 × 10−7 and r = 1 × 10−8 per generation per bp. For each LD analysis, the linkage
disequilibrium is calculated by averaging it over automatically-selected window sizes, such that
on average at least two mutations are in each window for A) to F), respectively.

We further investigate the effect of multiple merger events on LD. To this aim, we first356

assume an SMC framework (e.g. MSMC2 or eSMC) to predict the transition matrix (i.e.357

matrix containing the probabilities for the coalescent time to change to another value358

between two positions of the genome) and investigate the absolute difference between the359

observed transition events. Under the Kingman coalescent, the distribution of coales-360

cent times between two positions in a sample of size two (n = 2) is well spread across361

hidden states in Figure S2 (i.e. absence of structured difference between observed and362

predicted transition events). However, under the β-coalescent (with α = 1.3) we observe363

significant differences between observed and predicted transition events at times points364

where multiple merger events occur (Figure S3). More precisely we observed transitions365

at specific time points (corresponding to multiple merger events) occurring much more366

frequently than what is predicted by the model (dark blue lines). This plot thus shows367

that multiple merger events do not affect the genealogy at every time point and that368

multiple merger events are over represented in the distribution of transitions events due369

to the long range effects of MMC events (i.e. many positions of the genome contain the370

same information). This means that one multiple merger coalescent events can affect371

all positions in the genomes (explaining the spikes in the LD distribution). In contrast,372

under the Kingman coalescent with recombination, the probability for a coalescent event373

to affect the whole genome is negligible.374

This plot thus unveils the discrepancy between the expectation from the SMC (i.e.375

approximating the distribution of genealogies along the genome by a Markov chain) and376

the actual effect of multiple merger events on the genealogy distribution along the genome.377

This discrepancy does not stem from the simulator, because it correctly generates ARG378

under the β-coalescent model [8, 7], but from the limits of the SMC approximation to379
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model events with long range effects on the ARG (Figure S3).380

Inferring α and past demography on ARG381

To test if our two approaches (GNNcoal and SMβC) can recover the past variation of382

population size and the α parameter, we run both methods on simulated tree sequences383

under different α values and demographic scenarios. Figure 4 displays results for data384

simulated under a sawtooth past demography and for α ranging from 1.9, 1.7, 1.5 to385

1.3. In all cases, the GNNcoal approach exhibits low variance to infer the variation of386

population size and high accuracy from 1.9 to 1.5 with a noticeable drop in accuracy for387

1.3 attributable to the ever increasing sparsity due to decreasing α generating stronger388

β-coalescent events. For high α values (>1.5), the shape of population size variation is389

well recovered by SMβC (4). However, for smaller values, the observed high variance390

demonstrates the limits of SMC inferences.391
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Fig. 4. Best-case convergence estimations of SMβC and GNNcoal under a β-
coalescent. Estimations of past demographic history by SMβC in red (median) and by
GNNcoal in blue (mean and 95% confidence interval, CI95; while analyzing simultaneously
M=3 or M=10 sequences; individual replicates of SMβC shown as light lines) when population
undergoes a sawtooth demographic scenario (black) under A) α = 1.9, B) α = 1.7, C) α = 1.5
and D) α = 1.3. SMβC runs on 10 sequences and 100 Mb, GNNcoal runs on 10 sequences and
500 trees, and µ = r = 10−8 per generation per bp.

On average, both approaches seem to recover fairly well the true α value (Figure392

5 and Table S1). In particular, GNNcoal displays high accuracy and lower standard393

deviation. We note that the variance in the estimation of α increases with diminishing α394
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value. Moreover, increasing the number of simultaneously analyzed sequences by SMβC395

does not seem to improve the inferred α value (Table S1). These conclusions are also396

valid for the results in Figure S4-S7 and Table S1 based on inference under four additional397

demographic scenarios: constant population size, bottleneck, sudden increase and sudden398

decrease of population size.399

When α diminishes, the effective population size decreases and the number of recom-400

bination events plummets for small values of α < 1.5. To demonstrate the theoretical401

convergence of SMβC to the correct values, we run SMβC on data simulated with muta-402

tion and recombination rate fifty times higher under similar scenarios as in Figure 4. This403

operation increases the amount of data in the form of SNPs and number of independent404

coalescent trees by recombination. Since branch lengths (in generations) are on average405

smaller in the presence of multiple merger when compared to a Kingman coalescent, we406

choose to increase the rates as opposed to increasing the genome lengths, which does not407

affect the branch lengths (but increases the number of genealogies). Results of SMβC408

for α values of 1.7, 1.5 and 1.3 are displayed on Table S2. Overall our results show that409

SMβC can recover α with higher accuracy when more data is available. To be more410

precise when M = 3 (M being the number of simultaneously haploid sequence analyzed),411

the overall average inferred α values improve from 1.6, 1.53 and 1.42 (Table S1) to 1.64412

, 1.49 and 1.36 (for data simulated respectively under α = 1.7,α = 1.5 and α = 1.3). Yet413

when M = 4 a gain in accuracy is only observed for α = 1.5 and α = 1.3. Indeed, the414

overall average inferred α values changed from 1.60, 1.54 and 1.47 (Table S1) to 1.58,415

1.47 and 1.39 (for data simulated respectively under α = 1.7, α = 1.5 and α = 1.3).416
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Fig. 5. Estimated α values by SMβC and GNNcoal. Estimated values of α by
SMβC and GNNcoal over ten repetitions using 10 sequences of 100 Mb with µ = r = 10−8

per generation per bp under a β-coalescent process (with different α parameter). The
analysis are run on five different demographic scenarios (Constant population size, Bot-
tleneck, Sudden increase, Sudden decrease and a Sawtooth demography) using a sample
size n = 3 for A) and C), n = 4 for B), and n = 10 for D). Grey dashed lines indicate
the true α values. For exact values and standard deviations of the respective experiment
see Supplementary Table S1.

Although 10 sequences are given to SMβC in the previous analyses, the method can417

only analyze three or four simultaneously. On the other hand, GNNcoal can simulta-418

neously analyze 10 sequences, that is the whole simulated ARG. As we observe that419

GNNcoal has a higher performance than SMβC, we wish to test whether the GNNcoal420

better leverages information from the ARG or benefits from simultaneously analyzing421

a larger sample size. Thus, we run GNNcoal on the same dataset, but downsampling422

the coalescent trees to a sample size three. Results for sample size ten are displayed in423

Figure S4 to S7 and downsampled results with sample size three (M=3) of GNNcoal,424

which appear to be similar, are displayed in Figure S8, demonstrating that the GNNs425

can better leverage information from the ARG in presence of multiple merger events.426

Additionally, we test if both approaches can recover a Kingman coalescent from the427

ARG when data are simulated under the Kingman coalescent, namely both approach428

should recover α = 2. To do so, we simulate the same five demographic scenarios as above429

under a Kingman coalescent and infer the α parameter along with the past variation of430
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population size. Estimations of α values are provided in Table 1 and are systematically431

higher than 1.85, suggesting mostly binary mergers. The associated inferred demogra-432

phies are shown in Figures S9-S13. Both approaches correctly infer the past demographic433

shape up to the scaling discrepancy between the Beta and the Kingman coalescent (as434

previously described). Furthermore, we notice that the scaling effect only affects the435

y-axis for the SMβC but affect both axes for GNNcoal.436

As GNNcoal was not trained on data simulated under the Kingman coalescent (espe-437

cially with such high population size), some events fall beyond the scope of the GNN due438

to the scaling discrepancy between the Beta and Kingman coalescence. Hence, we run439

GNNcoal on data simulated under the Kingman coalescent but with smaller population440

size (scaled down by a factor 100) to assure that all events fall within the scope of the441

GNN. Values of α inferred by the GNNcoal and the SMβC under the five demographic442

scenarios are available in Table S3. The associated inference of population size are plot-443

ted in Figure S9-S12. Both approaches recover high α values (i.e.>1.85) suggesting a444

genealogy with almost exclusively binary mergers. In addition, both approaches accu-445

rately recover the shape of the past variation of population size up to a scaling constant446

but only on the population size y-axis.447

Inferring α and past demography from simulated sequence data448

We first investigate results for both GNNcoal and SMβC with the objective of evaluating449

the performance on ARG reconstructed from sequence data using ARGweaver [73] as450

ARGweaver is currently being considered the best performing approach to infer ARG for451

sample size smaller than 20 [15]. Demographic inference results by both approaches are452

displayed in Figure S14, and α inference results in Table S4. GNNcoal does not recover453

the shape of the demographic history from the inferred ARGs and largely overestimates454

α. In contrast, SMβC produces better inferences of α when giving the inferred ARG as455

input when compared to the GNN. SMβC recovers the shape of the past variation of456

population size for α > 1.3 but displays extremely high variance for α = 1.3. We then457

evaluate SMβC on simulated sequence data to compare the necessity of reconstructing458

the ARG for the SMC method and found that α is typically well recovered (Table 2)459

and that results are similar to what obtained when the true ARG is given. Furthermore,460

the shape of the past variation of population size is well inferred under the sawtooth461

demographic scenario for α > 1.3 (Figure S15). In the other four scenarios, the shape462

of the demography is recovered in recent times but population sizes are underestimated463

in the past (Figure S16). Finally, as found above from inputted ARGs, the variance in464

estimates of population sizes generally increases with diminishing α.465

Inferring MMC and accounting for selection466

As specific reproductive mechanisms and selection can lead to the occurrence of multiple467

merger-like events, we train our neural network on data simulated under the β-coalescent,468

and under the Kingman coalescent in presence or absence of selection to assess our meth-469

ods capacity to distinguish between them. We then use the trained GNNcoal to determine470

if multiple merger events originate from skewed offspring distribution or positive selection,471

or if the data follows a neutral Kingman coalescent process. The classification results are472

displayed in Figure 6 in the form of confusion matrices, where the percentage of times473
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the GNNcoal correctly assigns the true model shown on the diagonal evaluated on a test474

dataset of 1,000 ARGs. We tested three scenarios A) training and evaluating on known475

exact ARGs, B) training on exact ARGs but evaluating on inferred ARGs, and, lastly476

C) training and evaluating on inferred ARGs. The results indicate the necessity of inte-477

grating inference errors or instances of branch unresolvability into the training process.478

The network is able of distinguishing between signals of multiple merger, which translate479

to an estimate of α, from simple ARG-estimation uncertainties. The overall confusion480

between neighboring classes may be attributed to the comparably small size of training481

data (4,000 simulations), which enabled to build a training dataset comprised of inferred482

trees within few hours. To summarize our approach can accurately distinguish between483

Kingman and β-coalescent, but uncertainty needs to be part of the training procedure.484
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Fig. 6. Confusion matrix for Kingman and β-coalescent classification model under
varying selection coefficients. Evaluation of classification accuracy for Kingman (K) and
β-coalescent (B) for no selection (S0), weak selection (SW), medium selection (SM) and strong
selection (SS) using a 1,000 repetition validation dataset (and small 4000 proof-of-concept repe-
tition training set). Population size was kept constant at N = 104 individuals for the Kingman
scenario and at N = 106 for the β-coalescent, using a sample size n = 10 and r = 10−8 per bp
per generation. Branch length are normalized by the respective population size. Classification
model has been trained and evaluated either on exact or inferred tree sequences (tsinfer without
dating) as indicated in the subfigure titles of A), B) and C).

Since strong selection can lead to multiple merge coalescent or rapid and succes-485

sive coalescent events (as the beneficial alleles spreads very quickly in the population)486

[26, 11, 76], we investigate if our approaches can model and recover the effect of selec-487

tion. Therefore, we infer α along the genome (to model the local effect of selection on488

the genome) with both approaches from true genealogies simulated with strong positive489

selection or neutrality under a Kingman coalescent with population size being constant490

through time. SMβC infers α on windows of 10kbp along the genome, and GNNcoal491

infers α every 20 trees along the genome. Results for GNNcoal and SMβC are displayed492

in Figure 7. The SMβC approach recovers smaller α value around the locus under strong493

selection (while GNNcoal displays higher variance). However under neutrality or weak494

selection, inferred α values remain high (>1.6) along the genome.495
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Fig. 7. Averaged estimations by GNNcoal and SMβC under selection Estimations
of α along the genome by the GNNcoal approach and the SMβC when population undergoes as
strong positive selective sweep event (at position 0.5 Mb) under different strengths of selection:
A) s = 0.01 , B)s = 0.001, C) s = 0.0001, and D) s = 0 meaning neutrality (mean and
standard deviation for both methods). The population size is constant and set to N = 105 with
µ = r = 10−8 per generation per bp. We hence have in A) Ne × s = 1000,B) Ne × s = 100, C)
Ne × s = 10 and D) Ne × s = 0. SMβC uses 20 sequences of 1Mb (red) and GNNcoal uses 10
sequences through down-sampling the sample nodes (blue)

Similarly, we run both approaches on genealogies simulated under the β-coalescent496

(assuming neutrality) and we infer the α value along the genome. Inferred α values497

by both approaches are plotted in Figure S17. GNNcoal is able to recover the α value498

along the genome with moderate overestimation due to tree sparsity. On the contrary,499

SMβC systematically underestimates α values. Nevertheless, unlike in presence of positive500

selection at a given locus, the inferred α values are found in all cases to be fairly constant501

along the genome.502

We finally simulate data under a Kingman coalescent (true genealogies) with a strong503

selective sweep or under neutrality conditioned on a sawtooth demographic scenario to504

test our methods’ simultaneous inference capabilities. Under neutrality, our both ap-505

proaches recover, as expected, high α values along the genome and can accurately re-506

cover the past variation of population size (only up to a scaling constant for GNNcoal,507

since it was trained on the β-coalescent only) (Figure 8). Similarly, when the simulated508

data contains strong selection, a small α value is recovered at the locus under selection509

and the past variation of population size is accurately recovered, albeit with a small510

underestimation of population size in recent times for SMβC (Figure 8).511
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Fig. 8. Simultaneous estimations of α along the sequence under demographic
change by GNNcoal and SMβC. Simultaneous estimation of α along the genome under a
partial sawtooth scenario: A) and B) in the absence of selection (mean and standard deviation
for both methods), and C) and D) presence of selection with NeS = 1, 000 (mean and CI95 for
GNNcoal and median for SMβC). SMβC uses 20 sequences of 1Mb (red) and GNNcoal uses 10
sequences through down-sampling the sample nodes (blue), and µ = r = 108 per generation per
bp.

Discussion512

With the rise in popularity of SMC approaches for demographic inferences [58], most513

current methods leverage information from whole genome sequences by simultaneously514

reconstructing a portion of the ARG to infer past demographic history [58, 82, 93, 94],515

migration rates [51, 95], variation in recombination and mutation along the genome [5, 4],516

as well as ecological life history traits such as selfing or seed banking [85, 91]. However,517

other previous studies proposed to uncouple both steps, namely by first reconstructing518

the ARG and by then inferring parameters from its distribution [86, 34, 73]. Indeed,519

recent efforts have been made to improve approaches to recover the ARG [88, 49, 39,520

73, 59, 15], as well as its interpretation [33, 86]. Our results on data simulated under521

the β-coalescent clearly show the strong effect of multiple merger events on the topology522

and branch length of the ARG. We find that the more multiple merger events occur, the523

more information concerning the past demography is lost. Both GNNcoal and SMβC,524

whether given sequence data, the true or inferred ARG, can recover the α parameter and525

the variation of past population size for α values high enough (i.e. α ≥ 1.5). However,526

for lower values of α, a larger amount of data is necessary for any inference, specifically527

in the form of a high effective population size (correspondingly adequate mutation and528

recombination rates) and sufficient sequence length, which becomes nearly impossible529

when α tends to one. Both approaches can also recover the Kingman coalescent (i.e.530
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α>1.8). We find that GNNcoal outperforms SMβC in almost all cases when given the531

true ARG, and we demonstrate that GNNcoal can be used to disentangle between β-532

coalescent and Kingman models with selection.533

Overall, our results provide a substantial improvement in the development of inference534

methods for models with multiple merger events, a key step to understand the under-535

lying reproduction mechanism of a species. While still inferring population sizes of the536

correct order of magnitude, SMβC is outperformed by GNNcoal when given true ARGs537

as input. As ARG inference method improve, GNN models will offer a promising alter-538

native to current SMC methods. As we directly compare our theoretical SMC to the539

GNN based on the same input data (coalescent trees), we are ideally placed to dissect540

the mechanisms underlying the power of the GNNcoal method. We identify four main541

reasons for the difference in accuracy between the two methods developed. First, the542

SMβC approach suffers from the limit of the sequential Markovian coalescent hypothesis543

along the genome when dealing with strong multiple merger events [8, 21]. Second, most544

current SMC approaches, except XSMC [50], rely on a discretization of the coalescent545

times into hidden states, meaning that simultaneous mergers of three lineages may not be546

easily distinguished from two consecutive binary mergers occurring over a short period.547

Third, the SMβC relies on a complex hidden Markov model and due to computational548

and mathematical tractability, it cannot leverage information on a whole genealogy. In549

fact, as MSMC, SMβC only focuses on the first coalescent event, and therefore cannot550

simultaneously analyze large sample size. Furthermore, the SMβC approach leverages551

information from the distribution of genealogies along the genome. Whilst, in the near552

absence of recombination events, both approaches cannot utilize any information from the553

genealogy itself, GNNcoal can overcome this limit by increasing the sample size. Fourth,554

the SMβC is based on a coalescent model where α is constant in time. Yet multiple555

merger events do not appear regularly across the genealogical timescale, but occur at556

few random time points. Hence, the SMC approach suffers from a strong identifiability557

problem between the variation of population size and the α parameter (for low α values).558

For instance, if during one hidden state one strong multiple merger event occurs, multi-559

ple merger events are seldom observed and SMβC may rather assume a small population560

size at this time point (hidden state). This may explain the high variance of inferred561

population sizes under the β-coalescent.562

By contrast, GNNcoal makes use of the whole ARG, and can easily scale to larger563

sample sizes (over 10), although it recovers α with high accuracy with sample size M= 3564

only. Our interpretation is that GNNcoal is able of simultaneously leveraging information565

from topology and the age of coalescent events (nodes) across several genealogies (here566

500). GNNcoal ultimately leverages information from observing recurrent occurrences of567

the same multiple merger events at different locations on the genome, while being aware568

of true multiple merger events from rapid successive binary mergers. We believe that569

our results pave the way towards the interpretability of GNN and deep learning methods570

applied to population genetics. For further theoretical insights into recent descriptions571

of multiple merger we would like to point the reader towards [24].572

When applying both approaches to simulated sequence data (and not to true ARGs),573

both approaches behave differently. GNNcoal is not capable to accurately infer model pa-574

rameters, i.e. past variation of population size or α. In contrast, SMβC performed better575
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than GNNcoal when dealing with sequence data (and not true ARG). SMβC is capable576

of recovering α and the shape of the demographic scenario in recent times irrespective of577

whether sequence data or ARG inferred by ARGweaver is given as input. This is most578

likely because the statistic used by SMβC (i.e. first coalescent event in discrete time) is579

coarser than the statistic used by GNNcoal (i.e. the exact ARG). We therefore speculate580

that the theoretical framework of the SMβC, although being in theory less accurate than581

GNNcoal, is more robust and suited for application to sequence data. More specifically,582

the issue being faced by the GNNcoal is known as out-of-distribution inference [41], which583

requires the network to generalize over an untrained data distribution. This issue happens584

because GNNcoal is not trained using ARG inferred by ARGweaver. Building a training585

data set for GNNcoal to overcome this issue is currently impractical due to the inference586

speed of ARGweaver. However, future work will aim at increasing robustness of GNN587

inferences, for instance by adding uncertainty or multiple models during the training pro-588

cess. Improving the performance of GNNcoal on sequence data requires more efficient and589

accurate ARG inference methods, such as to incorporate inferred (non-exact) genealogies590

into the training, thereby accounting for inference errors and for the evaluation of the591

algorithm on a broader spectrum of common population genetic research questions. The592

former observation is important to avoid bias from potential hypothesis violations of the593

chosen ARG inference approach.594

Past demographic history, reproductive mechanisms, and natural selection are among595

the major forces driving genome evolution [43]. Hence, in the second part of this596

manuscript we focus on integrating selection in both approaches. Currently, no method597

(especially if relying only on SFS information) can account for the presence of selection,598

linkage disequilibrium, non-constant population size and multiple merger events [43] al-599

though recent theoretical framework might render this possible in the future [1].600

As a first step to fill this gap, we demonstrate that GNNcoal can be used for model601

selection to reduce the number of hypotheses to test. Determining which evolutionary602

forces are driving the genome evolution is key, as only under the appropriate neutral603

population model results of past demography and selection scans can be correctly inter-604

preted [43, 45]. The high accuracy of GNNcoal in model selection is promising, especially605

as other methods based on the SFS alone [56, 46] have limits in presence of complex606

demographic scenarios. GNN can possibly overcome these limits, as it is easier to scale607

the GNN to estimate more parameters. We follow a thread of previous work [76, 38, 11],608

by integrating and recovering selection, multiple merger and population size variation by609

simply allowing each fixed region in the genome to have its own α parameter. In presence610

of strong selection, we find lower α value around the selected loci and high α value in neu-611

tral neighbouring regions. Hence, our results point out that strong selection can indeed be612

modeled as a local multiple merger event (see [26, 11, 76]). In presence of weak selection,613

no effect on the estimated α value is observed, demonstrating that weak selection can be614

modeled by a binary merger and has only a local effect on the branch length by shortening615

it. In theory, both approaches should be able to infer the global α parameter linked to the616

reproductive mechanism, as well as the local α parameter resulting from selection jointly617

with the variation of population size. However, the absence of a simulator capable of sim-618

ulating data with selection and non-constant population size under a β-coalescent model619

prevents us from delivering such proofs. We show strong evidence that under neutrality620

our approaches can recover a constant (and correct) α along the genome as well as the621

past variation of the population size. We further predict that, while selective processes622
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may preferentially occur in coding regions or regulatory potentially non-coding regions,623

local variations in α (as a consequence of sweepstake events) should be indifferent to the624

genomic functionality (coding or non-coding). Hence, we suggest that current sequence625

simulators [7, 35] could be extended to include the aforementioned factors and de facto626

facilitate the development of machine learning approaches.627

Our study is unique in developing a state-of-the-art SMC approach and demonstrat-628

ing that computational and mathematical problems can be overcome by deep learning629

(here GNN) approaches. The GNNcoal approach is, in principle, not limited to the β-630

coalescent, and should work for other multiple merger models (e.g., Dirac coalescents631

[27]) with the appropriate training. Furthermore, our SMβC approach is the first step to632

build a full genome method with an underlying model accounting for positive selection.633

In the future, further implementations may be added for a more realistic approach. The α634

parameter should be varying along the genome (as a hidden state), as the recombination635

rate in the iSMC [5]. This would allow to account for the local effect of strong and weak636

selection [1]. The effect of the α parameter could be also changing through time to better637

model the non uniform occurrence of multiple merger events through time. Although638

it is mathematically correct to have α as a constant in time, it is erroneous in practice639

(Figure S2). We speculate that those additional features will allow to accurately model640

and infer multiple merger events, variation of population size, and selection at each po-641

sition on the genome. We believe that deep learning approaches could also be improved642

to recover more complex scenarios, providing in depth development on the structure of643

the graph neural networks, for example, by accounting for more features. At last, further644

investigation are required to make progress in the interpretability of the GNN methods,645

namely which statistics and convolution of statistics are used by GNNcoal to infer which646

parameters.647

As our approaches are the first of their kind, we chose to restrain our study to haploid648

models of β and Kingman coalescent as a proof of principle. However, the GNNcoal and649

SMβC approaches can be extended to higher ploidy levels. Diploid versions of the haploid650

reproduction models whose genealogies are given by the β-coalescent lead to slightly651

different MMC coalescent models which can exhibit simultaneous multiple mergers [8, 10].652

Thus, our GNN approach should be directly applicable when trained on these diploid653

models which are implemented in msprime [7]. However, to adjust the SMβC approach654

would be somewhat more cumbersome (but doable), since we would need to extend the655

underlying HMM to account for simultaneous multiple mergers. We emphasise that656

while there is growing evidence that MMC models produce better fitting genealogies for657

various species [32], there is ongoing discussions about which mathematical models are658

better suited to which species (for example see [3] for cod). We advocate that the life-659

cycle and various ecological factors determine whether a haploid or diploid MMC model660

can be chosen. On the one hand, a diploid MMC model is likely realistic if the species661

has a diploid life-cycle and balanced sex-ratio, so that multiple merger events do indeed662

happen in both sexes. On the other hand, if species are mostly haploid or clonal/asexual663

during their life-cycle (with periodically one short diploid phase for sexual reproduction)664

or exhibit strongly imbalanced sex-ratio, a haploid MMC model may be better suited.665

In their current form, our approaches are applicable to data from species with the latter666

characteristics such as many fungal and micro-parasites of plants and animals (including667

humans) as well as invertebrates (e.g. Daphnia or aphids) which undergo several clonal668
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or parthenogenetic phases of reproduction (and one short sexual phase) per year. This669

represents a non-negligible set of study organisms which are of importance for medicine670

and agriculture [92].671

Our results on inferred ARGs stress the need for improving ARG inference [15].672

Thanks to the SMC we are close to model the ARG allowing to infer demographic his-673

tory, selection and specific reproductive mechanism. Moreover, the comparison of deep674

learning approaches with model driven ad hoc SMC methods may have the potential to675

help us solve ongoing challenges in the field. These include simultaneously inferring and676

accounting for recombination, variation of population size, different type of selection,677

population structure and the variation of the mutation and recombination rate along678

the genome. These issues have puzzled theoreticians and statisticians since the dawn of679

population genetics [43].680

On a final note, as environmental changes hit us all, we suggest that decreasing the681

computer and power resources needed to perform DL/ GNN analyses should be attempted682

[80]. Based on our study, we suggest that population genetics DL methods could be built683

as a two step process: 1) inferring ARGs, and 2) inferring demography and selection based684

on the ARGs. We speculate that general training sets based on ARGs could be build and685

be widely applicable for inference across many species with different life cycles and life686

history traits, while the inference of ARGs could be undertaken by complementary deep687

learning or Hidden Markov methods.688

Tables689

scenario True α α:SMβC,M=3 α:SMβC,M=4 α : GNN, M=3 α : GNN, M=10
Constant 2 1.97 (0.005) 1.97 (0.008) 1.99 (0.002) 1.99 (0.003)
Sawtooth 2 1.94 (0.017) 1.87 (0.019) 1.99 (0.002) 1.99 (0.003)
Bottleneck 2 1.97 (0.01) 1.97 (0.009) 1.99 (0.003) 1.99 (0.004)
Decrease 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.003) 1.99 (0.004)
Increase 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.004) 1.99 (0.002)

Table 1: Average estimated values of α by SMβC and GNNcoal over ten repetitions
under the Kingman coalescent using 10 haploid sequences of 10 Mb and µ = r = 10−8

per generation per bp. The standard deviation is indicated in brackets.
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scenario True α α∗:SMβC,M=3
Constant 1.9 1.86 (0.16)

Bottleneck 1.9 1.89 (0.09)
Increase 1.9 1.93 (0.07)
Decrease 1.9 1.96 (0.04)
Sawtooth 1.9 1.76 (0.17)
Constant 1.7 1.82 (0.10)

Bottleneck 1.7 1.64 (0.23)
Increase 1.7 1.82 (0.10)
Decrease 1.7 1.89 (0.13)
Sawtooth 1.7 1.71 (0.27)
Constant 1.5 1.52 (0.30)

Bottleneck 1.5 1.64 (0.33)
Increase 1.5 1.57 (0.24)
Decrease 1.5 1.60 (0.18)
Sawtooth 1.5 1.66 (0.14)
Constant 1.3 1.31 (0.20)

Bottleneck 1.3 1.2 (0.17)
Increase 1.3 1.24 (0.13)
Decrease 1.3 1.57 (0.11)
Sawtooth 1.3 1.37 (0.16)

Table 2: Average estimated α values by SMβC on simulated sequence data over ten
repetitions using 10 sequences of 10 Mb with recombination and mutation rate set to
1× 10−8 for α 1.9 and 1.7, 1× 10−7 for α 1.5 and 1× 10−6 for α 1.3 per generation per
bp under a Beta coalescent process. The analysis are run on five different demographic
scenarios (Constant population size, Bottleneck, Sudden increase, Sudden decrease and
a Sawtooth demography).

Data availability690

Code used to generate the simulated data for analysis, training and validation alongside691

(trained) deep learning models can be found at https://github.com/kevinkorfmann/692

GNNcoal and https://github.com/kevinkorfmann/GNNcoal-analysis. Code for SMC693

approaches used in this manuscript are available in the R package eSMC2 https://694

github.com/TPPSellinger/eSMC2.
::::::::::
msprime

::::
and

:::
its

::::::::::::::::
documentation

::::
can

:::
be

:::::::
found:

:
https:695

//tskit.dev/msprime/docs/stable/quickstart.html .696
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