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Abstract

The reproductive mechanism of a species is a key driver of genome evolution. The
standard Wright-Fisher model for the reproduction of individuals in a population
assumes that each individual produces a number of offspring negligible compared
to the total population size. Yet many species of plants, invertebrates, prokary-
otes or fish exhibit neutrally skewed offspring distribution or strong selection events
yielding few individuals to produce a number of offspring of up to the same mag-
nitude as the population size. As a result, the genealogy of a sample is character-
ized by multiple individuals (more than two) coalescing simultaneously to the same
common ancestor. The current methods developed to detect such multiple merger
events do not account for complex demographic scenarios or recombination, and
require large sample sizes. We tackle these limitations by developing two novel and
different approaches to infer multiple merger events from sequence data or the an-
cestral recombination graph (ARG): a sequentially Markovian coalescent (SMβC)
and a graph neural network (GNNcoal). We first give proof of the accuracy of our
methods to estimate the multiple merger parameter and past demographic history
using simulated data under the β-coalescent model. Secondly, we show that our
approaches can also recover the effect of positive selective sweeps along the genome.
Finally, we are able to distinguish skewed offspring distribution from selection while
simultaneously inferring the past variation of population size. Our findings stress
the aptitude of neural networks to leverage information from the ARG for inference
but also the urgent need for more accurate ARG inference approaches.

Keywords— kingman coalescent, beta coalescent, selective sweep, deep learning, graph
neural networks, population genetics, multiple merger coalescent, sequentially markovian coa-
lescent, ancestral recombination graph
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Introduction1

With the availability of genomes of increasing quality for many species across the tree2

of life, population genetics models and statistical methods have been developed to re-3

cover the past history of a population/species from whole genome sequence data from4

several individuals [87, 58, 82, 88, 85, 5, 4, 90, 43, 44]. Indeed, the inference of the past5

demographic history of a species, i.e. population expansion, contraction, or bottlenecks,6

extinction/colonisation, is not only interesting in its own right, but also essential to cal-7

ibrate genome-wide scans to detect genes under (e.g. positive or balancing) selection8

[90, 45]. A common feature of inference methods that make full use of whole genome se-9

quences is the underlying assumption of a Kingman coalescent process [52] to describe the10

genealogy distribution of a sample. The Kingman coalescent process and its properties11

stem from using the traditional forward-in-time Wright-Fisher (WF) model to describe12

the reproduction mechanism of a population. Besides non-overlapping generations, a key13

assumption of the neutral WF model is that an individual offspring chooses randomly (i.e.14

uniformly) its parents from the previous generation. More precisely, each chromosome15

chooses a parental chromosome from the previous generation. Thus, a key parameter is16

the distribution of the number of offspring that parents can have. In the WF model,17

due to the binomial sampling, the distribution of offspring number per parent is well18

approximated by a Poisson distribution with both mean and variance equal to one. This19

implies that parents will most likely have zero, one, or two offspring individuals, but it is20

improbable that one parent would have many offspring individuals (i.e. on the order of21

the population size, under the Wright-Fisher haploid model the probability for a parent22

to have 10 or more offspring is ≈ 10−8). The assumption of small variance in offspring23

distribution between individual parents is realistic for species with low juvenile mortality24

(so-called type I and II survivorship in ecology
:
,
::::
see

:::::::::::::
survivorship

:::::::
curves

::::
e.g.

:::
by

::::
[23]), such25

as mammals.26

As genome sequence data become available for a wide variety of species with different27

biological traits and/or life cycles, the applicability of the Kingman coalescent relying on28

the WF model can be questioned [89, 2, 3, 69, 46, 66, 92, 63, 32]. Indeed, for some species,29

such as fish, with high fecundity and high juveniles mortality (type III survivorship,
:::::
[23]30

), it is expected that the variance in reproduction between parents can be much larger31

than under the Poisson distribution [92]. This effect is termed as sweepstake reproduction32

[37, 2]. Neutral processes such as strong seed banking [12], high fecundity with skewed33

offspring distribution [37, 27], extremely strong and recurrent bottlenecks [9, 21], and34

strong selective processes (i.e. positive selection) [26, 17, 18, 36, 3] are theoretically35

shown to deviate from the classic WF model in a way that the genealogies can no longer36

be described by a Kingman coalescent process. Under such conditions, a new class of37

processes arise to describe the genealogy distribution, a class where multiple individuals38

can coalesce and/or multiple distinguished coalescence events can occur simultaneously39

[78, 65, 25, 77, 71, 14]. Generally, this class of genealogical processes is called the Multiple40

Merger Coalescent (MMC). MMC models are more biologically appropriate than the41

Kingman coalescent to study many species of fish [28, 2, 3, 37], invertebrates (insects,42

crustaceans, etc.), viruses [61], bacteria [63, 67], plants and their pathogens [92]. While43

we would like to assess which population model best describes the species genealogy, field44

experiments to quantify the underlying reproduction mechanism of a species can be costly45

and time consuming at best, or intractable at worst. Therefore, an alternative solution46
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Inference under the Beta Coalescent

is to use inference methods based on genome data to identify which model best describes47

the genealogy of a given species/population.48

In this study we use the so-called β-coalescent, a specific class of MMC models.49

Unlike under the WF model, under MMC models the ploidy level strongly affects the50

distribution of genealogies [8]. For simplicity, in this study we focus on haploid organ-51

isms.
:::
In

::::
the

::::::::::
polyploid

::::::
case,

:::::::
where

:::::
each

::::::::
parent

::::::::::::
contributes

:::::::::
multiple

::::::::::
genomes,

:::::
the

::::::
SMC52

:::::::::::::
formulations

:::
of

:::::::::
putative

::::::
intra-

:::::
and

:::::::::::::::::
inter-individual

::::::::::::
coalescence

:::::::
events

:::::::
would

:::::
need

:::
to

::::
be53

:::::::::
carefully

::::::::::
modelled,

::::::
since

:::::
this

::::::
effect

:::::::
would

:::::
lead

::
to

::::::::
smaller

:::::::::::::
coalescence

:::::::::::::
probabilities

:::::
and

::
a54

:::::::
change

:::
of

::::
the

::::::::::
predicted

:::::::::::
statistical

:::::::
power

::::
for

::::::::::::::
demographic

::::::::::
inference.

::
It is demonstrated55

that if the probability of a parent to have k or more offspring is proportional to k−α, where56

1 < α < 2, then the genealogy can be described by a Λ-coalescent [84]. The latter is a57

general class of coalescent process describing how and how fast ancestral lineages merge58

[71, 77]. When using the Beta(2 α,α) distribution as a probability measure for the Λ-59

coalescent, the transition rates (i.e. coalescent rate) can be analytically obtained leading60

to the β-coalescent, a specific MMC model. If α tends to 2, then the coalescent process61

converges to a Kingman coalescent (up to a scaling constant)
:
:
::::
the

:::::::::
effective

:::::::::::
population

:::::
size62

::::::::::::
calculations

::::
for

::::
the

::::::
Beta

:::::::::::
coalescent

::::::
yield

:::::::::::::::::::::::::::::::::::::::::
Ne = (µestimated

µreal
)/scaling constant)

1
(α−1) ,

:::::::
where63

:::::::::::::::::::
m = 1 + 1

2α−1·(α−1)
,
::::::::::::::::::::::::::::::::

scaling constant = (mα)
(α·β(2−α,α)) :::::

and
:::::::::::::::::::::::::::
µestimated = θ(

2·
∑nind−1

i=1
1
i

)
·L :

[8, 55,64

56]. If α tends to one, the model tends to a Bolthausen-Sznitman coalescent process65

(i.e. dominated by strong multiple merger events) [14]. The β-coalescent has the prop-66

erty that the observed polarized Site Frequency Spectrum (SFS) of a sample of single67

nucleotide polymorphisms (SNPs) exhibits a characteristic U-shape with an excess of68

rare and high frequency variants (compared to the Kingman coalescent) [81]. Current69

methods to draw inference under MMC models leverage information from the summary70

statistics extracted from full genome data such as Site Frequency Spectrum (SFS, or71

derived summary statistics) [56, 36, 76], minor allele frequency [74] or copy number al-72

teration [46]. It is shown that the SFS is robust to the effect of recombination [56, 74]73

and its shape allows to discriminate between simple demographic models (population ex-74

pansion or contraction) under the Kingman coalescent and MMC models with constant75

population size [56, 55, 28]. However, methods relying on genome-wide SFS have two76

main disadvantages. First, in absence of strong prior knowledge, they can suffer from77

non-identifiability [43] as several complex neutral demographic and/or selective models78

under the Kingman or MMC models can generate similar SFS distributions. Second, as79

they summarize the collection of underlying genealogies, they require high sample sizes80

(>50) to produce trustworthy results [56, 55, 28], relying on experimental designs which81

are prohibitive for the study of non-model species. To tackle these limitations, we develop82

two methods that integrate recombination events along the genome in order to leverage83

more information from full genome data, thus requiring fewer samples.84

In species undergoing sexual reproduction, recombination events break the genealogy85

of a sample at different position of the genome (i.e. the genealogy of a sample varies along86

the genome), leading to what is called the Ancestral Recombination Graph (ARG) [40, 8].87

Because all the genealogical information is contained in the ARG, in this study we aim88

at the interpretation of the ARGs to recover model parameters in presence of multiple89

merger events. With the development of the sequentially Markovian coalescent theory90

[62, 60, 98], it becomes tractable to integrate linkage disequilibrium over chromosomes91
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in inferences based on the Kingman coalescent [58]. Hence, we first develop an SMC92

approach based on the β-coalescent named the Sequentially Markovian β Coalescent93

(SMβC). The β-coalescent has the additional property that, under recombination, long94

range dependency can be generated between coalescent trees along the genome if multiple-95

merger events happen in a single generation [8]. In other words, coalescent trees which96

are located at different places in the genome, and expected to be unlinked from one97

another [68], would show non-zero correlation in their topology and coalescent times.98

This is because coalescent trees from different genomic regions may all be affected by99

the same MMC event (merger event of multiple lineages in the past) which then leaves100

traces in the genome at several loci [9]. To overcome the theoretically predicted non-101

Markovian property of the distribution of genealogies along the genome under the β-102

coalescent with recombination [8] ,
::::
and

::::
the

:::::::::::
increasing

::::::::
sparsity

:::
of

::::::::::::
genealogies

::::
and

::::::::::
ancestral103

::::::
nodes

:::::
with

:::::::::
respect

:::
to

::
α
:::::
(see

:::::::::::::::::
Supplementary

::::::::
Figure

:::::
S18,

:::::
S19

:::::
and

::::::
S20),

:
we develop a104

second method based on deep learning (DL) trained from efficient coalescent simulations105

[7]. In evolutionary genomics, DL approaches trained by simulations are shown to be106

powerful inference tools [87, 54]. Previous work demonstrated that DL approach can107

help overcome problems mathematically insolvable or computationally intractable in the108

field of population genetics [87, 6, 96, 101, 31, 22, 72, 19, 42]. The novelty of our neural109

network relies on its structure (Graph Neural Network, GNN) and its training algorithm110

based on the ARG of a sample, or its tree sequence representation [47]. GNNs are an111

emerging category of DL algorithm [16, 99, 20, 104] that benefit by using irregular domain112

data (i.e. graphs). GNNs are designed for the prediction of node features [53, 100], edge113

features (link prediction) [103, 83], or additional properties of entire graphs [102, 57].114

Therefore, GNNs represent a new tool to address the large dimensionality of ARGs,115

while simultaneously leveraging information from the genealogy (namely topology and116

age of coalescent events) as a substantial improvement over convolutions of genotype117

matrices, as currently done in the field [79].118

We first quantify the bias of previous SMC methods (MSMC and MSMC2 [82, 95])119

when performing inference of past population size variation under the β-coalescent. We120

then describe our two methods, SMβC and GNNcoal, and demonstrate their statisti-121

cal power as well as their respective limitations. From simulated tree-sequence (i.e.122

ARG) and sequence (i.e. SNPs) data, we assess the accuracy of both approaches to re-123

cover the past variation of population size and the α parameter of the Beta-distribution.124

This parameter indicates how frequent and strong multiple merger events occur
::::
(see125

:::::::::::::::
Supplementary

::::::::
Figure

:::::
S20). We demonstrate that our approaches can infer the evolu-126

tionary mechanism responsible for multiple merger events and distinguish local selection127

events from genome-wide effects of multiple mergers. We highlight the limits of the128

Markovian property of SMC to describe data generated under the β-coalescent. Finally,129

we show that both our approaches can model and identify the presence of selection along130

the genome while simultaneously accounting for non-constant population size, recombi-131

nation, and skewed offspring distribution. Thus our methods represents a major and132

necessary leap forward in the field of population genetic inferences.133
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Materials and Methods134

In our study we first assume the true ARG to be known. Hence, the ARG of the sample is135

given as input to our methods to estimate recover model parameters of interest (e.g. the α136

parameter and/or the past variation of population size). We then show the applicability137

of our methods by using as input simulated sequence data (i.e. SNPs) and/or ARG138

inferred using ARGweaver [73] from simulated sequence data.139

SMC-based method140

In this study, we use different SMC-based algorithms: two previously published, MSMC141

and MSMC2 [82, 95], and the new SMβC. In the latter, the software backbone stems142

from our previous eSMC [85, 86] whilst the theoretical framework originates from the143

MSMC algorithm [82] (see Supplementary Text S1). All approaches can
::::::
either

:
use the144

ARG or sequence data as input. Giving
::::::::::
Providing

::::
the

:
ARG as input for MSMC an

::::
and145

MSMC2 is enabled by a re-implementation included in the R package eSMC2
:::::::::::
previously146

::::::::::
published

::
in

:
[86]. It is important to mention that there are no theoretical differences in the147

models weather sequence Data
:::::::::
whether

:::::::::
sequence

::::::
data

:
or ARG is inputted (see [86] and148

appendix
:::::::::::::::
Supplementary

::::::
Text S1 for details), the only .

:::::
The

:
difference is that in one case149

the hidden states are inferred from sequence data with a forward-backward algorithm
:
,150

and in the later the sequence of hidden states are directly build from
:::::
built

:::::
from

:::::::::
reading151

the inputted ARG
:::::::::
(skipping

:::::
the

:::::::::::::::::::
forward-backward

:::::::::::
algorithm). The MSMC2 algorithm152

focuses on the coalescence time between two haploid samples along the genome. In the153

event of recombination, there is a break in the current genealogy and the coalescence time154

consequently takes a new value. A detailed description of the algorithm can be found in155

[29, 95]. The MSMC algorithm simultaneously analyses multiple sequences (up to 10)156

and follows the distribution of the first coalescence event in a sample of size n > 2 along157

the sequence based on the Kingman coalescent [52]. A detailed description of MSMC can158

be found in [82].159

Our new approach, SMβC, is a theoretical extension of the MSMC algorithm, simulta-160

neously analyzing multiple haploid sequences and focusing on the first coalescence event161

of a sample size 3 or 4. The
::
4

:::::
(this

:::::::::::
parameter

:::
is

:::::::
named

::::
M

::::::::::::
throughout

::::
the

::::::::::::::
manuscript).162

:::
We

:::::::
define

::::
as

:::
M

:::::
the

:::::::::
number

:::
of

:::::::::
lineages

::::::::::::::::
simultaneously

::::::::::
modeled

:::
by

:::::::
either

::::::::::::
approach.163

:::::::
Hence,

::::
the

:
SMβC follows the distribution of the first coalescence event of a sample

::::
size164

:::
M

:
along sequences assuming a β-coalescent process. Therefore, our SMβC allows for165

more than two ancestral lineages to join the first coalescence event, or new lineages to166

join an already existing binary (or triple) coalescent event. Hence, the SMβC extends167

the MSMC theoretical framework by adding hidden states at which more than two lin-168

eages coalesce. Currently, the SMβC has been derived to analyze for up to 4 sequences169

simultaneously (due to computational load and mathematical complexity).
:::::::::
However

::::
the170

:::::::
SMβC

::::
can

:::::::
handle

::::::
more

:::::
than

:::
M

:::::::::::
sequences

:::
by

::::::::::
analyzing

:::
all

::::::::::::::
combination

::
of

::::::::
sample

::::
size

::::
M171

::::::
before

::::::::::::
optimizing

::::
the

:::::::::::
likelihood.

:
The emission matrix is similar to the one of MSMC. As172

in the MSMC software, the population size is assumed piece-wise constant in time and173

we discretize time in 40 bins throughout this study. A detailed description of SMβC can174

be found in Supplementary Text S1. To test and validate the theoretical accuracy of our175

approach, we first study its best case convergence (introduced in [86]) which corresponds176

to the model’s performance when the true
::::::::
(exact)

:
genealogy is given as input, i.e. as if177
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the hidden states are known. Additionally, we also validate the practical accuracy of the178

SMβC on simulated sequence data taking the same input as the MSMC software [82], or179

using the inferred ARGs by ARGweaver [73]. All SMC approaches used in this manuscript180

are found in the R package eSMC2 (https://github.com/TPPSellinger/eSMC2).181

GNNcoal method182

Inspired by results obtained from inferences based on tree sequence data [34, 86], we183

develop a graph neural network (GNN) taking tree sequence data as input. Our GNN184

is designed to infer population size along with the α parameter of the Beta distribution185

describing the distribution of offspring production. In practice, the ARG is reshaped186

into a sequence of genealogies (more precisely a sequence of undirected graphs), and187

then given as input to the GNN (similar to what is described above for the SMβC).188

In our analyses, we fixed the batch size to 500. This value represents the number
::
of189

coalescence trees being processed before updating parameters of the neural network. As190

:::
the

:
batch size is fixed to 500, only simulations displaying at least 500 recombination191

events are considered for the training data sets. If more than 500 recombination events192

occur along the sequence, the ARG is truncated and the GNN will only take as input193

the first 500 genealogies and remove the rest. Thanks to the GNN architecture, the194

algorithm can account for the topology of the genealogy. Hence, the GNN leverages195

information from coalescence time and branch lengths but also from the topology of the196

ARG. This operation is known as a graph convolution. By doing so, the GNN is capable197

of learning from local features of the ARG and extract information from its complex198

structure. To learn from global genealogy patterns (which SMC-based methods cannot199

do), an additional pooling strategy is implemented as part of the network [102]. To200

do so, the ARG is broken into smaller ARGs (i.e. subgraphs) during the forward-pass201

step. To illustrate the GNN strategy, we visualize the compression-like process, from the202

coalescent trees (1) being processed by GNNcoal (2,3) to the inferred variable of interest203

(4, 5) in Figure 1.204

5
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1. Coalescent
trees with

feature vectors

2. Learned subgraph
with updated feature

vectors

3. Last pooling step
with feature vector

containing inferred variables

4.  Masking of
time-relevant regions

and column-wise mean

5. Visualization of
inferred variables

Fig. 1. Schematic representation of GNNcoal processing an ARG The figure represents
the analogues compression of node embeddings (or feature vectors) as in Fig. 1 of [102]. The
pooling is hierarchical and applied to each coalescent trees until a single embedding per tree
remains, which is fed into a dense neural net to obtain the inferred variable of interest (i.e.
demographic changes). Each coalescent ancestor or leaf node is initialized by this feature vector
(light grey boxes) (1). Sub-graphs are generated by a pooling network with updated feature
vectors and a final compression step is performed until ideally one node per graph remains
(2-3). Lastly, the column-wise mean is taken after applying a time mask (blue - based on
number of coalescent events), so that single feature vector remains (4-5). Detailed description of
the graph convolution, feature vector initialization, pooling methodology, coalescent time mask
construction, and dataset generation can be found in Supplementary Text S2 or [102].

To infer parameters from our neural network, we need to define an objective func-205

tion to be optimized. We use a masked root-mean-squared error (RMSE) loss func-206

tion as objective function which is computed for each inputted ARG (i.e. minimizing207

the average square difference between predicted and true parameter value). In prac-208

tice, time is discretized (as for the SMβC) and time windows are defined. The true209

α value and true demography at 60 predefined time points are given as input to the210

GNN to compute the loss function. The GNN captures the stochastic complexity aris-211

ing from the underlying demographic scenario and model parameters. Furthermore,212

our algorithm naturally defines an appropriate time window to have sufficient obser-213

vation at each time point. A more detailed description of the GNNcoal can be found in214

Supplementary Text S2. The code of the model architecture is implemented in Py-215

torch [70] using the extension Pytorch Geometric [30]. The model is available with216

the simulated training dataset at https://github.com/kevinkorfmann/GNNcoal and217

https://github.com/kevinkorfmann/GNNcoal-analysis.218

ARGweaver
:::::
and

::::::::::
tsinfer219

As the ARG is not known in practice, it needs to be inferred from sequence data. ARG-220

weaver displays the best performance at recovering the ARG from whole genome poly-221

morphism data at the sample sizes employed in this study (i.e. « 50 ) [73, 15]. Briefly,222

6
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ARGweaver samples the ARG of n chromosomes/scaffolds conditional on the ARG of223

n− 1 chromosomes/scaffolds. To this aim, ARGweaver relies on hidden Markov models224

while assuming a sequentially Markov coalescent process and a discretization of time,225

similarly to the SMC-based methods previously described. For a more detail description226

of the algorithm, we refer the reader to the supplementary material of [73].227

228

:::
For

:::::::::::::::
distinguishing

::::::::::
between

:::::::
MMC

:::::
and

::::::::::
selection

::::
we

:::::::::::::
additionally

:::::::::
applied

:::::::
tsinfer

::::
to229

:::::::::
estimate

:::::::::
undated

:::::::::::::
genealogical

:::::::::::
topologies

:::
in

::::
an

::::::
effort

:::
to

:::::::
build

::
a

::::::
small

:::::::::
training

:::::::::
dataset230

:::
for

::
a

:::::::
model

:::::::::
selection

:::::::
study

::::::::::
reframed

:::
as

::::::::::::::
classification

:::::
task.

:::::::::
Tsinfer

::::
has

::::::
been

:::::::
chosen

:::::
due231

::
to

::::
its

:::::::::::::::
computational

::::::::::::::
performance

::::
and

::::::::
details

:::::::
about

::::
the

:::::::::::
algorithm

::::
can

::::
be

:::::::
found

::
in

:::::
the232

::::::::::
respective

::::::::::::::::
supplementary

:::::::::::::
information

::
of

:::::
[48].

:
233

Simulation of data234

Validation dataset for both methods235

The ARG is given as input to the DL approach and the SMβC (see [86]). We use msprime236

[7] to simulate the ARG of a sample (individuals are assumed to be haploid) under237

the β-coalescent based on [84, 8] or under the Kingman coalescent (under neutrality or238

selection
:::::
using

:::::::::
msprime

::::::::::::::::::::::
SweepGenicSelection

:::::::::::::
functionality

:::::
with

::::::
start

:::::
and

::::
end

:::::::::::
frequency239

::
of

::::::
1/Ne ::::

and
::::::
0.99,

::::::::::::
respectively). We simulate 10 sequences of 100 Mbp under five different240

demographic scenarios: 1) Constant population size; 2) Bottleneck with sudden decrease241

of the population size by a factor 10 followed by a sudden increase of population by a242

factor 10; 3) Expansion with sudden increase of the population size by a factor 10, 4)243

Contraction with sudden decrease of the population size by a factor 10; and 5) "Saw-244

tooth" with successive exponential decreases and increases of population size through245

time, resulting in continuous population size variation (as shown in [93, 82, 86]). We246

simulate data under different α values (i.e. parameters of the β-distribution) including247

values of 1.9 (almost no multiple merger events), 1.7, 1.5, and 1.3 (frequent and strong248

multiple merger events;
:::::::::::::::::
Supplementary

:::::::
Figure

:::::
S20). Mutation and recombination rate249

(respectively µ and r) are set to 10−8 per generation per bp in order to obtain the best250

compromise between realistic values and number of SNPs. When specified, some specific251

scenarios assume recombination and mutation rate set to produce sufficient data or to252

avoid violation of the finite site hypothesis. All python scripts used to simulate data sets253

are available at https://github.com/kevinkorfmann/GNNcoal-analysis.254

Additionally, to generate sequence data, we simulate 10 sequences of 10 Mbp under255

the five different demographic scenarios described above and for the same α values. For256

each scenario, 10 replicates are simulated. In order to obtain sufficient SNPs for inference,257

we simulate sequence data with mutation and recombination rate (respectively µ and r)258

of 10−8 per generation per bp when α is set to 1.9 and 1.7, 10−7 per generation per bp259

when α is set to 1.5, and 10−6 per generation per bp when α is set to 1.3.260

Training dataset for the GNNcoal261

In our study we train two GNNs, one to infer past variation of population size through262

time along with α, and one for model selection. The training dataset used for both GNNs263

is described below.264

7
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Training dataset for the GNN inferring α and demography265

We generate an extensive number of ARGs to train our GNN. The ARGs are simulated266

under many demographic scenarios and α values. The model parameters are updated in267

supervised manner. The loss function is calculated for each batch with respect to how268

much the machine-learning estimates differ from to the true parameters used for sim-269

ulation. The simulations strategy to recover past demographic history is based on the270

strategy described and used in [13, 79]. The idea of this approach is to generate a repre-271

sentative set of demographic scenarios over which the network generalizes to consequently272

infer similar demographic changes after training. More details on the training strategy273

can be found in Supplementary Text S2.274

To improve the outputted demographic history
::::::::::
simulated

::::::::::::::
demographic

::::::::
history

:::::::
before275

:::::::::
inference, we introduce a smoothing of the demography allowing to infer continuous276

variation of population size through time. We do so by interpolating I time points277

cubically, and choosing w (set to 60) uniformly spaced new time points of the interpolation278

in log space. All time points more recent than ten generations in the past are discarded,279

since inference is too imprecise in the very recent present under our models. An example280

of this process can be seen in Supplementary Text S2.281

Training dataset to disentangling coalescent and selection signatures282

Beyond parameter inference, deep learning approaches can also be used for clustering.283

Hence, we train a GNN to disentangle between different scenarios and models. In total,284

we define eight classes, namely K (S0) (Kingman, no selection), K (WS) (Kingman, weak285

selection), K (MS) (Kingman, medium selection), K (SS) (Kingman, strong selection) and286

four different β-coalescent classes (2.0-1.75, 1.75 -1.5,
:::::::
≤ α <

::
2,

:
1.5 -1-1.25,

:::::::
≤ α <

::::::
1.75,287

1.25 -1.01
:::::::
≤ α <

::::
1.5,

::::::
1.01

:::::::
≤ α <

:::::
1.25) without selection. The three different selection288

regimes are defined , corresponding to Ne× s in: 0.1,
:::
as:

:
0.01

:::::::::::::
≤ Ne× s <

:::
0.1

:
for SS, 0.01,289

0.001
::::::::::::
≤ Ne× s <

:::::
0.01

:
for MS, 0.001, 0.0001

:::::::::::::
≤ Ne× s <

::::::
0.001 for WS and 0

::::::::::::
Ne× s = 0290

for absence of selection. Demography is kept constant and set to 105 individuals
::::
104291

and
:::
106

::::::::::::
individuals

::::
for

:::::::::::
Kingman

::::
and

::::::::::::::
β-coalescent

:::::::::::::
respectively

:::::
and

:
sequence length is292

set to 105 bp. The simulation is discarded if it resulted in less than 2,000 obtained trees293

and is rerun with twice the sequence length until the tree number required is satisfied.294

This procedure avoids simulating large genome segments of which only a small fraction295

of trees is used for the given scenario during training and inference. The selection site is296

introduced in the centre of the respective sequence, so that 249 trees left and 250 right of297

the middle tree under selection form a training sample, using 500 trees for each sample.298

One hundred replicates are generated for each training sample. The complete training299

dataset consists of 1
::
4,000 parameter sets, 500

:
:
:::::::
2,000

:
for the Kingman cases and 500300

:::::
2,000

:
for the β-coalescent cases , with approximately 125 parameter sets per class

::::::
(90%301

::::::::
training

::::::::
dataset

:::::
and

:::::
10%

:::::::
testing

:::::::::
dataset). The model itself is trained on one epoch

:::
for

:::
20302

:::::::
epochs

:
(number of time the data is analyzed), and the evaluation performed afterwards303

::::::::::
afterward on 1,000 randomly generated parameter sets, with one replicate per parameter304

set.
:::::::::
Branches

:::
of

::::
the

:::::::::
datasets

:::::
have

::::::
been

::::::::::::
normalized

:::
by

::::::::::::
population

::::
size

:::
to

::::::
avoid

:::::::
biases

:::
in305

:::
the

::::::::
dating.

::::::::::::::
Additionally,

::::
all

::::
tree

:::::::::::
sequences

:::::
have

::::::
been

:::::::::::
re-inferred

::::::
with

:::::::
tsinfer

:::
to

:::::::
create

::
a306

::::::::::
separated

:::::::::
dataset,

:::::::
which

::::
has

::::::
been

:::::
used

::::
for

:::::::::
training

::::
and

::::::::::::
evaluation

:::::
(see

:::::::
results

:::::::::
below).307

The same architecture used for demography estimation is employed with additional linear308

8
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layers to reduce the number of output dimensions from 60 to 8. The loss function is set309

to a Cross-Entropy-Loss for the network to be trainable for categorical labels. Otherwise310

all architecture and training parameters is the same as described above and detailed in311

Supplementary Text S2.312

Results313

Inference bias under the wrongly assumed Kingman coalescent314

We first study the effect of assuming a Kingman coalescent when the underlying true315

model is a β-coalescent (i.e. in presence of multiple merger events) by applying MSMC316

and MSMC2 to our simulated data. The inference results from MSMC and MSMC2317

when the population undergoes a sawtooth demographic scenario are displayed in Figure318

2.
::
2.

:
For α > 1.5 the shape of the past demography is fairly well recovered. Decreasing319

the parameter α of the β-coalescent (i.e. higher probability of multiple merger events320

occurring) increases the variance of inferences and flattens the demography. Yet, both321

methods fail to infer the correct population size, due to the scaling discrepancy between322

the Kingman and β-coalescent. Hence, we perform the same analysis and correct for323

the scaling effect
:::::
after

::::
the

::::::::::
inference

:
of the MMC versus a Kingman coalescent to better324

capture the specific effects of assuming binary mergers only. The results are displayed in325

Figure S1. For α > 1.5 the demography is accurately recovered providing we know the326

true value of α to adjust the y-axis (population size) scale. However, for smaller α values327

the observed variance is extremely high and a flattened past variation of population size328

is observed.329
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Fig. 2. Performance of MSMC and MSMC2 under a β-coalescent. Averaged esti-
mated demographic history by MSMC (blue) and MSMC2 (red) based on 10 sequences (mean
of random permutations of M=3) of 100 Mb with µ = r = 10−8 per generation per bp over ten
repetitions (while analyzing simultaneously 3 sequences, noted by M=3). Each repetition result
is represented in light red (PSMC’/MSMC2) or in light blue (MSMC). Population undergoes a
sawtooth demographic scenario (black) for A) α = 1.9, B) α = 1.7, C) α = 1.5, and D) α = 1.3.

The limit of the Markovian hypothesis330

As SMC approaches rely on the hypothesis of Markovian change in genealogy along the331

genome, we study the effect of α on the linkage disequilibrium (LD) of pairs of SNPs332

(r2, [75, 64]) in data simulated under the Kingman Coalescent or the β-coalescent (with333

α = 1.5 and α = 1.3) and constant population size (Figure 3). Linkage monotonously334

decreases
:::
LD

:::::::::::::::
monotonously

::::::::::
decreases

:::
in

::::::::
average with distance under the Kingman coales-335

cent
::::::::::
suggesting

::::
the

:::::::::::
hypothesis

:::
of

:::::::::::
Markovian

::::::::
change

::
in

:::::::::::
genealogy

::
to

:::
be

::
a
::::
fair

:::::::::::::::
approximation336

::
of

::::
the

:::::::::::::
genealogical

:::::::::
process

::
in

::::::
that

:::::
case

::::
[97]. Under the β-coalescent a similar shape of337

the distribution is observed but with a higher average amount of LD. We find a higher338

variance in LD for smaller α values. The increased variance results in the occurrence of339

high spikes of LD along the genome (e.g. Figure 3 B). The stochastic increase of linkage340

along the genome demonstrates that the Markovian hypothesis used to model genealogies341

along the genome is
::::::::
strongly

:
violated under the β-coalescent due to the long range effect342

of strong multiple merger events [8].343
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Fig. 3. Linkage disequilibrium under a Kingman and β-coalescent. Pairwise linkage
disequilibrium between SNPs (r2) under a Kingman and β-coalescent with α = 1.5 and α = 1.3
using 100 sequences of length 0.5 Mb for A) - C) and 1 replicate in D) - F). The population
size is constant at N = 104 for the Kingman model and N = 106 for the β-coalescent, with
µ = 1 × 10−7 and r = 1 × 10−8 per generation per bp. For each LD analysis, the linkage
disequilibrium is calculated by averaging it over automatically-selected window sizes, such that
on average at least two mutations are in each window for A) to F), respectively.

We further investigate the effect of multiple merger events on LD. To this aim, we344

first assume an SMC framework (e.g. MSMC2 or eSMC) to predict the transition ma-345

trix (i.e. matrix containing the probabilities for the coalescent time to change to an-346

other value along
:::::::::
between

::::
two

:::::::::::
positions

:::
of

:
the genome) and investigate the absolute347

difference between the observed transition events. Under the Kingman coalescent, the348

distribution of coalescent times between two positions in a sample of size two (n = 2)349

is well approximated by the SMC as shown
::::::
spread

:::::::
across

::::::::
hidden

:::::::
states

:
in Figure S2350

(i.e. absence of structured difference between observed and predicted
::::::::::
transition

:::::::
events).351

However, under the β-coalescent (with α = 1.3) we observe significant and differences352

between observed and predicted
::::::::::
transition

:::::::
events at times points where multiple merger353

events occur (Figure S3). In practice,
:::::
More

::::::::::
precisely

:::
we

::::::::::
observed

:::::::::::
transitions

:::
at

:::::::::
specific354

:::::
time

:::::::
points

::::::::::::::::
(corresponding

:::
to

:
multiple merger eventsdo not occur at each time point355

(as they remain rare events ), unveiling a
:
)
::::::::::
occurring

:::::::
much

::::::
more

:::::::::::
frequently

::::::
than

::::::
what356

::
is

::::::::::
predicted

:::
by

::::
the

::::::::
model

::::::
(dark

:::::
blue

:::::::
lines).

::::::
This

:::::
plot

:::::
thus

:::::::
shows

:::::
that

::::::::::
multiple

::::::::
merger357

::::::
events

::::
do

::::
not

::::::
affect

:::::
the

::::::::::
genealogy

:::
at

:::::::
every

:::::
time

::::::
point

:::::
and

:::::
that

:::::::::
multiple

::::::::
merger

::::::::
events358

:::
are

:::::
over

::::::::::::
represented

:::
in

::::
the

:::::::::::::
distribution

::
of

::::::::::::
transitions

:::::::
events

::::
due

:::
to

::::
the

:::::
long

:::::::
range

:::::::
effects359

::
of

:::::::
MMC

:::::::
events

:
(
::::
i.e.

:::::
many

::::::::::
positions

:::
of

::::
the

::::::::
genome

:::::::::
contain

::::
the

::::::
same

::::::::::::::
information).

::::::
This360

::::::
means

:::::
that

:::::
one

:::::::::
multiple

::::::::
merger

:::::::::::
coalescent

:::::::
events

::::
can

::::::
affect

::::
all

:::::::::
positions

:::
in

::::
the

::::::::::
genomes361

:::::::::::
(explaining

::::
the

:::::::
spikes

:::
in

:::
the

::::
LD

:::::::::::::::
distribution).

:::
In

:::::::::
contrast,

:::::::
under

::::
the

::::::::::
Kingman

:::::::::::
coalescent362

:::::
with

::::::::::::::::
recombination,

::::
the

::::::::::::
probability

:::
for

::
a
:::::::::::
coalescent

:::::::
event

:::
to

::::::
affect

::::
the

:::::::
whole

::::::::
genome

:::
is363

::::::::::
negligible.

:
364

::::
This

:::::
plot

:::::
thus

::::::::
unveils

::::
the

:
discrepancy between the expectation from the SMC (i.e.365

approximating the distribution of genealogies along the genome by a Markov chain) and366
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the simulated data
:::::::
actual

::::::
effect

:::
of

:::::::::
multiple

::::::::
merger

:::::::
events

::::
on

::::
the

:::::::::::
genealogy

:::::::::::::
distribution367

:::::
along

::::
the

:::::::::
genome. This discrepancy does not stem from the simulator, because it correctly368

generates ARG under the β-coalescent model [8, 7], but from the limits of the SMC369

approximation to model events with long range effects on the ARG (Figure S3).370

Inferring α and past demography on ARG371

To test if our two approaches (GNNcoal and SMβC) can recover the past variation of372

population size and the α parameter, we run both methods on simulated tree sequences373

under different α values and demographic scenarios. Figure 4 displays results for data374

simulated under a sawtooth past demography and for α ranging from 1.9, 1.7, 1.5 to375

1.3. In all cases, the GNNcoal approach exhibits high accuracy and low variance to376

infer the variation of population size
::::
and

:::::
high

::::::::::
accuracy

:::::
from

::::
1.9

:::
to

:::
1.5

::::::
with

::
a

:::::::::::
noticeable377

:::::
drop

::
in

::::::::::
accuracy

::::
for

::::
1.3

:::::::::::::
attributable

:::
to

::::
the

:::::
ever

:::::::::::
increasing

:::::::::
sparsity

::::
due

:::
to

:::::::::::
decreasing

:::
α378

:::::::::::
generating

:::::::::
stronger

:::::::::::::
β-coalescent

:::::::
events. For high α values (>1.5), the shape of population379

size variation is well recovered by SMβC
:::
(4). However, for smaller values, the observed380

high variance demonstrates the limits of SMC inferences.381
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Fig. 4. Best-case convergence estimations of SMβC and GNNcoal under a β-
coalescent. Estimations of past demographic history by SMβC in red (median) and by
GNNcoal in blue (mean and 95% confidence interval, CI95; while analyzing simultaneously
M=3 or M=10 sequences; individual replicates of SMβC shown as light lines) when population
undergoes a sawtooth demographic scenario (black) under A) α = 1.9, B) α = 1.7, C) α = 1.5
and D) α = 1.3. SMβC runs on 10 sequences and 100 Mb, GNNcoal runs on 10 sequences and
500 trees, and µ = r = 10−8 per generation per bp.
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On average, both approaches seem to recover fairly well the true α value (Figure 4382

and Table 1 in
:
5
:::::
and

:::::::
Table

:
S1). In particular, GNNcoal displays high accuracy and383

lower standard deviation. We note that the variance in the estimation of α increases384

with diminishing α value. Moreover, increasing the number of simultaneously analyzed385

sequences by SMβC does not seem to improve the inferred α value (Table S1). These386

conclusions are also valid for the results in Figures
:::::::
Figure

:
S4-S7 and Table S1 based on387

inference under four additional demographic scenarios: constant population size, bottle-388

neck, sudden increase and sudden decrease of population size.389

390

Because when
::::::
When

:
α diminishes, the effective population size decreases and the391

number of recombination events plummets for small values of α < 1.5. To demonstrate392

the theoretical convergence of SMβC to the correct values, we run SMβC on data simu-393

lated with mutation and recombination rate fifty times higher under similar scenarios as394

in Figure 4. This operation increases the amount of data in the form of SNPs and number395

of independent coalescent trees by recombination.
::::::
Since

:::::::
branch

:::::::::
lengths

:::
(in

::::::::::::::
generations)396

:::
are

:::
on

:::::::::
average

::::::::
smaller

:::
in

::::
the

:::::::::
presence

:::
of

:::::::::
multiple

::::::::
merger

::::::
when

:::::::::::
compared

::
to

::
a
:::::::::::
Kingman397

:::::::::::
coalescent,

:::
we

::::::::
choose

:::
to

:::::::::
increase

::::
the

:::::
rates

:::
as

:::::::::
opposed

:::
to

:::::::::::
increasing

::::
the

:::::::::
genome

:::::::::
lengths,398

::::::
which

:::::
does

::::
not

:::::::
affect

::::
the

::::::::
branch

::::::::
lengths

:::::
(but

::::::::::
increases

::::
the

::::::::
number

:::
of

::::::::::::::
genealogies).

:
Re-399

sults of SMβC for α values of 1.7, 1.5 and 1.3 are displayed on Table S2. Results
::::::::
Overall400

:::
our

::::::::
results show that SMβC can recover α with higher accuracy when more data is avail-401

able.
:::
To

:::
be

::::::
more

::::::::
precise

::::::
when

::::::::
M = 3

::::
(M

:::::::
being

::::
the

::::::::
number

:::
of

::::::::::::::::
simultaneously

:::::::::
haploid402

:::::::::
sequence

:::::::::::
analyzed),

::::
the

::::::::
overall

::::::::
average

:::::::::
inferred

::
α

:::::::
values

:::::::::
improve

:::::
from

::::
1.6,

:::::
1.53

:::::
and

:::::
1.42403

:::::::
(Table

::::
S1)

:::
to

::::
1.64

::
,
:::::
1.49

::::
and

:::::
1.36

:::::
(for

:::::
data

:::::::::::
simulated

::::::::::::
respectively

:::::::
under

:::::::::::::::::
α = 1.7,α = 1.5404

::::
and

::::::::::
α = 1.3).

::::::
Yet

::::::
when

::::::::
M = 4

::
a
::::::
gain

:::
in

::::::::::
accuracy

:::
is

:::::
only

::::::::::
observed

::::
for

:::::::::
α = 1.5

:::::
and405

::::::::
α = 1.3.

:::::::::
Indeed,

::::
the

::::::::
overall

::::::::
average

:::::::::
inferred

::
α
:::::::
values

::::::::::
changed

:::::
from

::::::
1.60,

:::::
1.54

:::::
and

:::::
1.47406

:::::::
(Table

::::
S1)

::
to

:::::
1.58

::
,
::::
1.47

:::::
and

:::::
1.39

::::
(for

:::::
data

:::::::::::
simulated

:::::::::::::
respectively

::::::
under

:::::::::
α = 1.7,

:::::::::
α = 1.5407

::::
and

::::::::::
α = 1.3).

:
408
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Fig. 5. Estimated α values by SMβC and GNNcoal. Estimated values of α by
SMβC and GNNcoal over ten repetitions using 10 sequences of 100 Mb with µ = r = 10−8

per generation per bp under a β-coalescent process (with different α parameter). The
analysis are run on five different demographic scenarios (Constant population size, Bot-
tleneck, Sudden increase, Sudden decrease and a Sawtooth demography) using a sample
size n = 3 for A) and C), n = 4 for B), and n = 10 for D). Grey dashed lines indicate
the true α values.

:::
For

:::::::
exact

:::::::
values

::::
and

::::::::::
standard

:::::::::::
deviations

:::
of

::::
the

::::::::::
respective

:::::::::::::
experiment

:::
see

::::::::::::::::
Supplementary

:::::::
Table

::::
S1.

Although 10 sequences are given to SMβC in the previous analyses, the method can409

only analyze three or four simultaneously. On the other hand, GNNcoal can simulta-410

neously analyze 10 sequences, that is the whole simulated ARG. As we observe that411

GNNcoal has a higher performance than SMβC, we wish to test whether the GNNcoal412

better leverages information from the ARG or benefits from simultaneously analyzing413

a larger sample size. Thus, we run GNNcoal on the same dataset, but downsampling414

the coalescent trees to a sample size three. Results
:::
for

::::::::
sample

::::
size

::::
ten

:
are displayed in415

Figure S4 to Figure S7 . Results
:::
and

:::::::::::::::
downsampled

:::::::
results

:
with sample size three

::::::::
(M=3)416

of GNNcoalare similar to results with sample size 10,
:
,
:::::::
which

::::::::
appear

:::
to

:::
be

:::::::::
similar,

::::
are417

:::::::::
displayed

:::
in

::::::::
Figure

::::
S8,

:
demonstrating that the GNNs can better leverage information418

from the ARG in presence of multiple merger events(Figure S8).419

Additionally, we test if both approaches can recover a Kingman coalescent from the420

ARG when data are simulated under the Kingman coalescent, namely both approach421

should recover α = 2. To do so, we simulate the same five demographic scenarios as above422
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under a Kingman coalescent and infer the α parameter along with the past variation of423

population size. Estimations of α values are provided in Table 1 and are systematically424

higher than 1.85, suggesting mostly binary mergers. The associated inferred demogra-425

phies are shown in Figures S9-S13. Both approaches correctly infer the past demographic426

shape up to the scaling discrepancy between the Beta and the Kingman coalescent (as427

previously described). Furthermore, we notice that the scaling effect only affects the428

y-axis for the SMβC but affect both axes for GNNcoal.429

As GNNcoal was not trained on data simulated under the Kingman coalescent (espe-430

cially with such high population size), some events fall beyond the scope of the GNN due431

to the scaling discrepancy between the Beta and Kingman coalescence. Hence, we run432

GNNcoal on data simulated under the Kingman coalescent but with smaller population433

size (scaled down by a factor 100) to assure that all events fall within the scope of the434

GNN. Values of α inferred by the GNNcoal and the SMβC under the five demographic435

scenarios are available in Table S3. The associated inference of population size are plot-436

ted in Figure S9-S12. Both approaches recover high α values (i.e.>1.85) suggesting a437

genealogy with almost exclusively binary mergers. In addition, both approaches accu-438

rately recover the shape of the past variation of population size up to a scaling constant439

but only on the population size y-axis.440

Inferring α and past demography from simulated sequence data441

We first investigate results for both GNNcoal and SMβC when the ARG is reconstructed442

with ARGweaver [73] , the latter
::::
with

:::::
the

::::::::::
objective

:::
of

:::::::::::
evaluating

::::
the

::::::::::::::
performance

::::
on443

:::::
ARG

:::::::::::::::
reconstructed

:::::
from

::::::::::
sequence

:::::
data

::::::
using

:::::::::::::
ARGweaver

:::::
[73]

::
as

:::::::::::::
ARGweaver

::
is

::::::::::
currently444

being considered the best performing approach to infer ARG for sample size smaller445

than 20 [15]. Demographic inference results by both approaches are displayed in Figure446

S14, and α inference results in Table S4. GNNcoal does not recover the shape of the447

demographic history from the inferred ARGs and largely overestimates α. In contrast,448

SMβC produces better inferences of α when giving the inferred ARG as input
::::::
when449

::::::::::
compared

:::
to

::::
the

::::::
GNN. SMβC recovers the shape of the past variation of population size450

for α > 1.3 but displays extremely high variance for α = 1.3.451

We then run
:::
We

::::::
then

:::::::::
evaluate

:
SMβC on simulated sequence data

::
to

:::::::::
compare

:::::
the452

:::::::::
necessity

:::
of

:::::::::::::::
reconstructing

::::
the

::::::
ARG

::::
for

::::
the

::::::
SMC

:::::::::
method

:
and found that α is typically453

well recovered (Table 2) and that results are similar to what obtained when the true454

ARG is given. Furthermore, the shape of the past variation of population size is well455

inferred under the sawtooth demographic scenario for α > 1.3 (Figure S15). In the other456

four scenarios, the shape of the demography is recovered in recent times but population457

sizes are underestimated in the past (Figure S16). Finally, as found above from inputted458

ARGs, the variance in estimates of population sizes generally increases with diminishing459

α.460

Inferring MMC and accounting for selection461

As specific reproductive mechanisms and selection can lead to the occurrence of mul-462

tiple merger-like events, we train our neural network on data simulated under the β-463

coalescent, and under the Kingman coalescent in presence or absence of selection
::
to464

::::::
assess

::::
our

::::::::::
methods

::::::::::
capacity

:::
to

:::::::::::::
distinguish

:::::::::
between

::::::
them. We then use the trained465
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GNNcoal to determine if multiple merger events originate from skewed offspring distri-466

bution or positive selection, or if the data follows a neutral Kingman coalescent process.467

The classification results are displayed in Figure 6 in the form of a confusion matrix,468

that is
::::::::::
confusion

::::::::::
matrices,

:::::::
where

::
the percentage of times the GNNcoal correctly as-469

signs the true model shown on the diagonal evaluated on a test dataset of 1,000 known470

ARGs. Our approach can accurately select the model except in two cases. GNNcoal471

shows limited power to distinguish between strong and intermediate selection under the472

Kingman coalescent, as well as to distinguish between the β-coalescent with a small473

amount of multiple merger events (i.e.
:::::::
ARGs.

::::
We

:::::::
tested

::::::
three

::::::::::
scenarios

:::
A)

:::::::::
training

:::::
and474

:::::::::::
evaluating

:::
on

:::::::
known

::::::
exact

::::::::
ARGs,

:::
B)

:::::::::
training

:::
on

::::::
exact

:::::::
ARGs

:::::
but

:::::::::::
evaluating

:::
on

:::::::::
inferred475

:::::::
ARGs,

:::::
and,

:::::::
lastly

::::
C)

:::::::::
training

::::
and

::::::::::::
evaluating

:::
on

:::::::::
inferred

::::::::
ARGs.

::::::
The

::::::::
results

:::::::::
indicate476

:::
the

::::::::::
necessity

:::
of

::::::::::::
integrating

::::::::::
inference

:::::::
errors

:::
or

:::::::::::
instances

:::
of

::::::::
branch

::::::::::::::::
unresolvability

:::::
into477

:::
the

:::::::::
training

:::::::::
process.

::::::
The

:::::::::
network

::
is

:::::
able

:::
of

:::::::::::::::
distinguishing

::::::::::
between

:::::::
signals

:::
of

::::::::::
multiple478

::::::::
merger,

::::::
which

::::::::::
translate

:::
to

:::
an

:::::::::
estimate

:::
of

:
α>1.75)and the ,

::::::
from

:::::::
simple

::::::::::::::::::
ARG-estimation479

::::::::::::::
uncertainties.

:::::
The

::::::::
overall

:::::::::::
confusion

:::::::::
between

:::::::::::::
neighboring

::::::::
classes

:::::
may

:::
be

::::::::::::
attributed

:::
to480

:::
the

:::::::::::::
comparably

::::::
small

:::::
size

::
of

:::::::::
training

:::::
data

::::::::
(4,000

:::::::::::::
simulations),

:::::::
which

:::::::::
enabled

:::
to

::::::
build

::
a481

::::::::
training

::::::::
dataset

:::::::::::
comprised

:::
of

::::::::
inferred

:::::
trees

::::::::
within

::::
few

::::::
hours.

::::
To

::::::::::::
summarize

::::
our

::::::::::
approach482

::::
can

:::::::::::
accurately

::::::::::::
distinguish

::::::::
between

:::::::::::
Kingman

::::
and

:
β-coalescentcase with 1.75>α>1.5,

:::::
but483

::::::::::::
uncertainty

::::::
needs

:::
to

:::
be

:::::
part

:::
of

::::
the

:::::::::
training

:::::::::::
procedure.484
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Fig. 6. Confusion matrix for Kingman and β-coalescent classification model under
varying selection coefficients. Evaluation of classification accuracy for Kingman (K) and
β-coalescent (B) for no selection (S0), weak selection (SW), medium selection (SM) and strong
selection (SS) using a 1,000 repetition validation dataset (and small 4000 proof-of-concept repe-
tition training set). Population size was kept constant at N = 104 individuals for the Kingman
scenario and at N = 106 for the β-coalescent, using a sample size n = 10 and r = 10−8 per bp
per generation. Branch length are normalized by the respective population size. Classification
model has been trained and evaluated either on exact or inferred tree sequences (tsinfer without
dating) as indicated in the subfigure titles of A), B) and C).

To assess the485

:::::
Since

:::::::
strong

::::::::::
selection

::::
can

:::::
lead

:::
to

::::::::::
multiple

:::::::
merge

:::::::::::
coalescent

:::
or

::::::
rapid

:::::
and

:::::::::::
successive486

::::::::::
coalescent

:::::::
events

::::
(as

:::
the

:::::::::::
beneficial

::::::
alleles

::::::::
spreads

:::::
very

::::::::
quickly

:::
in

:::
the

:::::::::::::
population)

::::::::::::
[26, 11, 76]487

:
,
:::
we

::::::::::::
investigate

:
if
:::::
our

:::::::::::
approaches

:::::
can

::::::
model

:::::
and

::::::::
recover

::::
the effect of selection

:
.
:::::::::::
Therefore,488

we infer α along the genome
:::
(to

:::::::
model

::::
the

::::::
local

::::::
effect

:::
of

:::::::::
selection

::::
on

::::
the

:::::::::
genome)

:
with489
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both approaches from data
::::
true

:::::::::::::
genealogies simulated with strong positive selection or490

neutrality under a Kingman coalescent with population size being constant through time.491

SMβC infers α on windows of 10kbp along the genome, and GNNcoal infers α every 20492

trees along the genome. Results for GNNcoal and SMβC are displayed in Figure 7. Both493

approaches recover
::::
The

:::::::
SMβC

::::::::::
approach

:::::::::
recovers

:
smaller α value around the locus under494

strong selection
::::::
(while

::::::::::
GNNcoal

:::::::::
displays

::::::::
higher

::::::::::
variance). However under neutrality or495

weak selection, inferred α values remain high (>1.6) along the genome.496
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Fig. 7. Averaged estimations by GNNcoal and SMβC under selection Estimations
of α along the genome by the GNNcoal approach and the SMβC when population undergoes as
strong positive selective sweep event (at position 0.5 Mb) under different strengths of selection:
A) s = 0.01 , B)s = 0.001, C) s = 0.0001, and D) s = 0 meaning neutrality (mean and
standard deviation for both methods). The population size is constant and set to N = 105 with
µ = r = 10−8 per generation per bp. We hence have in A) Ne × s = 1000,B) Ne × s = 100, C)
Ne × s = 10 and D) Ne × s = 0. SMβC uses 20 sequences of 1Mb (red) and GNNcoal uses 10
sequences through down-sampling the sample nodes (blue)

Similarly, we run both approaches on data
::::::::::::
genealogies simulated under the β-coalescent497

(assuming neutrality) and we infer the α value along the genome. Inferred α values by498

both approaches are plotted in Figure 17 in S1
:::
S17. GNNcoal is able to recover the α499

value along the genome with moderate overestimation due to tree sparsity. On the con-500

trary, SMβC systematically underestimates α values. Nevertheless, unlike in presence of501

positive selection at a given locus, the inferred α values are found in all cases to be fairly502

constant along the genome.503

We finally simulate data under a strong selective sweeps
:::::::::
Kingman

::::::::::::
coalescent

::::::
(true504

::::::::::::
genealogies)

::::::
with

::
a

:::::::
strong

:::::::::
selective

:::::::
sweep or under neutrality conditioned on a sawtooth505
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demographic scenario
::
to

:::::
test

:::::
our

::::::::::
methods’

::::::::::::::
simultaneous

::::::::::
inference

:::::::::::::
capabilities. Under506

neutrality, our both approaches recover, as expected, high α values along the genome and507

can accurately recover the past variation of population size (only up to a scaling constant508

for GNNcoal, since it was trained on the β-coalescent only) (Figure 8). Similarly, when509

the simulated data contains strong selection, a small α value is recovered at the locus510

under selection and the past variation of population size is accurately recovered, albeit511

with a small underestimation of population size in recent times for SMβC (Figure 8).512
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Fig. 8. Simultaneous estimations of α along the sequence under demographic
change by GNNcoal and SMβC. Simultaneous estimation of α along the genome under a
partial sawtooth scenario: A) and B) in the absence of selection (mean and standard deviation
for both methods), and C) and D) presence of selection with NeS = 1, 000 (mean and CI95 for
GNNcoal and median for SMβC). SMβC uses 20 sequences of 1Mb (red) and GNNcoal uses 10
sequences through down-sampling the sample nodes (blue), and µ = r = 108 per generation per
bp.

Discussion513

With the rise in popularity of SMC approaches for demographic inferences [58], most514

current methods leverage information from whole genome sequences by simultaneously515

reconstructing a portion of the ARG to infer past demographic history [58, 82, 93, 94],516

migration rates [51, 95], variation in recombination and mutation along the genome [5, 4],517

as well as ecological life history traits such as selfing or seed banking [85, 91]. However,518

other previous studies proposed to uncouple both steps, namely by first reconstructing519

the ARG and by then inferring parameters from its distribution [86, 34, 73]. Indeed,520

recent efforts have been made to improve approaches to recover the ARG [88, 49, 39, 73,521

59, 15], as well as its interpretation [33, 86]. Our results on data simulated under the522
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β-coalescent clearly show the strong effect of multiple merger events on the topology and523

branch length of the ARG. We find that the more multiple merger events occur, the more524

information concerning the past demography is lost. Both GNNcoal and SMβC, whether525

given sequence data, the true or inferred ARG, can recover the α parameter and the526

variation of past population size for α values high enough (i.e. α > 1.3
::
≥

::::
1.5). However,527

for lower values of α, a larger amount of data is necessary for any inference
:
,
::::::::::::
specifically528

::
in

::::
the

::::::
form

:::
of

::
a

:::::
high

:::::::::
effective

::::::::::::
population

:::::
size

::::::::::::::::::
(correspondingly

::::::::::
adequate

::::::::::
mutation

:::::
and529

:::::::::::::::
recombination

:::::::
rates)

::::
and

:::::::::::
sufficient

::::::::::
sequence

::::::::
length,

:
which becomes nearly impossible530

when α tends to one. Both approaches can also recover the Kingman coalescent (i.e.531

α>1.8). We find that GNNcoal outperforms SMβC in almost all cases when given the532

true ARG, and we demonstrate that GNNcoal can be used to disentangle between β-533

coalescent and Kingman models with selection.534

Overall, our results provide a substantial improvement in the development of inference535

methods for models with multiple merger events, a key step to understand the underlying536

reproduction mechanism of a species. While still inferring population sizes of the correct537

order of magnitude, SMβC is outperformed by GNNcoal when given true ARGs as input.538

As
:::::
ARG

::::::::::
inference

:::::::::
method

::::::::::
improve,

::::::
GNN

::::::::
models

:::::
will

:::::
offer

::
a
::::::::::::
promising

::::::::::::
alternative

:::
to539

:::::::
current

::::::
SMC

:::::::::::
methods.

:::
As

:
we directly compare our theoretical SMC to the GNN based540

on the same input data (coalescent trees), we are ideally placed to dissect the mecha-541

nisms underlying the power of the GNNcoal method. We identify four main reasons for542

the difference in accuracy between the two methods developed. First, the SMβC ap-543

proach suffers from the limit of the sequential Markovian coalescent hypothesis along the544

genome when dealing with strong multiple merger events [8, 21]. Second, most of current545

SMC approaches
:
,
:::::::
except

::::::::
XSMC

::::
[50]

:
,
:
rely on a discretization of the coalescent times into546

hidden states, meaning that simultaneous mergers of three lineages may not be easily547

distinguished from two consecutive binary mergers occurring over a short periodof time.548

Third, the SMβC relies on a complex hidden Markov model and due to computational549

and mathematical tractability, it cannot leverage information on a whole genealogy. In550

fact, as MSMC, SMβC only focuses on the first coalescent event, and therefore cannot551

simultaneously analyze large sample size. Furthermore, the SMβC approach leverages552

information from the distribution of genealogies along the genome. Whilst, in the near553

absence of recombination events, both approaches cannot utilize any information from the554

genealogy itself, GNNcoal can overcome this limit by increasing the sample size. Fourth,555

the SMβC is based on a coalescent model where α is constant in time. Yet multiple556

merger events do not appear regularly across the genealogical timescale, but occur at557

few random time points. Hence, the SMC approach suffers from a strong identifiability558

problem between the variation of population size and the α parameter (for low α values).559

For instance, if during one hidden state one strong multiple merger event occurs, multi-560

ple merger events are seldom observed and SMβC may rather assume a small population561

size at this time point (hidden state). This may explain the high variance of inferred562

population sizes under the β-coalescent.563

By contrast, GNNcoal makes use of the whole ARG, and can easily scale to larger564

sample sizes (over 10), although it recovers α with high accuracy with sample size
:::::
M= 3565

only. Our interpretation is that GNNcoal is able of simultaneously leveraging information566

from topology and the age of coalescent events (nodes) across several genealogies (here567

500). GNNcoal ultimately leverages information from observing recurrent occurrences of568
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the same multiple merger events at different locations on the genome, while being aware569

of true multiple merger events from rapid successive binary mergers. We believe that570

our results pave the way towards the interpretability of GNN and deep learning methods571

applied to population genetics.
:::
For

::::::::
further

::::::::::::
theoretical

::::::::
insights

:::::
into

::::::::
recent

:::::::::::::
descriptions572

::
of

:::::::::
multiple

::::::::
merger

:::
we

:::::::
would

:::::
like

::
to

:::::::
point

::::
the

:::::::
reader

:::::::::
towards

::::
[24]

:
.
:

573

When applying both approaches to simulated sequence data (and not to true ARGs),574

both approaches behave differently. GNNcoal is not capable to accurately infer model575

parameters, i.e.
:::
i.e. past variation of population size or α. In contrast, SMβC performd576

::::::::::
performed

:
better than GNNcoal when dealing with sequence data (and not true ARG).577

SMβC is capable of recovering α and the shape of the demographic scenario in recent578

times irrespective of whether sequence data or ARG inferred by ARGweaver is given579

as input. This is most likely because the statistic used by SMβC (i.e. first coalescent580

event in discrete time) is coarser than the statistic used by GNNcoal (i.e. the exact581

ARG). We therefore speculate that the theoretical framework of the SMβC, although582

being in theory less accurate than GNNcoal, is more robust and suited for application583

to sequence data. More specifically, the issue being faced by the GNNcoal is known584

as out-of-distribution inference [41], which requires the network to generalize over an585

untrained data distribution. This issue happens because GNNcoal is not trained using586

ARG inferred by ARGweaver. Building a training data set for GNNcoal to overcome587

this issue is currently impractical due to the inference speed of ARGweaver. However,588

future work will aim at increasing robustness of GNN inferences, for instance by adding589

uncertainty or multiple models during the training process. Improving the performance of590

GNNcoal on sequence data requires more efficient and accurate ARG inference methods(,591

which can be used
:
,
:::::
such

::::
as

:::
to

:::::::::::::
incorporate

:::::::::
inferred

:::::::::::::
(non-exact)

::::::::::::
genealogies

:::::
into

:::::
the592

:::::::::
training,

::::::::
thereby

::::::::::::
accounting

::::
for

::::::::::
inference

::::::
errors

:::::
and

::::
for

::::
the

:::::::::::
evaluation

:::
of

::::
the

:::::::::::
algorithm593

on a broader spectrum of data sets. The latter
:::::::::
common

::::::::::::
population

::::::::
genetic

::::::::::
research594

::::::::::
questions.

:::::
The

::::::::
former

:
observation is important to avoid bias from potential hypothesis595

violations of the chosen ARG inference approach).596

Past demographic history, reproductive mechanisms, and natural selection are among597

the major forces driving genome evolution [43]. Hence, in the second part of this598

manuscript we focus on integrating selection in both approaches. Currently, no method599

(especially if relying only on SFS information) can account for the presence of selection,600

linkage
:::::::::::::::
disequilibrium, non-constant population size and multiple merger events [43] al-601

though recent theoretical framework might render this possible in the future [1].602

As a first step to fill this gap, we demonstrate that GNNcoal can be used for model603

selection to reduce the number of hypotheses to test. Determining which evolutionary604

forces are driving the genome evolution is key, as only under the appropriate neutral605

population model results of past demography and selection scans can be correctly inter-606

preted [43, 45]. The high accuracy of GNNcoal in model selection is promising, especially607

as other methods based on the SFS alone [56, 46] have limits in presence of complex608

demographic scenarios. GNN can possibly overcome these limits, as it is easier to scale609

the GNN to estimate more parameters. We follow a thread of previous work [76, 38, 11],610

by integrating and recovering selection, multiple merger and population size variation611

by simply allowing each fixed region in the genome to have its own α parameter. In612

presence of strong selection, we find lower α value around the selected loci and high α613

value in neutral neighbouring regions.
:::::::
Hence,

::::
our

:::::::
results

:::::::
point

::::
out

:::::
that

:::::::
strong

::::::::::
selection614
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::::
can

:::::::
indeed

:::
be

:::::::::
modeled

:::
as

::
a
::::::
local

:::::::::
multiple

::::::::
merger

::::::
event

:::::
(see

::::::::::::
[26, 11, 76]

:
).

:
In presence of615

weak selection, no effect on the estimated α value is observed, demonstrating that weak616

selection can be modeled by a binary merger and has only a local effect on the branch617

length by shortening it. Hence, our results point out that strong selection can indeed be618

modeled as a local multiple merger event (see [26, 11, 76]). In theory, both approaches619

should be able to infer the global α parameter linked to the reproductive mechanism,620

as well as the local α parameter resulting from selection jointly with the variation of621

population size. However, the absence of a simulator capable of simulating data with622

selection and non-constant population size under a β-coalescent model prevents us from623

delivering such proofs. We show strong evidence that under neutrality our approaches can624

recover a constant (and correct) α along the genome as well as the past variation of the625

population size. We further predict that, while selective processes favor coding regions626

::::
may

:::::::::::::::
preferentially

::::::
occur

:::
in

:::::::
coding

:::::::::
regions

::
or

::::::::::::
regulatory

::::::::::::
potentially

::::::::::::
non-coding

::::::::
regions,627

local variations in α (as a consequence of sweepstake events) should be indifferent to628

:::
the

:::::::::
genomic

::::::::::::::
functionality

::
(coding or non-codingregions

:
). Hence, we suggest that current629

sequence simulators [7, 35] could be extended to include the aforementioned factors and630

de facto facilitate the development of machine learning approaches.631

Our study is unique in developing a new state-of-the-art SMC approach and demon-632

strating that computational and mathematical problems can be overcome by deep learn-633

ing (here GNN) approaches. The GNNcoal approach is, in principle, not limited to the634

β-coalescent, and should work for other multiple merger models (e.g., Dirac coalescents635

[27]) with the appropriate training. Furthermore, our SMβC approach is the first step to636

build a full genome method with an underlying model accounting for positive selection.637

In the future, further implementations may be added for a more realistic approach. The α638

parameter should be varying along the genome (as a hidden state), as the recombination639

rate in the iSMC [5]. This would allow to account for the local effect of strong and weak640

selection [1]. The effect of the α parameter could be also changing through time to better641

model the non uniform occurrence of multiple merger events through time. Although642

it is mathematically correct to have α as a constant in time, it is erroneous in practice643

(Figure 2 in S1
::
S2). We speculate that those additional features will allow to accurately644

model and infer multiple merger events, variation of population size, and selection at each645

position on the genome. We believe that deep learning approaches could also be improved646

to recover more complex scenarios, providing in depth development on the structure of647

the graph neural networks, for example, by accounting for more features. At last, further648

investigation are required to make progress in the interpretability of the GNN methods,649

namely which statistics and convolution of statistics are used by GNNcoal to infer which650

parameters.651

As our approaches are the first of their kind, we chose to restrain our study to haploid652

models of β and Kingman coalescent as a proof of principle. However, the GNNcoal and653

SMβC approaches can be extended to higher ploidy levels. Diploid versions of the haploid654

reproduction models whose genealogies are given by the β-coalescent lead to slightly655

different MMC coalescent models which can exhibit simultaneous multiple mergers [8, 10].656

Thus, our GNN approach should be directly applicable when trained on these diploid657

models which are implemented in msprime [7]. However, to adjust the SMβC approach658

would be somewhat more cumbersome (but doable), since we would need to extend the659

underlying HMM to account for simultaneous multiple mergers. We emphasise that660
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while there is growing evidence that MMC models produce better fitting genealogies for661

various species [32], there is ongoing discussions about which mathematical models are662

better suited to which species (for example see [3] for cod). We advocate that the life-663

cycle and various ecological factors determine whether a haploid or diploid MMC model664

can be chosen. On the one hand, a diploid MMC model is likely realistic if the species665

has a diploid life-cycle and balanced sex-ratio, so that multiple merger events do indeed666

happen in both sexes. On the other hand, if species are mostly haploid or clonal/asexual667

during their life-cycle (with periodically one short diploid phase for sexual reproduction)668

or exhibit strongly imbalanced sex-ratio, a haploid MMC model may be better suited.669

In their current form, our approaches are applicable to data from species with the latter670

characteristics such as many fungal and micro-parasites of plants and animals (including671

humans) as well as invertebrates (e.g. Daphnia or aphids) which undergo several clonal672

or parthenogenetic phases of reproduction (and one short sexual phase) per year. This673

represents a non-negligible set of study organisms which are of importance for medicine674

and agriculture [92].675

Our results on inferred ARGs stress the need for improving ARG inference [15].676

Thanks to the SMC we are close to model the ARG allowing to infer demographic his-677

tory, selection and specific reproductive mechanism. Moreover, the comparison of deep678

learning approaches with model driven ad hoc SMC methods may have the potential to679

help us solve ongoing challenges in the field. These include simultaneously inferring and680

accounting for recombination, variation of population size, different type of selection,681

population structure and the variation of the mutation and recombination rate along682

the genome. These issues have puzzled theoreticians and statisticians since the dawn of683

population genetics [43].684

On a final note, as environmental changes hit us all, we suggest that decreasing the685

computer and power resources needed to perform DL/ GNN analyses should be attempted686

[80]. Based on our study, we suggest that population genetics DL methods could be built687

as a two step process: 1) inferring ARGs, and 2) inferring demography and selection based688

on the ARGs. We speculate that general training sets based on ARGs could be build and689

be widely applicable for inference across many species with different life cycles and life690

history traits, while the inference of ARGs could be undertaken by complementary deep691

learning or Hidden Markov methods.692

Tables693

scenario True α α:SMβC,M=3 α:SMβC,M=4 α : GNN, M=3 α : GNN, M=10
Constant 2 1.97 (0.005) 1.97 (0.008) 1.99 (0.002) 1.99 (0.003)
Sawtooth 2 1.94 (0.017) 1.87 (0.019) 1.99 (0.002) 1.99 (0.003)
Bottleneck 2 1.97 (0.01) 1.97 (0.009) 1.99 (0.003) 1.99 (0.004)
Decrease 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.003) 1.99 (0.004)
Increase 2 1.97 (0.007) 1.97 (0.008) 1.99 (0.004) 1.99 (0.002)

Table 1: Average estimated values of α by SMβC and GNNcoal over ten repetitions
under the Kingman coalescent using 10 haploid sequences of 10 Mb and µ = r = 10−8

per generation per bp. The standard deviation is indicated in brackets.
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scenario True α α∗:SMβC,M=3
Constant 1.9 1.86 (0.16)

Bottleneck 1.9 1.89 (0.09)
Increase 1.9 1.93 (0.07)
Decrease 1.9 1.96 (0.04)
Sawtooth 1.9 1.76 (0.17)
Constant 1.7 1.82 (0.10)

Bottleneck 1.7 1.64 (0.23)
Increase 1.7 1.82 (0.10)
Decrease 1.7 1.89 (0.13)
Sawtooth 1.7 1.71 (0.27)
Constant 1.5 1.52 (0.30)

Bottleneck 1.5 1.64 (0.33)
Increase 1.5 1.57 (0.24)
Decrease 1.5 1.60 (0.18)
Sawtooth 1.5 1.66 (0.14)
Constant 1.3 1.31 (0.20)

Bottleneck 1.3 1.2 (0.17)
Increase 1.3 1.24 (0.13)
Decrease 1.3 1.57 (0.11)
Sawtooth 1.3 1.37 (0.16)

Table 2: Average estimated α values by SMβC on simulated sequence data over ten
repetitions using 10 sequences of 10 Mb with recombination and mutation rate set to
1× 10−8 for α 1.9 and 1.7, 1× 10−7 for α 1.5 and 1× 10−6 for α 1.3 per generation per
bp under a Beta coalescent process. The analysis are run on five different demographic
scenarios (Constant population size, Bottleneck, Sudden increase, Sudden decrease and
a Sawtooth demography).

Data availability694

Code used to generate the simulated data for analysis, training and validation alongside695

(trained) deep learning models can be found at https://github.com/kevinkorfmann/696

GNNcoal and https://github.com/kevinkorfmann/GNNcoal-analysis. Code for SMC697

approaches used in this manuscript are available in the R package eSMC2 https://698

github.com/TPPSellinger/eSMC2.699
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