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When cancers or bacterial infections establish, small populations of cells have to free them-5

selves from homoeostatic regulations that prevent their expansion. Trait evolution allows6

these populations to evade this regulation, escape stochastic extinction and climb up the7

fitness landscape. In this study, we analyse this complex process and investigate the fate8

of a cell population that underlies the basic processes of birth, death and mutation. We9

find that the shape of the fitness landscape dictates a circular adaptation trajectory in the10

trait space spanned by birth and death rates. We show that successful adaptation is less11

likely for parental populations with higher turnover (higher birth and death rates). In-12

cluding density- or trait-affecting treatment we find that these treatment types change the13

adaptation dynamics in agreement with a geometrical analysis of fitness gradients. Treat-14

ment strategies that simultaneously target birth and death rates are most effective, but15

also increase evolvability. By mapping physiological adaptation pathways and molecular16

drug mechanisms to traits and treatments with clear eco-evolutionary consequences, we can17

achieve a much better understanding of the adaptation dynamics and the eco-evolutionary18

mechanisms at play in the dynamics of cancer and bacterial infections.19
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1. Introduction38

Cancer cells and bacterial pathogens show extensive adaptive potential, which helps them to establish39

even in unfavourable conditions and outgrow competitors and external pressures, for example by the40

immune system (Fridman et al., 2012; Winstanley et al., 2016). In healthy tissue or healthy micro-41

biomes, external regulation aims to maintain a constant population size, which together with stochastic42

fluctuations in the population dynamics of individual subpopulations results in a constant turnover43

characterized by the eventual stochastic extinction of a specific subpopulation and subsequent replace-44

ment by other subpopulations (Gallaher et al., 2019). This extinction can be prevented by adaptations45

that give an emerging subpopulation of cells a fitness advantage over the remaining population. The46

increased fitness reduces the subpopulation’s risk of extinction in a process often termed evolutionary47

rescue (Orr and Unckless, 2008; Alexander et al., 2014; Uecker et al., 2014; Marrec and Bitbol, 2020a).48

Accordingly, the onset of cancer is characterized by malignant cells breaking with the homoeostatic49

regulation of healthy tissue (Basanta and Anderson, 2013, 2017). Similarly, bacterial infections that50

either emerge from or invade an otherwise healthy microbiome have to develop mechanisms to out-51

grow the other community members and free themselves from regulative community interactions, for52

example by pathoadaptive mutations (Winstanley et al., 2016; Culyba and Tyne, 2021).53

Many individual mechanisms of how this fitness increase is realized have been identified. In a pro-54

gressing tumour, the net growth increase of subclones relative to their parental clones often indicates a55

continuing evolution towards higher net growth rates, often but not always driven by the accumulation56

of known driver mutations (Gruber et al., 2019). Biswas et al. (2004) suggest that NF-κB activation57

increases proliferation and decreases apoptosis rate in estrogen receptor-negative breast cancer cells.58

Lopez and Tait (2015) describe how apoptosis is avoided in cancer cells by upregulating anti-apoptotic59

BCL-2 proteins. Similary, also infectious bacteria must adapt during an ongoing infection (Faure et al.,60

2018; Culyba and Tyne, 2021). For example, Young et al. (2017) showed that formerly commensal61

constituents of the host microbiome accrue substantial adaptive genotypic changes as they become62
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infective, and Both et al. (2021) documented the phenotypic changes during the adaptation to the63

host environment.64

These adaptations have lead
:::
led

:
to the development of drugs that target many such mechanisms65

both in cancer and in bacterial infections. For example, BCL-2 inhibitors aim to counter decreased66

apoptosis rates in cancer cells (Montero and Letai, 2018), and NF-κB inhibition is investigated to lessen67

the inflammatory increase in proliferation (Yu et al., 2020). Anti-virulence therapy and microbiome68

modulation have been proposed as options besides antibiotics to counter the adaptations of pathogenic69

bacteria (Hauser et al., 2016).70

The diversity of these specific, experimentally well-characterized adaptations and potential treatments71

call for an abstraction to elucidate the eco-evolutionary mechanisms behind adaptations of cell pop-72

ulations in challenging environments. It is a priori unclear which functional traits of cancer cells or73

pathogenic bacteria would be targeted by adaptations. Similarly, it is not understood how treatment-74

induced perturbations to the adapting populations or their environments would affect the adaptation75

process. In order to generalize from the plethora of adaptive mutations or plastic responses of cancer76

cells and bacterial pathogens, we describe the population of evolving cells in a minimal model: Cells77

competitively grow, die and mutate. We speculate that many of the adaptive mechanisms described78

above can be classified as either increasing the birth rate or decreasing the death rate. Treatment79

approaches that try to contain or eradicate such adapting populations could then be grouped into two80

types: (i) They either directly decrease the population size of the target population, or (ii) indirectly81

decrease the population size by affecting their birth and death rates. In such a simplistic but general82

setting we investigate where adaptation will take the population in a trait space spanned by birth rate83

and death rate, and how treatment will affect the resulting adaptation trajectories.84
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2. Methods85

2.1. Description of the underlying microscopic processes86

We represent the initial phases of tumour formation or the establishment of a bacterial infection as87

the spread of a population of cells in a harsh environment. In our model, this harshness manifests in88

similar birth and death rates and a decreasing birth rate as population size increases. The similarity89

of birth and death rates is supported by the high proportion of dead cells in tumours (Kerr and90

Lamb, 1984; de Jong et al., 2000; Liu et al., 2001; Alenzi, 2004; Gallaher et al., 2019). While bacterial91

death rates in benign conditions are small (Koch, 1959; Stewart et al., 2005) the mortality from92

immune responses or nutrient scarcity may be considerable and the importance of bacterial death is93

probably underestimated (Frenoy and Bonhoeffer, 2018). Space
:::::::
Oxygen

::::::::::::
availability,

::::::
space restriction94

and nutrient limitation are likely mechanisms for the density dependence of the birth rate. We assume95

that this density dependence restricts the birth rate β of cells by a logistic term with a carrying96

capacity K. We assume that death occurs at a constant rate δ. Upon each birth event mutations can97

give rise to lineages with trait combinations (βm, δm) that slightly deviate from those of their parental98

lineage. We assume that mutations in the two traits can occur independently and without correlation
:
,99

::::
and

::::
that

::::::::::::
mutational

::::::
effects

::::
are

:::::::
purely

::::::::
additive. The birth and expansion of fitter mutants can shift100

the population average trait combination and thus cause the population to adapt by exploring its101

adaptive landscape (e.g. Patout et al., 2021). We can represent the adaptation of a population by the102

trajectory of the mean trait combination in the trait space spanned by birth rate β and death rate103

δ.
:::::::::
Focussing

::::
on

::::
the

::::::
initial

:::::::
phases

:::
of

::::::::::::
adaptation,

:::
we

::::::::
assume

:::::
that

::::
the

:::::::::
carrying

:::::::::
capacity

:::
K

::::::::
remains104

:::::::::
constant.

::
We will investigate treatment types that either target the density or the traits of the105

evolving population (Fig. 1). Density-affecting treatment types are modelled as instantaneous density106

reductions (bottlenecks) applied homogeneously to the whole population, similar to the resection of107

a tumour where cancerous tissue is surgically removed, or the voiding of the bladder during urinary108

tract infections where most non-attached pathogenic bacteria are flushed out (Cox and Hinman, 1961;109
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Table 1 Reference parameter set.
::::
The

:::::::::::
parameters

:::
of

::::
the

::::::::::
stochastic

:::::::::
adaptive

:::::::
process

::::
are

:::::::
chosen

::::
such

:::::
that

::::::::
without

::::::::::
treatment

:::::::
about

::::
half

:::
of

:::
the

:::::::::
replicate

::::::::::::
simulations

:::::
show

::::::::::
successful

::::::::::::
adaptation.

:::::
The

:::::::::::
parameters

::
of

::::
the

:::::::::::::
deterministic

::::::
model

:::::
were

:::
set

:::::
such

:::::
that

::::
the

::::
time

::::::
scales

:::
of

:::
the

::::::::::::::
deterministic

:::::::::
dynamics

::::::
would

::::::
match

::::
the

:::::
time

::::::
scales

::
of

::::
the

::::::::::
stochastic

:::::::
model.

:
Deviations from these values are reported where

applicable.

Parameter Biological meaning Value

β0 Birth rate of the first parental lineage 1
δ0 Death rate of the first parental lineage 1
K Carrying capacity for total cell population 20 000
∆ Absolute treatment effect in trait space 0.5
N0 Initial size of the first parental lineage 100

dt Time step for evaluation of stochastic dynamics 0.1
µ Mutation probability per cell division 0.005
σ Standard deviation of mutational trait changes 0.05

Gβ Genetic variance of death
:::::
birth

:
rate 10−2.5

Gδ Genetic variance of death rate 10−2.5

c Trait change deceleration for small trait values 0.1

Sobel, 1997). Trait-affecting treatment types are implemented by prolonged additive changes to either110

the birth or the death rates of the individual lineages. ‘Static’ drugs decrease the birth rate by ∆β111

(e.g. cytostatic chemotherapy or bacteriostatic antibiotics), ‘toxic’ drugs increase the death rate by112

∆δ (e.g. cytotoxic chemotherapy, immunotherapy or bactericidal antibiotics). Different trait-affecting113

treatment types can thus be represented by vectors (∆β, ∆δ) in trait space (Fig. 1). Accounting for114

treatment and logistic density dependence of birth rates the effective birth and death rates of lineage115

i with population size Ni are given by116

bi(t) = (βi −∆β(t))

(
1−

∑
j Nj(t)

K

)
di(t) = δi +∆δ(t)

(1)

We ensure that effective birth rates are always greater than or equal to zero, setting them to zero if117

they would be negative.118

2.2. Stochastic model119

We use these microprocesses of birth, death and mutation to construct a discrete-time stochastic model120

(Eq. 2). We assume that the number of birth and death events per lineage i per time step dt, (Bi(t+dt)121
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and Di(t+dt)) are Poisson-distributed around the expected numbers of birth events biNi dt and death122

events diNi dt, given the effective birth and death rates bi and di according to Eq. (1). The number123

of mutants Mi(t + dt) among the new-born cells is given by a binomial distribution with mutation124

probability µ.125

Bi(t+ dt) ∽ Poisson(bi(t)Ni(t) dt)

Di(t+ dt) ∽ Poisson(di(t)Ni(t) dt)

Mi(t+ dt) ∽ Binomial(Bi(t+ dt), µ)

Ni(t+ dt) = Ni(t) +Bi(t+ dt)−Di(t+ dt)−Mi(t+ dt)

(2)

Each newly mutated cell founds a new lineage with trait values drawn from a truncated Gaussian126

distribution with the parental trait values as the mean and a standard deviation of σ = 0.05. By127

setting the lower bound of the truncated Gaussian distribution to zero, we prevent the evolution of128

negative trait values. The upper bound was set to 1000, which is far beyond the trait values that are129

obtained in our simulations and thus does not affect our results. By drawing
:::::::::
assuming

::
a
::::::::::
truncated130

:::::::::
Gaussian

::::::::::::
distribution

::
of

:::::::::::
mutational

:::::::
effects

::::
we

:::::
draw

:
the mutant trait values

::::::::::::::
predominantly

:
from the131

vicinity of the parental traits
:
.
::::::
Thus, we focus our investigation on an adaptive process where trait132

changes occur predominantly in small steps, either by plastic changes to the cell phenotypes or by133

mutations with small effects, albeit single large-effect jackpot events are also possible but much less134

likely. This represents the diversity of adaptive mechanisms in cancer and pathoadaptations in bacterial135

infections resulting from the multitude of stressors that adapting cell populations face in the human136

body.137

2.3. Deterministic model138

Defining the total population size as N(t) =
∑

iNi(t) and the population average traits as β(t) =139 ∑
i βiNi(t)/N(t) and δ(t) =

∑
i δiNi(t)/N(t), we can construct a deterministic model from the above140

microscopic model using a Quantitative Genetics approach (Lande, 1982),141
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dN(t)

dt
=

(
(β(t)−∆β(t))

(
1− N(t)

K

)
− (δ(t) + ∆δ(t))

)
N(t)

dβ(t)

dt
= Gβ

∂φ(t)

∂β(t)
e−c/β(t)

dδ(t)

dt
= Gδ

∂φ(t)

∂δ(t)
e−c/δ(t)

(3)

Here, the change in total population size is governed by the difference of logistic average birth rate and142

average death rate. Treatment affects the effective birth and death rates as in Eq. (1). The change in143

the average birth and death rates are assumed to be proportional to the gradient of a function f(t)144

::::
φ(t)

::::::::
(defined

:::::::
below)

:
that describes the fitness of individuals with proportionality constants Gβ and Gδ145

::::
that

::::::::
describe

::::
the

::::::::
additive

::::::::
genetic

::::::::
variance

::
in

::::
the

::::::
traits

::::::::::::::
(Lande, 1982). The factors e−c/β(t) and e−c/δ(t)

146

ensure decelerating trait changes close to the trait axis, thus preventing negative trait values (Abrams147

and Matsuda, 1997; Raatz et al., 2019). Note that also this deterministic model formulation assumes148

independence of the two traits. The system of ordinary differential equations Eq. 3 is numerically149

integrated using the LSODA implementation of the solve ivp function from the Scipy library (Virtanen150

et al., 2020) in Python (version 3.8). Standard initial conditions are N(0) = 100, β(0) = 1, δ(0) = 1 .151

:::::
(Tab.

::::
1).

:
152

Setting the temporal derivative of the population size to zero we can obtain the conditions for the153

manifold where the population change equals zero. On this manifold, the population size is given by154

the effective carrying capacity155

N∗(t) = K

(
1− δ(t) + ∆δ(t)

β(t)−∆β(t)

)
. (4)

Because of treatment, the effective carrying capacity could become negative. In our simulations,156

however, we ensure that the population size remains bounded by zero.157

2.4. Defining fitness158

Adaptation should increase fitness relative to competitors, but what exactly determines fitness in159

populations that have to adapt to unfavourable conditions? Generally, defining fitness measures is160
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not unambiguous
:::::::::::
ambiguous (Doebeli et al., 2017; Kokko, 2021). One possible definition is lifetime-161

reproductive output, which itself is a composite measure that includes net growth rate, but also the162

probability that newly founded lineages survive stochastic population size fluctuations. Even in our163

simplified setting the determinants of fitness are a priori not trivial, particularly in a regime of high164

rates of stochastic extinction of lineages. An obvious choice may be the net growth of a lineage r,165

which determines how quickly that lineage grows out of this regime of probable stochastic extinction166

and outcompetes other lineages. Similarly, the survival probability of a newly founded lineage p may167

be selected for. Also, the importance of these two fitness components may change with population168

size, with survival probability being more important at small lineage size and net growth becoming169

more decisive for larger lineage sizes. We define these two measures of fitness as170

ri(t) = (βi −∆β(t))

(
1− N(t)

K

)
− (δi +∆δ(t)) Lineage net growth (5)

pi(t) =


1− δi+∆δ(t)

(βi−∆β(t))
(
1−N(t)

K

) if δi+∆δ(t)

(βi−∆β(t))
(
1−N(t)

K

) ≤ 1

0 if δi+∆δ(t)

(βi−∆β(t))
(
1−N(t)

K

) ≥ 1

Survival probability of
newly founded lineage

(6)

The survival probability here follows from a simplified branching process under the assumption that171

during the potential establishment of a mutant lineage, the population size of the remaining population172

will stay approximately constant (see Supplementary Section A.1). Assuming a large carrying capacity173

K, the density dependence vanishes and the survival probability becomes equal to one minus the174

extinction probability for newly founded lineages as derived by others (Xue and Leibler, 2017; Coates175

et al., 2018; Marrec and Bitbol, 2020b).176

We numerically confirmed the agreement of the survival probability definition with simulations of our177

model for the case of no mutation (µ = 0) (Fig. S1). Note that the fraction of birth rate over death rate178

has also been proposed as a fitness measure for a model that is identical to ours, but lacks mutations179

(Parsons and Quince, 2007).180

Adaptation will either be driven by selection for the fittest lineage in the stochastic model or determined181

by the fitness gradient in the deterministic model. In both cases, adaptation manifests as a changing182
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average population trait combination. The direction of adaptation in trait space should be determined183

by the gradients of the two fitness components in the absence of treatment. We can compute those184

gradients as185

∇ri =

 ∂ri
∂βi

∂ri
∂δi

 =

1−
∑

i Ni

K

−1

 (7)

∇pi =

 ∂pi
∂βi

∂pi
∂δi

 =
1

βi

(
1−

∑
i Ni

K

)
 δi

βi

−1

 (8)

In the deterministic model (Eq. 3) we explicitly prescribe whether adaptation should follow the net186

growth or the survival probability fitness gradient and thus substitute f(t)
::::
φ(t) by r(t) or by p(t). If187

adaptation is determined by net growth we obtain188 ∂φ(t)

∂β(t)
∂φ(t)

∂δ(t)

 =

 ∂r(t)

∂β(t)
∂r(t)

∂δ(t)

 =

(
1− N

K
−1

)

If adaptation is driven by survival probability we obtain189 ∂φ(t)

∂β(t)
∂φ(t)

∂δ(t)

 =

 ∂p(t)

∂β(t)
∂p(t)

∂δ(t)

 =
1

β(t)
(
1− N

K

) ( δ(t)

β(t)

−1

)

2.5. Treatment types190

Treatment can either immediately kill part of the population or rig the chances of a population to191

grow by decreasing birth rates or increasing death rates (Fig. 1). The first case, which affects density192

directly, causes a direct, instantaneous population size reduction. The second case, which affects traits,193

brings about an indirect, gradual population size decline where on average more death events than194

birth events occur. These two treatment types thus differ in their temporal structure. Whereas the first195

treatment occurs instantaneously, the latter treatment is applied for a defined time span, during which196

the treatment alters the effective birth and death rates of cells, similar to (Marrec and Bitbol, 2020b).197

We assume that the density-affecting treatment type targets all cells homogeneously, irrespective of198

their traits. The additive trait changes during trait-affecting treatment are also equally applied to all199

lineages, resulting in different relative trait changes, depending on the trait values of each lineage. We200
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represent different trait-affecting treatment types as vectors of length ∆ in trait space with components201

given in Fig. 1. Besides the pure, static (affecting birth rates only, horizontal) or toxic (affecting death202

rates only, vertical) treatments, we account for the fact that the boundaries between static or toxic203

treatment are often blurred. The same drug can be static or toxic, depending on the dose (Masuda204

et al., 1977), or treatment intentionally consists of two different drug types that each act more static or205

toxic (Coates et al., 2018; Jaaks et al., 2022). Thus, we include a mixed treatment where both treatment206

vector components
:::
∆β ::::

and
::::
∆δ have the same length. Additionally, we propose two treatment types207

that also combine static and toxic components and
:::
but

:
additionally account for the shape of the208

fitness landscapeby countering either
:
.
:::::
The

::::::::::::
minimizing

:::::::
growth

:::::::::::
treatment

::::::::
counters

:
the net growth209

rate fitness gradient (minimizing growth) or the
::::
Eq.

::
7)

:::::
and

:::
has

:::::::
vector

::::::::::::
components

::::::::::::::::::
(∆β, ∆δ) ∝ ∇r(t)210

::::::
where

::::
r(t)

:::
is

::::
the

::::::::
average

::::
net

:::::::
growth

:::::
rate

:::
of

::::
the

:::::::::::
population

:::
at

:::::
time

::
t.
::::::
The

::::::::::::
maximizing

::::::::::
extinction211

:::::::::
treatment

:::::::::
counters

::::
the

:
survival probability fitness gradient (maximizing extinction)

:::
Eq.

:::
8)

::::
and

::::
has212

::::::
vector

::::::::::::
components

::::::::::::::::::
(∆β, ∆δ) ∝ ∇p(t)

::::::
where

:::::
p(t)

::
is

::::
the

:::::::
average

:::::::::
survival

:::::::::::
probability

::
of

::::
the

:::::::::::
population213

::
at

:::::
time

::
t. The minimizing growth treatment components are density-dependent, the maximizing214

extinction treatment components are trait-dependent, i.e. a function of the population average trait215

combination (Fig. 1).216
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Static Toxic Mixed Minimize
growth

Maximize
extinction

Trait-affecting 
treatment

Density-affecting 
treatment

Treatment 
vector 

components

Death	
rate

Birth rate

N/K=1N/K=0

Figure 1 Different treatment types can either affect the cell density directly (left) or
indirectly via changing the traits (right). Populations of cancer cells (yellow) or pathogenic
bacteria (green) can be targeted with different mechanisms. Density-affecting treatment applies a
bottleneck and reduces the population size instantaneously to a fraction f . Trait-affecting treat-
ment, e.g. chemotherapy, alters the traits for a prolonged time period (the treatment duration) and
displaces the population in trait space temporarily which results in population decline. Note that
M =

√
1 + max(0, 1−N(t)/K)2 is a normalization factor.
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3. Results217

3.1. Trajectories of adaptation in untreated populations218

When suddenly faced with challenging environments, rapidly proliferating cell populations can quickly219

adapt by acquiring mutationsor leveraging phenotypic plasticity, often resulting in continuing popula-220

tion growth. We represent the resulting phenotypic changes as changed trait values of offspring lineages221

relative to the trait values of their parental lineages. Such phenotypic adaptations allow for population222

size increases and realize a continuously changing average population trait combination (Fig. 2). The223

population size increases are characterized by a succession of fitter and fitter lineages that raise the224

effective carrying capacity N∗ (Eq. 4), which allows the population size to increase further. Thus trait225

adaptation acts as a rubber band here that is extended by adaptive steps and contracts as growth226

closes the gap between population size and effective carrying capacity. The adaptive steps form a trait227

space trajectory that travels from the trait combination of the initial parental lineage to smaller death228

rates and larger birth rates.229

We hypothesize that this trajectory is the outcome of the stochastic exploration of trait space that230

climbs up a fitness landscape, with fitter lineages out-competing less fit lineages. This fitness landscape231

can be characterized by fitness gradients and we propose net growth rate and survival probability as232

potential fitness components that generate these gradients. For our model, we see that the gradients233

of these two fitness components are not necessarily aligned. The vector representations of the net234

growth rate fitness gradient are parallel throughout trait space, indicating higher net growth rates for235

high birth rates and low death rates, resulting in a unidirectional, trait-independent fitness gradient236

(Fig. 3a). The vector representations of the survival probability fitness gradient form a circular vector237

field, indicating a trait-dependent fitness gradient with higher survival probability for high birth rates238

and low death rates (Fig. 3b).239

The direction of the gradient of net growth ∇r is density-dependent, i.e. it changes with population240

size (Eq. 7). The direction of the gradient of survival probability ∇p does not depend on population241
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Figure 2 Exemplary population and trait dynamics for adaptation in challenging envi-
ronments. (a) Starting from small initial numbers (N0/K = 0.01) the total population size (grey
line) relative to the carrying capacity, N(t)/K, increases in a succession of fitter and fitter lineages
(depicted by the blue-to-red colors indicating the order of appearance). For clarity, we show here only
those lineages that persist for more than 10 time units. The dashed line shows the effective carrying
capacity where population change is zero in the deterministic model (Eq. 4). The appearance of fitter
lineages increases the effective carrying capacity and allows for a further increase in population size.
(b) The trait combination of each lineage in panel (a) is shown here with the same color coding, with
the grey line now depicting the population average. The point size is determined by the persistence
time of a lineage relative to the longest persistence time. Starting from challenging conditions of birth
rate β0 = 1 and death rate δ0 = 1 the population average trait combination (grey line) travels through
trait space describing the trait space trajectory of adaptation. The dotted grey lines represent the
net growth fitness gradient at small population sizes (straight line) and the survival probability fitness
gradient (circular line).

size but is trait-dependent (Eq. 8). Interestingly, we find that both fitness gradients are parallel242

as soon as the manifold of zero population size change is reached and the population size equals243

the effective carrying capacity, N(t) = N∗ (Eq. 4, Fig. 3). Therefore, only in the initial phases of244

adaptation (Fig. 2a), or during and short after treatment when the population size deviates from N∗
245

the two fitness components may have non-parallel directions and thus differently affect the direction246

of adaptation steps. As soon as the total population size reaches N∗, the effects of the two fitness247

components cannot be disentangled, leaving us to conclude that they together dictate the trajectory248

of trait adaptation.249

Successful adaptation in unfavourable conditions is a stochastic event. When starting with an initial250

wildtype population size of N0 > 0 and equal birth and death rate, the net growth rate is negative251
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Figure 3 Predicted adaptation directions in trait space. (a) The direction of the net growth
gradient is density-dependent, but trait-independent (Eq. (7)). (b) The direction of the survival
probability gradient is density-independent, but trait-dependent and has a circular shape (Eq. (8)).
At the effective carrying capacity N∗, depicted by the red arrows in panel (a), the net growth fitness
gradient is parallel to the survival probability fitness gradient. Note that the effective carrying capacity
depends on the traits, this causes the apparent trait dependence of the net growth gradient at effective
carrying capacity. Given these gradients and initial parental lineages starting from β0 = δ0 = 1
the trait trajectories are moving mainly within the region of trait space enclosed by the grey dashed
rectangle. Therefore, we zoom in on this region when visualizing trait space trajectories such as in
Fig. 2.

and the survival probability is zero (Eqs. 5, 6). Thus, the wildtype lineage inevitably goes extinct in252

our model, and population survival can only be achieved by adaptation and the succession of fitter253

lineages as described above, i.e. evolutionary rescue. The success of this adaptive process and its254

average trajectory can be depicted by combining a large number (1000) of independent replicates255

(Figs. 4, 5). We find that moving the trait combination of the first parental lineage further to the256

upper right corner of trait space, and thus increasing both the initial birth and death rate equally,257

increases the number of extinct replicate populations, indicating a lower probability of successful258

adaptation and evolutionary rescue. As expected, we find that a
::::::
larger

::::::
initial

:::::::::
parental

:::::::::::
population259

::::
and

:
a
:
higher mutation probability per birth event and a larger initial parental population increase the260

rescue probability as this increases both the rate at
::::
pool

::::::
from which new lineages appear and the pool261

from which they can emerge
:::
can

::::::::
emerge

::::
and

::::
rate

:::
at

::::::
which

:::::
they

:::::::
appear

:
(Figs. 4, S2).262
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Figure 4 Probability of evolutionary rescue. First parental populations with higher turnover as
characterized by higher levels of equal birth and death rate are less likely to successfully adapt and
escape extinction. Rescue probability is here defined as the fraction of non-extinct replicate populations
after tf = 500

:::::::
t = 500, which allows non-extinct populations to move far into trait space regions of high

net growth rate and high survival probability (see for example Fig. 2). Simulations are started from
identical

:::
the

:
initial conditions and

::::::::
parental

:::::::::::
population

::::
size

:::
N0::::::

using
:
1000 replicates.

In those replicates where the population does not go extinct, we see that the ensemble average popula-263

tion size tracks the effective carrying capacity N∗ of the ensemble and approaches the carrying capacity264

K in a sigmoidal fashion (Fig. 5). The corresponding ensemble trajectory of untreated trait adaptation265

describes a circular shape in trait space, as predicted by both the survival probability fitness gradient266

and, if the population size equals the effective carrying capacity, the net growth fitness gradient.267

3.2. Trajectories of adaptation in treated populations268

For both plausible fitness gradients we can construct geometrical hypotheses about the effect of treat-269

ment on the adaptation trajectory. Visualizing the fitness isoclines (the lines of equal fitness) in trait270

space as the rectangular bases for the fitness gradient vectors helps to work out this effect (Fig. 6). We271

consider different kinds of treatment
::::::::::
treatment

::::::
types that either target the population size directly,272

or indirectly by additively shifting the traits of the cells which subsequently decreases population size.273

Both the direct as well as the indirect effect on population size induce a density-mediated change in the274

predicted adaptation direction of the
::::::::
rotation

:::
in

:::
the

:
net growth fitness component, which becomes less275
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Figure 5 Ensemble population size dynamics and trait trajectories without treatment.
(a) The population size N increases to the carrying capacity K in those replicate populations (light
grey) that do not go extinct. The solid blue line represents the ensemble average of the surviving
populations, the dashed blue line is the effective carrying capacity N∗ of these replicates. (b) The
trait trajectories (light grey) of all replicates on average describe a circular shape (blue line). To
characterize the ensemble, we consider 1000 replicates of the simulation in Fig. 2.

vertical and gains a larger birth rate component
:::::::
isoclines

:
(Fig. 6a).

::::
This

::::::
causes

::
a
::::
less

::::::::
vertical

:::::::::
predicted276

::::::::::
adaptation

:::::::::
direction

:::::
with

::
a
:::::::
larger

:::::
birth

:::::
rate

:::::::::::
component

:::::
from

::::
the

:::
net

::::::::
growth

:::::::
fitness

:::::::::::
component.

:
The277

trait-affecting treatment types
:::::::::::
temporally

::::::::
displace

::::
the

:::::::::::
population

:::
in

:::::
trait

::::::
space

::::
but

:
have no direct278

effect on the net growth fitness component due to the parallel fitness isoclines (Fig. 6b). Similarly,279

the survival probability fitness component is independent of population size and thus not affected by280

density changes (Fig. 6c). However, the
:::::
when

:::
the

::::::::::::
population

::
is

:::::::::
displaced

:::
in

:::::
trait

::::::
space

::::
the

:
circular281

shape of the survival probability fitness component changes the predicted adaptation direction to be-282

come less vertical under trait-affecting treatment (Fig. 6d). Thus, we hypothesize that both treatment283

types would drive less vertical adaptation trajectories.284

We investigate the effect of treatment on the adaptation trajectory by periodically applying the dif-285

ferent treatment types on populations that grow from small population sizes and ascend the fitness286

gradient (Fig. 7). If the replicate populations escape extinction, they increase in population size and287

reach the carrying capacity K. The density-affecting treatment type reduces the population size of288

each lineage by a
::::::::::
bottleneck

:
factor f . This decreases competition and allows surviving lineages to289
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Figure 6 Density-mediated and trait-mediated treatment effects predict less vertical trait
adaptation trajectories. The fitness isoclines (contours of equal fitness in trait space) are by
definition perpendicular to the fitness gradient vectors for a given point in trait space. Fitness isoclines
in the absence of treatment are depicted by dashed grey lines, fitness isoclines affected by treatment
are shown as solid, dark grey lines. Similarly, realized trait combinations that include the effect of
treatment are shown by dark grey points. They deviate from their light grey, untreated counterparts
in the case of trait-affecting treatment. Potential changes in the adaptation direction are indicated
by a difference between untreated (light grey) and treated (dark grey) fitness gradient vectors, and
corresponding fitness isoclines with different angles relative to the axes.

achieve higher net growth rate. This competitive release causes the population size to recover to290

higher levels after the first treatments than in the untreated control (Fig. 7a). However, newly estab-291

lished, fitter lineages are especially prone to extinction when the bottleneck treatment reduces lineage292

sizes to small fractions, which limits the exploration of trait space and hinders a rapid adaptation293

towards faster net growth rates and higher survival probabilities. Therefore, the populations that294

undergo stronger bottleneck treatments approach the carrying capacity slower and have shorter trait295

trajectories (Fig. 7a,b). The trait-affecting treatment types also show the competitive release pattern296

of recovery to population sizes higher than the untreated control. Here, the population sizes repeatedly297
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recover to higher values after treatment and the carrying capacity is approached faster than in the un-298

treated control (Fig. 7c,d). Similar to the untreated population size time series, also under treatment299

the population size is tracking the effective carrying capacity N∗. We find that the trait trajectories of300

treated populations deviate from the untreated controls as predicted from our geometrical hypotheses301

(Fig. 6). We observe that the deviations are caused by more horizontal adaptation steps right after302

the density-affecting treatment or during the trait-affecting treatment (Figs. S7, S8). This results in303

longer adaptation trajectories that are elongated towards higher birth rates. The traits change in a304

step-wise pattern over time for the density-affecting treatment, with large adaptive steps immediately305

after the treatment time points (Fig. 8a). Trait-affecting treatment increases the rate of trait change306

which results in a ramp-like pattern of the traits over time Fig. 8b).307

We find that the dynamics of those trait-affecting treatment types that contain toxic components are308

similar both in the population size and the trait dynamics. The purely static treatment, however, differs309

considerably. As the population size approaches the carrying capacity, the effect of the static treat-310

ment is reduced as its net growth reduction is density dependent and proportional to 1−N/K (Eq. 1).311

This manifests in decreasing density reductions during treatment phases (Fig. 7c). Accordingly, after312

similar initial trajectories, the adaptation trajectory under purely static treatment later deviates from313

the adaptation trajectories for the other treatment types that contain also density-independent toxic314

components (Fig. 7d). We observe similar patterns also in the deterministic description of the adap-315

tive process using a quantitative genetics approach where we explicitly specify the gradient of trait316

adaptation (Eq. 3, Figs. S9, S10).317

These fundamental effects of different treatment types on population dynamics and trait adaptation318

trajectory translate to treatment efficiency and the possibility for the populations to escape the treat-319

ment, i.e. evolve treatment tolerance. In our model and for the chosen parameters, approximately half320

of the replicates go extinct without any treatment due to stochastic extinction in the initial phases321

of adaptation. This pattern is caused by the initially equal birth and death rates. Equal birth and322

death rates imply zero net growth and thus inevitable extinction due to stochastic population size323
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Figure 7 Ensemble population size dynamics and trait trajectories under treatment. (a)
Density-affecting treatment applies regular bottlenecks and instantaneously decreases the population
size of each lineage to a small fraction at time points indicated by the black points. The treatment
strength is varied by decreasing the remaining fraction of each lineage after treatment (different colors).
The population size dynamics track the effective carrying capacity (Eq. 4, dashed lines). (b) The
density-affecting treatment affects the ensemble trait trajectory by triggering sudden trait changes.
(c) Trait-affecting treatment types result in prolonged phases of reduced population size (indicated
by the black bars). Again, the dashed lines depict the effective carrying capacity dynamics. (d)
The ensemble average trait trajectories under trait-affecting treatment deviate from the no treatment
reference and reach higher birth rates. Exemplary population size time series and trait trajectories for
bottleneck, static and toxic treatment are shown in Figs. S4-S6. As before we performed 1000 replicate
simulations

:::
and

::::::::::
computed

:::::::::
ensemble

:::::::::
averages

:::::
from

::::
the

::::::::::
surviving

:::::::::
replicates.

fluctuations. The adapting populations depart from this. Applying treatment increases the fraction324

of extinct replicates, which we use as a measure to quantify the treatment success rate (Fig. 9). As325

expected, a higher treatment strength that removes a larger proportion of cells per lineage increases326

the success rate of the density-affecting treatment type. Among the trait-affecting treatment types,327

pure static and toxic treatments achieve a similar success rate. Interestingly, combining static and328

toxic treatment components results in a considerably higher success rate. Here, the success rate of329

treatment types that counter either the net growth fitness gradient or the survival probability fitness330
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Figure 8 Trait dynamics under treatment depict the speed of adaptation. (a) Density-
affecting treatment causes short spikes in adaptation speed that manifest in step-wise changes of the
ensemble trait average. (b) Trait-affecting treatment temporarily accelerates the changes in ensemble
trait averages leading to ramp-like trait changes. The different colors refer to the treatment types, the
solid and dashed lines represent birth and death rates, respectively.

gradient is slightly higher than the ’Mixed’ treatment type that non-adaptively blends the static and331

toxic components in equal proportion.332

An interesting pattern emerges for the overall number of lineages that are eventually created during the333

adaptation from one parental lineage, which relates to the evolutionary potential of the population.334

We find that treatments that particularly increase mortality while not decreasing birth rates lead335

to a higher number of created lineages. The higher mortality decreases the density limitation of336

birth rates, which enables high net birth rates and accordingly high mutation rates. Particularly the337

stronger density-affecting treatments and the purely toxic treatment result in the creation of more338

mutant lineages. Whether these lineages are expanding successfully and thus shift the population339

average trait combination depends on the survival of the newly created lineages. Accordingly, we340
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find a reduced exploration for the strongest density-affecting treatment measured by the distance341

between the first parental trait combination and the population average trait combination at the end342

of our simulations. For the trait-affecting treatment types, we find an opposite correlation. Here,343

more lineages also enable a further trait space exploration. Newly created lineages are in general more344

endangered by extinction than established lineages, simply because of their smaller cell numbers, which345

makes a stochastic crossing of the extinction boundary more likely. During bottleneck treatment the346

relative effects of treatment on the extinction risk for newly created, fitter lineages versus established,347

less fit lineages are equal, whereas the absolute effects are different as it is more likely for small lineages348

to be driven to population sizes below a single cell. During trait-affecting treatment, the relative effect349

of treatment is smaller for smaller, but fitter lineages than for established, less fit lineages, whereas350

the absolute effects are equal. This may explain the observed differences in the correlation of number351

of lineages and evolved trait distance. It is interesting to note that treatments with higher success rate352

were also found to induce faster trait changes (Fig. 8), pointing out a potential trade-off of treatment353

success versus driving tolerance evolution.354

3.3. Which fitness component is more important?355

We found that treatment types that counter the potential fitness gradients achieve the highest success356

rates. However, we have not conclusively answered whether the net growth fitness gradient or the357

survival probability fitness gradient are more decisive for the eco-evolutionary dynamics in our model.358

To gather more evidence on this, we sampled the initial adaptation direction from different initial trait359

combinations to visualize the realized fitness gradient that acts on the adapting populations in trait360

space (Fig. S11). We indeed find that the realized fitness gradients are non-parallel in trait space,361

indicating that for larger birth rates and smaller death rates adaptation is driven by decreasing death362

rate, and increasing birth rate becomes less important. The visual similarity of this pattern to the363

survival probability fitness gradient hints at a larger importance of the survival probability fitness364

gradient at first glance. However, also the net growth rate becomes larger for larger birth rates and365
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smaller death rates, which speeds up the population size increase during the short observation window366

of initial adaptation. Because of the density-dependence, these larger population sizes turn the net367

growth fitness gradient to be more vertical (see Fig. 3a). Also, we observe that the initial adaptation368

direction is largely parallel along the diagonals in trait space, which correspond to the net growth369

fitness isoclines for small population sizes, which favours the net growth fitness gradient to be more370

important.371

To investigate whether the differences in initial adaptation direction are indeed caused by the density-372

dependence of the net growth fitness gradient, we again investigated the initial steps of adaptation373

with parameters that minimize the density change within our observation window. We decreased the374

initial population size and time span and increased the carrying capacity and find that the adaptation375

direction indeed becomes more horizontal, indicating a larger importance of the net growth fitness376

gradient than the survival probability fitness gradient. If the survival probability fitness gradient377

would be predominantly driving the adaptation, we would expect that the initial steps of adaptation378

change along the net growth fitness isoclines (except for the diagonal passing through the origin) and379

we would not expect a density dependence.380

In the deterministic model (Eq. 3), we are explicitly prescribing the fitness measure that determines381

the direction of trait adaptation. If we choose the net growth as the determining fitness measure382

we find trait trajectories that change with treatment and reproduce the trajectories obtained from383

simulations (Fig. S9). However, if we set the survival probability as the determining fitness measure384

in the deterministic model the trait trajectories under density-affecting treatment do not deviate from385

the trajectories without treatment, thus contrasting the observation in the simulations (Fig. S10).386

Therefore, more evidence points towards net growth rate maximization as the determinant of trait space387

adaptation trajectories in our simulations, even though we cannot falsify that the survival probability388

fitness gradient could also play an important part.389
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Figure 9 Treatment effects for density-affecting (left column) and trait-affecting (right
column) types. Panels (a) and (b) show treatment success rate measured as the fraction of extinc-
tion among the 1000 replicate populations at t = tf . Panels (c) and (d) show the number of lineages
that have been created by mutations in each non-extinct replicate population. Panels (e) and (f) show
the distance between the first parental trait combination and the last average trait combination of
each non-extinct replicate population. In panels (c)-(f), the same lower-case letters above two treat-
ments indicate that the two sets of data points could have been generated from the same underlying
distribution. Differing lower-case letters thus indicate differences between treatments. Unique letters
indicate treatments that are statistically different from all other treatments. The grouping into statis-
tically different groups was determined using the Tukey’s HSD implementation from the statsmodels
module (v0.13.0) in Python 3.8 and assigned with the pairwisecomp letters function written by Philip
Kirk (https://github.com/PhilPlantMan/Python-pairwise-comparison-letter-generator). A
treatment can be part of multiple groups by being indifferent to each one of them and thus receive
multiple letters.
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4. Discussion390

During the onset of cancer establishment and the spread of pathogens from a chronic infection, popu-391

lations of small size have to break with homoeostatic regulations that aim to prevent their expansion.392

Adaptation by trait evolution allows them to climb up the fitness landscape and eventually escape393

stochastic extinction, that would be unavoidable without adaptation. In this study, we reduced the394

complexity of cancer cells and pathogenic bacteria to the three basic processes of birth, death and395

mutation, and investigated i) the shape of the fitness landscape, ii) the adaptive trajectories of trait396

evolution and iii) how these trajectories are altered by treatment. We proposed net growth rate and397

survival probability as possible fitness measures that are increased by evolution. We found that both398

of these measures motivate a circular adaptive trajectory in the trait space spanned by birth rate and399

death rate .
::::
(Fig.

::::
3).

:
Indeed, this circular trajectory is recovered in stochastic simulations

::::
(Fig.

:::
5)

:
and400

altered by treatment in agreement with geometrically derived hypotheses .
::::::
(Figs.

::
6,

::::
7).

:::::::::::::
Interestingly,401

::
we

:::::
find

::::
that

:::::::::
adaptive

::::::
steps

::::
that

::::::::::
maximize

::::
net

:::::::
growth

:::::
rate

::
or

::::::::
survival

:::::::::::
probability

:::::::
always

:::::
have

::::::::
parallel402

::::::::::::
components,

::::::::::
indicating

::::
no

:::::::
strong

:::::::
conflict

:::::::::
between

:::::::::::
optimizing

::::
for

::::::
either

:::
of

::::
the

::::
two

:::::::::
plausible

:::::::
fitness403

:::::::::
measures.

:
404

In this study, we deliberately chose parameters that would result in occasional extinction of replicate405

populations to represent the stochastic nature of the establishment of cancer or bacterial infections406

and the stochasticity in treatment response (Coates et al., 2018; Alexander and MacLean, 2020).407

This results in a setting where evolutionary rescue is required for the populations to prevent their408

extinction. In our model, the population dynamics are captured by the dynamics of the effective409

carrying capacity which is the target population size that the total population size is tracking over410

time. If birth rates and death rates are equal, the effective carrying capacity is zero and the population411

goes extinct deterministically. The effective carrying capacity becomes positive only if the death rate412

becomes smaller than the birth rate by trait adaptation, thus also increasing the chances of population413

establishment.414
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The shape of the fitness landscape has important implications for the effect of turnover on the rescue415

probability in the cancer or bacterial cell population, which we can again address using geometrical416

arguments of the fitness isoclines. A faster turnover implies that birth rates and death rates of the417

associated cells are higher. This puts fast-turnover cells in the upper right corner of our birth-death418

trait space, and slow-turnover
:
,
::::::::::::::
quasi-dormant

:
cells in the lower left. The circular fitness gradient vector419

field of survival probability implies radial fitness isoclines, resulting in an increasing distance between420

isoclines going from slow to fast turnover. Therefore, the same adaptation step in trait space gains421

a smaller increase in the survival probability of fast-turnover cells than in slow-turnover cells. This422

implies that evolutionary rescue is less likely in populations of fast-turnover cells, which we indeed find423

when comparing the fractions of surviving replicates for different initial parental trait combinations424

of equal birth and death rates.
:::::::::::::
Interestingly,

:::::::::::::::::::::::::
Kuosmanen et al. (2022)

:::::
come

:::
to

:::::::
similar

::::::::::::
conclusions425

::
in

::
a

::::::::
slightly

:::::::::
different

:::::::
model.

::::::::::::::
Importantly,

::::
this

::::::::
pattern

::::
can

::::
be

::::::::
affected

:::
by

::::
the

:::::::::::::
assumptions

:::
on

::::
the426

::::::::::
mutational

::::::
effect

::::::
sizes.

:::::::::::::
Throughout

:::::
this

::::::
study

:::
we

::::::
have

:::::::::
assumed

::::::::
additive

::::::::::::
mutational

:::::::
effects

::::::
where427

:::
the

:::::::::::
adaptation

:::::
step

:::::
sizes

:::
are

:::::::::::::
independent

::
of

::::
the

:::::
trait

:::::::
values.

:::
If,

:::::::::
however,

::::
the

:::::::::::
mutational

:::::::
effects

:::::
were428

::::::::::
dependent

:::
on

::::
the

::::
trait

:::::::
values,

:::
as

:::
for

:::::::::
example

::
in

::::
the

:::::
case

::
of

::::::::::::::
multiplicative

:::::::::::
mutational

::::::
effects

::::::
(Fig.

::::
S3),429

::::
this

:::::::
pattern

::::
will

::::::::
change.

:::::::::::::
Accordingly,

:::
we

::::
find

::::
that

::::::::::::::
multiplicative

:::::::::::
mutational

:::::::
effects

:::::::::::
compensate

:::
for

::::
the430

::::::::::
increasing

::::::::
distance

::
of

:::::::
radial

::::::
fitness

:::::::::
isoclines

::
at

:::::::
larger

:::::
birth

::::
and

::::::
death

::::::
rates

::::
and

:::
the

:::::::
rescue

:::::::::::
probability431

::::::::
becomes

:::::::
largely

:::::::::::::
independent

::
of

:::::::::
turnover.

:
432

Besides the shape of the fitness landscape, the declining rescue probability for faster turnover may433

also be explained with the higher rate at which the initial parental lineage declines. At equal birth434

and death rate, the logistic competition term results in a deterministic rate of population decline of435

−β0N
2
0 /K ::::::::::::::

−β0N0(t)
2/K in our model, which increases proportional to the birth rate. As this initial436

parental lineage is the source from which offspring lineages are created, a faster decline shortens the437

time window during which fitter lineages can emerge and impedes the race against extinction (Orr438

and Unckless, 2008, 2014; Carlson et al., 2014; Marrec and Bitbol, 2020a). On the other hand, in fast-439

turnover cells mutations occur more frequently because of the higher birth rate, which could speed440
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up the ascend of the survival probability fitness gradient. Our results show that the higher realized441

mutation rate cannot counteract
:::::::::::
compensate

::::
for the two detrimental effects of faster turnover firstly442

requiring larger trait changes for the same gain in survival probability and secondly leading to a faster443

decline in the initial parental lineage.444

Cancer cell populations as well as bacterial biofilms in chronic infections possess a considerable geno-445

typic and phenotypic heterogeneity (Caiado et al., 2016; Gay et al., 2016; Winstanley et al., 2016; Dhar446

et al., 2016). In a heterogeneous population consisting of lineages with different turnover but individ-447

ually equal birth and death rates our results imply that those lineages with smaller turnover would448

persist longer. Evolutionary rescue would thus be achieved on average from those lower-turnover449

lineages hinting at a selective advantage of low turnover in heterogeneous populations in challeng-450

ing environments, which is supported by
::::
may

:::::::
explain

:
the therapeutic challenges posed by dormant451

subpopulations both in cancer (Yeh and Ramaswamy, 2015; Ammerpohl et al., 2017) and bacterial452

infections (Wood et al., 2013). Birth (proliferation) and death (apoptosis) are partly interlinked in453

their regulation (Alenzi, 2004) and measuring their rates in eukaryotic cells is possible in vitro and454

in vivo (Lyons and Parish, 1994). Different tissue types were shown to have intrinsically different455

turnover rates (Sender and Milo, 2021) and turnover can be altered experimentally (Casey et al.,456

2007). Several studies reported a positive correlation of proliferation and apoptosis in breast cancer457

(de Jong et al., 2000; Liu et al., 2001; Archer et al., 2003), which suggests a positive correlation of458

birth and death rate. Prognosis was found to be worse for higher birth rate (Liu et al., 2001). Our459

model proposes that such aggressive, quickly growing tumours with a high cell death rate are actually460

less likely to persist than tumours with lower turnover as the probability for evolutionary rescue de-461

creases with turnover.
::::
This

:::::::::
apparent

:::::::::::
dichotomy

:::::::::
indicates

::::
that

::::
the

::::::::::::
evolutionary

:::::::
rescue

:::::::::::
probability

::
of

::
a462

:::::::
tumour

::::
not

:::::::::::
necessarily

::::::::::
translates

::::
into

:::
its

::::::::::
prognosis

::::
and

::::
that

:::::::::
clinically

::::
we

:::::
tend

::
to

:::::
only

::::::::
observe

:::
the

::::
few463

:::::::::::::
high-turnover

:::::::::
tumours

::::
that

:::::
have

::::::::::
managed

::
to

:::::::
escape

::::::::::::
homeostatic

:::::::::::
regulation,

::::::
while

::::::::::
remaining

:::::
blind

:::
to464

:::::
those

:::::
with

::::::
lower

:::::::::
turnover.

::
Also in the context of chronic bacterial infections there exist methods to465

assess turnover in bacterial pathogen populations in vitro (Stewart et al., 2005; Wang et al., 2010).466
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They are currently developed for in vivo settings (Myhrvold et al., 2015; Mahmutovic et al., 2021)467

and will soon elucidate the different intrinsic birth and death rates of bacterial strains and species,468

sometimes even working out spatial parameter heterogeneity within the body (Gillman et al., 2021).469

It will be interesting to see whether indeed lower-turnover regions of the birth-death trait-space are470

found to be more populated and whether trait evolution indeed proceeds along the circular trajectory471

predicted by our model.472

Fitness landscapes of mutational changes can be constructed from data (Watson et al., 2020) and used473

in treatment via evolutionary steering (Nichol et al., 2015; Acar et al., 2020). Accounting for their474

temporal variability (e.g. under the effect of treatment), then sometimes referring to them as fitness475

seascapes, has important consequences for the understanding of adaptation, such as resistance evolution476

(Lässig et al., 2017; King et al., 2022). For example, Hemez et al. (2020) found in a simulation study477

that the drug mode of action (bacteriostatic vs. bactericidal) was changing the shape of the fitness478

landscape. In line with this, we have found that both density-affecting and trait-affecting treatment479

types alter trait adaptation trajectories. The density-mediated effect of treatment rotates the fitness480

landscape, the trait-mediated treatment effect relocates populations to other trait combinations in481

trait space. Both of these effects increase the birth rate component of adaptive steps which causes482

treated trait adaptation trajectories to depart from untreated trajectories.483

We found profound patterns of competitive release in the population dynamics of successfully adapting484

populations (Wargo et al., 2007). In the off-treatment phases, the treated and non-extinct populations485

quickly recover to population sizes up to twice as large as in the untreated reference. The competitive486

release is particularly strong for the trait-affecting treatment types. This is in line with the fact that487

the trait-affecting treatment exerts a higher relative penalty on less fit lineages than on fitter lineages488

as we assumed additive treatment effects and thus the mortality during treatment is higher for less489

fit lineages. In our model the effect of static drugs decreases as the population size approaches the490

carrying capacity where the effective birth rate tends to zero even without treatment and thus can not491

be reduced further by treatment. Contrastingly, the sustained mortality exerted by toxic treatment492
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also at population sizes close to the carrying capacity leads to a continuing competitive release. This493

creates additional transient phases of population recovery after treatment phases during which birth494

and mutation rates are high, resulting in faster adaptation. This potentially negative effect of toxic495

treatment is in agreement with findings by Anttila et al. (2019) and Marrec and Bitbol (2020b) and496

similar to the paradoxic negative effects of apoptosis during tumour development (Labi and Erlacher,497

2015). This finding also resonates with the rational behind tumour containment treatment strategies498

that aim at preserving sensitive subpopulations as competitors, and thus suppressors, of resistant499

subpopulations (Gatenby et al., 2009; Viossat and Noble, 2021).500

Time-resolved surveillance of treatment responses in both cancer and bacterial infections promises to501

prevent resistance evolution, but is technically and practically challenging. Accordingly, the quest for502

personalized, resistance-proof treatment approaches remains one to be fulfilled. In a recent paper, we503

found that increasing the temporal frequency of surveillance has diminishing returns and also more504

coarse-grained surveillance patterns could achieve large treatment improvements (Raatz et al., 2021).505

Interestingly, in the present study we find that the mixed treatment which is agnostic to real-time506

information performs almost as good as the treatment types that counter the fitness gradient and thus507

necessitate ongoing temporal information on the population trait average. This again suggests that508

large treatment improvements can be achieved already with low surveillance effort. The high efficiency509

of static and toxic treatment combinations is in agreement with theoretical predictions (Lorz et al.,510

2013) and recently explored approaches in cancer treatment, such as the combination of navitoclax,511

a drug that increases the apoptosis rate, and cytostatics such as gemcitabine or brentuximab which512

decrease the birth rate (Cleary et al., 2014; Ju et al., 2016; Montero and Letai, 2018). Also in bacteria,513

recent findings suggest that a combination of bacteriostatic drugs (or nutrient deprivation) and bacte-514

ricidal drugs indeed increase the extinction probability of bacterial microcolonies (Coates et al., 2018).515

However, awareness of the mechanisms of action and the interactive effects is essential, as treatment516

efficiency can also be reduced in combination treatments, for example if the bactericidal drug relies517

on cell growth that is reduced by the bacteriostatic drug (Bollenbach et al., 2009; Bollenbach, 2015;518

28



Coates et al., 2018). An additional advantage of combination therapies that was not considered in519

our study is that resistance is less likely to evolve in parallel against two independently active drugs.520

Consequently, drug interactions have important consequences not only for treatment efficiency but also521

for resistance evolution (Roemhild et al., 2018; Roemhild and Schulenburg, 2019; Batra et al., 2021;522

Jaaks et al., 2022).523

In this study, we have abstracted from the physiological details of different adaptation pathways in524

evolving cell populations and the molecular mechanisms of the drugs used to counter these adapta-525

tions. By mapping these details to traits with clear eco-evolutionary consequences we achieved an526

understanding of the adaptation dynamics, identified relevant fitness components and showed the high527

efficiency of trait-aware treatment strategies. Current experimental and diagnostic advancements en-528

able the identification of traits, such as birth and death rates, at realistic scales to allow for a translation529

between mechanistic models such as ours and experimental and clinical observations. This will further530

the understanding of the eco-evolutionary mechanisms at play in the dynamics of cancer and bacterial531

infections and sprout improved, personalized and adaptive treatment strategies.532
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A. Supplement

A.1. Derivation of survival probability fitness component

Recently, Xue and Leibler (2017) derived the extinction risk for a population founded by a small number

of individuals. Their model contained also a density-dependent death rate, which makes it slightly

different from ours. They set up a master equation and solved it with a generating function approach.

For a single initial individual with birth rate β and death rate δ they obtain a density-independent

extinction risk of

q =
δ

β

from which the survival probability for a new lineage follows as

pXue2017 = 1− q = 1− δ

β
(S1)

Assuming that changes in the population size of the parental lineage are small on the time scale during

which the fate of a mutant is decided, i.e. whether it escapes extinction from stochastic drift or not,

allows us to fix the total population size to its value when the mutant occurred at time T . Thus, we

can include the density dependence of our model in the survival probabilty (Eq. S1) by substituting

β → β
(
1− N

K

)
. This results in a density-dependent survival probability

p(T ) = 1− δ

β
(
1− N(T )

K

)
Including trait-affecting treatment effects and restricting the survival probability to the range between

zero and one results in Eq. 6.

A similar derivation uses branching process techniques and arrives at an integral for the fixation prob-

ability of a mutant individual on the background of the parental population (Uecker and Hermisson,

2011)

pfix(T ) =
2

1 +
∞∫
T

(
β
(
1− N(t)

K

)
+ δ
)
exp

(
−

t∫
T

β
(
1− N(τ)

K

)
− δ dτ

)
dt

Using the same assumption of N(t) = N(T ) = const. as above, this reduces to

pfix(T ) = 1− δ

β
(
1− N(T )

K

) . (S2)
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A.2. Supplementary Figures

Figure S1 Numerical simulations of a birth-death process without mutation (µ = 0).
Starting from β0 = 1.25 per time unit and δ0 = 1.0 per time unit we find good agreement of the observed
survival probability with our survival probability definition. Grey lines are individual replicates, the
black dashed

::::
blue

:
line is the average over the surviving replicates. We used 1000 replicates, dt = 0.1,

N0 = 1 and K = 20000.
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Figure S2 Effect of initial population size
::::::::::
mutation

:::::
rate

:
on the probability of evolutionary

rescue. Smaller initial population size reduces
:::::::::
mutation

::::::
rates

:::::::
reduce

:
the rescue probability. Plot

parameters are identical to Fig. 4.
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Figure S3
:::::::::::::
Probability

::
of

:::::::::::::::
evolutionary

::::::::
rescue

::::::::::::::::
(multiplicative

:::::::::::::
mutational

::::::::
effect).

:::::::
Parallel

:::
to

::::
Fig.

:::
S2

:::
we

:::::::
tested

:::
the

::::::
effect

:::
of

::::::::::::::
multiplicative

:::::::::::
mutational

:::::::
effects

:::
on

:::::
birth

:::
an

::::::
death

::::::
rates.

:::::
The

::::::::
mutant

::::::::
lineages’

::::::
birth

:::::
rates

:::::
here

::::
are

:::::::::::
determined

:::
by

:::::::::::::::::::::::::::::::::::::::
βmutant = βparental (1 + s), s ∼ N (0, σ),

:::::
and

::::::
death

:::::
rates

:::
are

::::::::::::::
independently

::::::::::::
determined

:::
as

::::::::::::::::::::::::::::::::::::::
δmutant = δparental (1 + s), s ∼ N (0, σ).

::::::::
Under

::::::
these

:::::::::::::
assumptions,

:::
the

:::::::
rescue

:::::::::::
probability

::
of

:::::::
initial

::::::::
parental

::::::::::::
populations

::
is
:::::::
largely

:::::::::::::
independent

::
of

::::::::::
turnover.
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Figure S4 Exemplary dynamics for bottleneck treatment. Plot details and parameters as in
Fig. 2. Black dots depict the times when the bottleneck instantaneously reduces the population size
by a factor f = 0.1.
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Figure S5 Exemplary dynamics for static treatment. Plot details and parameters as in Fig. 2.
Black bars depict the times when ∆β = 0.5. During treatment the effective carrying capacity can
reduce to negative values. The population sizes, however, must be non-negative and thus approach
zero when the effective carrying capacity becomes negative.
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Figure S6 Exemplary dynamics for toxic treatment. Plot details and parameters as in Fig. 2.
Black bars depict the times when ∆δ = 0.5. During treatment the effective carrying capacity can reduce
to negative values. The population sizes, however, must be non-negative values and thus approach
zero when the effective carrying capacity becomes negative.
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Figure S7 Trajectories of trait adaptation under density-affecting treatment. Grey lines
represent the 1000 individual replicates. The thick lines show the ensemble average, blue stretches are
treatment-off phases, black dots indicate the application of density-affecting treatment.
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Figure S8 Trajectories of trait adaptation under trait-affecting treatment. Grey lines rep-
resent the 1000 individual replicates. The thick lines show the ensemble average, blue stretches are
treatment-off phases, black stretches indicate treatment-on phases.
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Figure S9 Deterministic adaptation dynamics under treatment - Net growth fitness gra-
dient. Choosing the net growth gradient (Eq. (7)) as the fitness gradient in the deterministic model
(Eq. 3) and parameter values from Tab. 1, we obtain adaptation dynamics that are similar to those
presented for the stochastic model (Fig. 7).
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Figure S10 Deterministic adaptation dynamics under treatment - Survival probability
fitness gradient. Choosing the survival probability gradient (Eq. (8)) as the fitness gradient in
the deterministic model (Eq. 3) and parameter values from Tab. 1, we obtain adaptation dynamics
that are similar to those presented for the stochastic model (Fig. 7). However, the density-affecting
treatment type has no effect on the trait trajectory as the survival probability fitness gradient is
density-independent.
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Figure S11 Observed initial steps of adaptation. Shown is the average direction of the adaptation
trajectories in trait space until time tf for different combinations of observation window tf , carrying
capacity K and initial population size N0. Other parameters are chosen as given by Tab. 1. If the
net growth was determining the adaptation trajectory, we expect adaptation steps that have a higher
birth-rate component for decreasing density limitation (which can be realized by shorter observational
window (blue arrows), higher carrying capacity (green arrows), smaller initial population size (yellow
arrows) or all combined (red arrows)). If survival probability (grey arrows) was driving the adaptation
we would expect the adaptation direction to not be affected by changes to tf , K or N0.
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