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Abstract

Eco-evolutionary dynamics of range expansions are of great interest in the context of global change. Range2

expansions are spatial phenomena and critically depend on organisms’ dispersal abilities. Dispersal has a

genetic basis, it can evolve , but also can be plastic to external environmental conditions and the internal4

state of an organism. Importantly, dispersal plasticity itself can evolve which has most often been studied

theoretically with a focus on optimal reaction norms under equilibrium conditions. However, under rapidly6

changing conditions, the rate
::::::::
Dispersal

::
is

::::
key

::
to

::::::::::::::
understanding

:::::::::
ecological

::::
and

:::::::::::
evolutionary

::::::::::
dynamics.

::::::::
Dispersal

::::
may

:::::
itself

::::::
evolve

::::
and

:::::::
exhibit

::::::::::
phenotypic

:::::::::
plasticity.

:::::::::::
Specifically,

:::::::::
organisms

:::::
may

::::::::
modulate

:::::
their8

::::::::
dispersal

:::::
rates

::
in

:::::::::
response

::
to

::::
the

:::::::
density

::
of

:::::
their

:::::::::::
conspecifics

::::::::::::::::::
(density-dependent

:::::::::
dispersal)

::::
and

:::::
their

::::
own

:::
sex

::::::::::
(sex-biased

::::::::::
dispersal).

:::::::
While

:::::::
optimal

:::::::::
dispersal

::::::
plastic

:::::::::
responses

:::::
have

:::::
been

:::::::
derived

:::::
from

::::
first10

:::::::::
principles,

:::
the

:::::::
genetic

::::
and

:::::::::
molecular

:::::
basis

:
of dispersal plasticity evolution will impact eco-evolutionary

dynamics of range expansions. Rates of evolution in turn depend on
:::
has

::::
not

:::::
been

:::::::::
modelled.

:::::
An12

::::::::::::
understanding

:::
of

:
the genetic architecture of underlying traits. To elucidate this interplay

::::::::
dispersal

::::::::
plasticity

::
is
::::::::::

especially
:::::::
relevant

::::
for

:::::::::::::
understanding

:::::::::
dispersal

:::::::::
evolution

::::::
during

::::::::
rapidly

::::::::
changing

:::::::
spatial14

::::::::
ecological

::::::::::
conditions

::::
such

:::
as

:::::
range

:::::::::::
expansions.

::
In

::::
this

:::::::
context, we develop an individual-based metapop-

ulation model of the evolution of density-dependent and sex-biased dispersal during range expansions.16

We represent the dispersal trait as a gene-regulatory network (GRN), which can take population density

and an individual’s sex as an input and analyse emergent context- and condition-dependent dispersal18

responses. We compare dispersal evolution and ecological dynamics in this GRN model to a standard

reaction norm (RN) approach under equilibrium metapopulation conditions and during range expan-20

sions. We find that under equilibrium metapopulation conditions, the GRN model produces emergent

density-dependent and sex-biased dispersal plastic response shapes that match
:::
the

:
theoretical expecta-22

tion of the RN model. However, during range expansion, the GRN model leads to faster range expansion

because GRNs can maintain higher adaptive potential. Our results imply that, in order to understand24

eco-evolutionary dynamics in contemporary time, the genetic architecture of traits must be taken into

account.26



Introduction

Dispersal is central to understanding the
::::::::
Dispersal

::
is

:::
key

:::
to

:::::::::::::
understanding

::::
both

:
ecology and evolution of28

spatially structured populations. This is because it has consequences for population dynamics (ecology)

and gene flow (evolution) within such populations. Under equilibrium metapopulation conditions, the30

evolutionary causes of dispersal are known and, in general, dispersal evolution is driven by
::::
since

::
it

:::::::
impacts

:::
the

::::::::::
population

::::::::
dynamics

::
of

:::::::::
organisms

::::
and

:::
the

:::::::::::
distribution

::
of

:::::
their

:::::
genes

:::::::::::::::::::::::::::::::
(Ronce, 2007; Govaert et al., 2019)32

:
.
::::::::
Further,

:::
not

::::
only

::::
may

::::::::
dispersal

::::::
evolve

::
in

::::::::
response

::
to

:
spatio-temporal variation in fitness expectation

:::::::::::
expectations,

kin structure
:
,
:
and inbreeding avoidance (Bowler and Benton, 2005). Not only can dispersal evolve, but34

it is now also
:::
also

::::::::
exhibits

::::::::::
phenotypic

::::::::::
plasticity.

::::::
While

::
it
:::

is
:
recognised that dispersal is not random

(Lowe and McPeek, 2014) and can be associated with a suite of phenotypic characteristics, or “dispersal36

syndromes” (Stevens et al., 2014; Cote et al., 2022). Dispersal can also
:::
can respond to the internal state

(condition-dependent dispersal; Clobert et al. 2009) and the external environment (context-dependent38

dispersal) of an organism (Fronhofer et al., 2018). As a consequence, the shape of ,
:
the

::::::::::::
consequences

::
of

:::::::::
accounting

:::
for

::::::::::
underlying

::::::::::
molecular

::::
and

::::::
genetic

:::::::::
processes

::::
that

:::::::::
generate

::::::::
dispersal

:::::::::
plasticity

:::
are

:::::::
unclear40

::::::::::::::::::::::::
(Saastamoinen et al., 2018).

::::
In

::::
the

:::::::
present

::::::
study,

:::::::::
therefore,

::::
we

::::
will

:::::::
outline

::
as

::::::::::::::::
proof-of-concept

::::
how

:::::::::
accounting

::::
for

::::
the

:::::::
genetic

:::::
basis

:::
of

:::::::::
dispersal

:::::::::
plasticity

:::
in

:::::::
models

::::
can

:::::::
impact

::::
our

:::::::::::::
understanding

:::
of42

::::::::
dispersal

:::::::::
evolution.

:::
We

:::::
focus

:::
on

::::
two

::::::::
examples

:::
of

::::::::
dispersal

::::::
plastic

:::::::::
responses

::::
that

:::::
have

::::
been

::::::::::::
well-studied:

::::::::::::::::
density-dependent

::::::::::::::::::::
(Harman et al., 2020)

:::
and

::::::::::
sex-biased

::::::::::::::::::::
(Li and Kokko, 2019)

::::::::
dispersal.

:
44

::::::::
Dispersal

:::::
rates

:::
of

:::::::::
organisms

::::::
show

::::::
plastic

:::::::::
responses

:::
to

:::::
local

::::::::::
population

:::::::
density

:::::
and

::::
may

::::::::
increase

::::::::
(positive

:
density-dependent dispersalreaction norm has been discussed extensively in the theoretical46

literature (Travis and Dytham, 1999; Poethke and Hovestadt, 2002; Kun and Scheuring, 2006). This is

because the assumed reaction norm shape has consequences for predictions of overall dispersal rates and48

metapopulation dynamics (Bocedi et al., 2012; Poethke et al., 2016; Hovestadt et al., 2010). Harman et al. (2020)

review the shape of density-dependent dispersal reaction norms found in the empirical literature and50

examine its relevance for predicting the stability of metapopulations. They find that positive
:
),
::::::::
decrease

::::::::
(negative density-dependent dispersal

:::::::::
dispersal),

::
or

:::::
even

::
be

:::::::::
unimodal

:::::::::
(reviewed

::
in

:::::::::::::::::::
Harman et al. (2020)

:
).52

::::::::::
Theoretical

:::::
work

:::
has

:::::::
focused

:::
on

:::
the

::::::::
evolution

::
of
::::::::
positive

::::::::::::::::
density-dependent

:::::::::
dispersal,

:::::
which

:::::::
evolves

:::::
when

::::
there

::
is
::::::::
negative

:::::::::::::::::
density-dependence

::
in

:::::::
density

:::::::::
regulation

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gyllenberg and Metz, 2001; Poethke and Hovestadt, 2002)54

:
.
::
If
:::::::::::

individuals
:::
are

::::::::
present

::
in

::
a
::::::
patch

::::
that

::::
has

::
a
:::::::
smaller

::::::::::
population

:::::::
density

:::::
than

:::
an

::::::::
average

::::::
patch,

::::
they

::::::::::
experience

::::
less

:::::::::::
competition

:::::
and,

:::::::::
therefore,

:::::
tend

::
to

:::::
stay

::
in

:::::
their

::::::
natal

:::::
patch

::::
(no

::::::::::
dispersal),

:
and56

density-independent dispersalare most commonly reported (however, mostly in laboratory studies)and

theoretically show that these shapes are associated with population stability. Sex-biased dispersal has58

also experienced long-standing interest by both theoreticians and empiricists, as recently reviewed in detail

1



by Li and Kokko (2019). In this context, the importance of the ordering of life-cycle events andmating60

systems has been discussed, but Li and Kokko (2019) point out that more work is needed. Importantly,

while the optimal plastic response of dispersal to both internal state (e.g.,
:::::
those

::
in

:::::::
patches

:::::
with

::::::
higher62

::::
than

::::::::
average

::::::::
densities

:::::
tend

:::
to

:::::
leave

:::::
their

::::::
natal

::::::
patch

:::::
with

::
a
::::::::::
probability

:::::
that

:::::::::
increases

:::::
with

:::::
local

:::::::::
population

:::::::
density

::::
due

::
to

::::::::
increased

:::::::::::
competition

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gyllenberg and Metz, 2001; Poethke and Hovestadt, 2002)64

:
.
:::::
Many

::::::::::
theoretical

::::::
studies

:::::
have

::::::::
assumed

:::::::
different

:::::::
shapes

::
of

:::::::
positive

::::::::::::::::::
density-dependence:

:::::
linear

:::::::::::::::::::::::::
(Travis and Dytham, 1999)

::
or

:::::::
sigmoid

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kun and Scheuring, 2006; Bocedi et al., 2012; Travis et al., 2009)

:
.
:::::::::
However,

:::
the

::::::::::
theoretical66

::::::::::
expectation

:::
in

:::::::
discrete

:::::
time

::::::
models

:::
is

:::::
given

:::
by

::
a

::::::::
function

::
in

::::::
which

::::::::
dispersal

::
is
:::::
zero

:::::
below

::
a
:::::::::
threshold

:::
and

:::::
then

:::::::::
increases

::
in

::
a
::::::::::

saturating
::::::::

manner
:::::::
beyond

::
it
::::::::::::::::::::::::::::

(Poethke and Hovestadt, 2002)
:
.
:::::::

Apart
:::::
from

::
a68

:::
first

:::::::::
principles

::::::::::::
justification,

::::
this

:::::::
reaction

::::::
norm

:::::
shape

::::::::::::
outcompetes

:::
all

:::
the

::::::
others

::
in

::::::::
pairwise

:::::::::::
competition

:::::::::
simulation

:::::::::::
experiments

:::::::::::::::::::::
(Hovestadt et al., 2010)

:
.
:::::::::
Similarly, sex-biased dispersal ; Gros et al. 2008; Gros et al. 200970

; Li and Kokko 2019)and external conditions (e.g., density-dependent dispersal; Travis and Dytham 1999; Gyllenberg and Metz 2001; Poethke and Hovestadt 2002

) has been studied theoretically and empirically, the underlying mechanisms that generate dispersal72

plasticity have not been modelled.

:
is
:::::::
known

::
to

::::::
evolve

::::
due

::
to

:::::::::::
asymmetry

::
in

:::::::
limiting

:::::::::
resources,

::::
kin

:::::::::::
competition,

:::
or

:::::::::
inbreeding

::::::::::
depression74

:::::::::::::::::::
(Li and Kokko, 2019).

:::::::
When

:::::::
females

:::::
mate

::::
with

::
a
:::::::::
randomly

:::::::
chosen

:::::
male,

::::
this

:::::
leads

::
to

::::
the

:::::::::
evolution

::
of

::::::::::
male-biased

:::::::::
dispersal,

:::::
that

::
is,

::::::
males

:::::
tend

::
to

::::::::
disperse

:::::
more

:::::
than

::::::::
females,

:::::
since

::::
they

::::::::::
experience

:::::::
greater76

:::::::::
variability

::
in

:::::::
mates,

:::::
which

::
is
::
a
:::::::
limiting

::::::::
resource

:::::::::::::::::
(Gros et al., 2009).

:

Broadly, the question of modelling mechanisms underlying dispersal plasticity falls into a broader78

discussion of representing the genetic architecture of dispersal and
:::::
Apart

::::
from

::::
the

::::
first

::::::::
principle

::::::::::
approaches

::::::
already

:::::::::
described

:::::
above

:::::
(e.g.,

::::::::::::::::::::::::::::
Poethke and Hovestadt (2002)

:::
and

:::::::::::::::::::::::::
Gyllenberg and Metz (2001)

::
), the consequences80

of such modelling choices (Saastamoinen et al., 2018). In general, explicit genetic architecture of dispersal

, plastic or constitutive, is not considered and highly simplifying assumptions, such as a single quantitative82

locus or standard adaptive dynamics assumptions (small mutation effects and rare mutation), are common.

These approaches are useful to derive optimal dispersal rates or plastic responses under equilibrium84

metapopulation conditions. However,
:::::
shape

::
of
:

the genetic architecture of
:::::::
optimal

:
dispersal , which

includes the number of underlying loci, their effects and how they interact with each other (e.g., epistasis86

and pleiotropy), needs to be considered to make predictions of eco-evolutionary dynamics during rapidly

changing conditions, such as rapid habitat fragmentation or range expansion. Under such conditions88

of rapid change, the ecological consequences and feedbacks do not only depend on the evolutionary

optima but also the rate of evolution (Fronhofer et al., 2023). For example the number of loci that90

govern an additive dispersal trait may modify how the rate at which a spatially structured population

responds to habitat fragmentation (Saastamoinen et al., 2018) and also the dynamics of range shifts92

(Weiss-Lehman and Shaw, 2022).Further, in a previous study, Deshpande and Fronhofer (2022) model

2



constitutive dispersal and local adaptation using non-additive gene-regulatory networks, and find that94

this leads to faster and accelerated range expansions due to increased mutational sensitivity in the local

adaptation trait, with the genetic architecture of dispersal having no effect.96

In the context of dispersal plasticity, theoretical work has been able to derive optimal reaction norms

for density-dependent dispersal from first principles (Gyllenberg and Metz, 2001; Poethke and Hovestadt, 2002)98

. Alternatively, a
::::::
plastic

::::::::
response

:::
can

::::
also

:::
be

::::::::
obtained

:::
by

:::::
other

::::::::
methods.

::
A
:
function value trait approach

has been used in which different “loci” represent the trait value corresponding to a given environment100

(Dieckmann et al., 2006) or differing internal conditions
::::::::::::::::
(Gros et al., 2009). Finally, some studies have

relied on polynomials if the function-valued trait approach was too computationally demanding (Desh-102

pande et al., 2021).
::::::
Closer

::
to

::::
the

:::::::
present

::::::
study,

:::::::::::::::::::::
Ezoe and Iwasa (1997)

:::::::::::
standardised

::
a
::::::
neural

::::::::
network

:::::
model

:::::::
against

:::::::::::
analytically

:::::::
derived

::::::::
reaction

::::::
norms

:::
for

::::::::::::::::
density-dependent

:::::::::
dispersal.

:
104

However, fundamentally, these optimal reaction norms must have an underlying molecular and genetic

basis
::::::::::::::::::::::::
(Saastamoinen et al., 2018), that is, there must be a genotype-to-phenotype map

::::::::::::::::::::::::::::::::
(Alberch, 1991; Nichol et al., 2019)106

that can process internal states and environmental conditions, leading to the emergence of plastic re-

sponses at the phenotypic level.108

One such representation of a genotype-to-phenotype map is the gene-regulatory network (GRN) model

proposed by Wagner (1994) . Wagner’s gene-regulatory network model assumes that a developmental110

phenotype is a vector of expression states of regulatory genes and the genotype is a matrix that contains

the interactions between these genes. The Wagner model can be modified such that the regulatory genes112

can receive internal or environmental cues (Espinosa-Soto et al., 2011; Draghi and Whitlock, 2012; van Gestel and Weissing, 2016; Brun-Usan et al., 2021)

, and produce a quantitative phenotype (Draghi and Whitlock, 2012). Indeed, representing plasticityusing114

:::
and

:::
its

::::::::
variants

::::::::::::::::::::::::::
(Spirov and Holloway, 2013).

:::::::
While

::::
this

:::
is

::::
still

::
a

::::::
highly

:::::::::
simplified

::::::::::::::
representation

::
of

::::::::
molecular

:::::::::
processes

::::
that

::::::::
generate

:::::::::
plasticity,

:
gene-regulatory networks not only provides a mechanism for116

it (Chevin et al., 2022), but also reveals
::::::
network

:::::::::::
approaches

:::
can

::::::
reveal

:
how phenotypic plasticity modi-

fies evolvability by introducing developmental constraints (Draghi and Whitlock, 2012; Brun-Usan et al.,118

2021). For example, under conditions of rapid environmental change, Draghi and Whitlock (2012) model

::::::::
modelled

:
phenotypic plasticity of two correlated quantitative traits using a model combining GRN and120

quantitative genetics approaches. They find
:::::
found

:
that plastic populations, which evolve in heterogeneous

environments and have genes that receive an input from the external environment, exhibit evolvability in122

the direction of the environmental variation and adapt most easily. van Gestel and Weissing (2016) model

::::::::
modelled

:
bacterial sporulation using a GRN approach, incorporating phenotypic plasticity by allowing124

the regulatory genes to receive environmental inputs, and find
:::::
found

:
that a GRN approach allows for

greater diversity in the response to novel conditions than a classical reaction norm approach, capturing126

a greater adaptive potential.

3



:::::
Thus,

::::
one

:::::::
context

:::
in

::::::
which

::::::::::
accounting

::::
for

:::::::::
molecular

:::::::::::
mechanisms

::::
for

::::::::
dispersal

:::::::::
plasticity

:::::
may

:::
be128

:::::::
relevant

::
is

::::::::::::::
understanding

:::::
rapid

:::::::::
evolution

::::::
during

:::::::::::
directional

:::::::
change,

:::::
such

::
as

:::::::
during

::::::
range

::::::::::
expansions

:::::::::::::::::
(Miller et al., 2020)

:
.
::::
How

:::::::
quickly

::::::::::
organisms

::::::
spread

::
in

::::::
space

::::::::
depends,

:::::::
besides

::::::::::::
reproduction,

::::::::
centrally

:::
on130

::::::::
dispersal.

::::::
Since

::::::::
dispersal

::::
has

::
a
:::::::
genetic

:::::
basis

:::::::::::::::::::::::::
(Saastamoinen et al., 2018)

:::
and

::::
can

::::::
evolve

:::::::::::::
(Ronce, 2007)

:
,
:::
the

:::::::::::
potentially

:::::
rapid

:::::::::
evolution

::
of
:::::::::

dispersal
::::::
ability

::::
can

:::::::
impact

::::::
range

::::::::::
expansion

:::::::::
dynamics,

:::::
but,

::::
vice132

:::::
versa,

::::::
range

::::::::::
expansions

::::
can

:::::
also

:::::
drive

:::::::::
dispersal

:::::::::
evolution

:::
by

:::::::
spatial

:::::::
sorting

::::
and

:::::::::
selection,

::::::::
wherein

::::
more

::::::::::
dispersive

::::::::::
individuals

::::
end

:::
up

:::
at

:::
the

::::::
range

:::::::::
expansion

:::::
front

::::::::::::::::::
(Shine et al., 2011).

:::
It

::::
has

::::
also

:::::
been134

:::::
shown

:::::
that

:::
the

::::::
speed

::
of

::::::
range

::::::::::
expansions

:::::::
depends

:::::::::
critically

::
on

::::::::
whether

::::::::
dispersal

:::::::::
increases

::
or

:::::::::
decreases

::::
with

::::::::::
population

:::::::
density

::::::::::::::::::::
(Altwegg et al., 2013)

:
.
::::

In
::::::::::
theoretical

::::::
work,

::::::::::::::::
density-dependent

:::::::::
dispersal

::::
can136

::::
lead

::
to

:::::::::::
accelerating

::::::
range

:::::::::::
expansions

::::::::::::::::::
(Travis et al., 2009),

::::
due

:::
to

::::
the

:::::::::
evolution

::
of

:::::::::
decreased

::::::::
positive

:::::::::::::::::
density-dependence

::
of

:::::::::
dispersal

::
at

::::::
range

::::::
fronts.

::::
Yet,

::::::::::::
experimental

:::::::
studies

:::::
have

::::::
shown

:::::
both,

::::::::::
reductions138

::::::::::::::::::::::::::::::::::::::::::::
(Fronhofer et al., 2017; Dahirel et al., 2021, 2022)

:::
and

:::::::::
increases

:::::::::::::::::::
(Mishra et al., 2020)

:
in

:::::::
positive

::::::::::::::::::
density-dependence

::
of

::::::::
dispersal

::::::
during

::::::
range

::::::::::
expansion.140

Building on this work, we posit that gene-regulatory networks can be used to model dispersal plas-

ticity. Using this bottom-up approach, we here seek to understand whether processes at the molecular142

level, particularly , gene-regulation
::::
gene

::::::::::
regulation, yield a similar plastic response to the phenotypically

:::::::::::
theoretically

:
predicted optimal reaction norm (Poethke and Hovestadt, 2002) in the case of density-144

dependent dispersal. Hence, we develop an individual-based metapopulation model, in which dispersal

can evolve to be plastic to local population density. We represent the genetic architecture of density-146

dependent dispersal using a GRN , that takes as an input the local population density, regulatory genes

process this input and finally output a continuous dispersal probability trait. We compare the GRN148

model to the theoretically expected reaction norm (RN) shape proposed by Poethke and Hovestadt

(2002). Finally, we also investigate whether such a match to theoretical expectations holds if dispersal150

can additionally be sex-biased (Li and Kokko, 2019), that is, plastic to an organism’s internal state.

:
.
:
To highlight how the genetic architecture of dispersal plasticity impacts predictions under condi-152

tions of rapid change, we model range expansions(Miller et al., 2020). How quickly organisms spread

in space depends, besides on reproduction, centrally on dispersal. Since dispersal has a genetic basis154

(Saastamoinen et al., 2018) and can evolve (Ronce, 2007), potentially rapid evolution of dispersal ability

can impact range expansion dynamics, but, vice versa, range expansions can also drive dispersal evolution156

by spatial sorting and selection, wherein more dispersive individuals end up at the range expansion front

(Shine et al., 2011). It has also been shown that the speed of range expansions depends critically on158

whether dispersal increases or decreases with population density (Altwegg et al., 2013). In theoretical

work, density-dependent dispersal can lead to accelerating range expansions (Travis et al., 2009), due to160

the evolution of decreased positive density-dependence of dispersal at range fronts. Yet, experimental

4



studies have shown both, reductions (Fronhofer et al., 2017; Dahirel et al., 2021, 2022) and increases (Mishra et al., 2020)162

in positive density-dependence in dispersal during range expansion.

Thus, concretely in this study
:
, we address the following questions: 1) Does a more mechanistic GRN164

model of plasticity lead to the emergence of what is predicted from first principles at the RN level? 2)

What are the ecological and evolutionary consequences of a more complex but mechanistic model under166

native equilibrium metapopulation conditions and during range expansions?

Model description168

General description

We develop a discrete-time and discrete-space individual-based metapopulation model of a sexually repro-170

ducing , diploid species in which dispersal can evolve and be plastic to certain external cues and internal

states
::::
local

::::::::::
population

:::::::
density

::::
and

::::
sex.

:::::::
Density

::::::::::
regulation

::
is

::::
local

::::::
within

::
a
::::::
patch

::
of

:::
the

:::::::::::::::
metapopulation,172

:::
and

:::::
local

:::::::::
dynamics

::::::
follow

:
a
:::::::::::::
Beverton-Holt

::::::
model

::
of
:::::::

logistic
:::::::
growth

::::::::::::::::::::::::
(Beverton and Holt, 1957). We rep-

resent the genetic basis of an individual’s dispersal trait by a
::::::::::
Wagner-like

:::::::::::::::
(Wagner, 1994) gene-regulatory174

network (GRN), that takes as input and processes external cues and internal states
::::::::::
population

:::::::
density

::
as

::
an

::::::::
external

:::
cue

::::
and

:::
sex

::
as

:::
an

:::::::
internal

::::::
state, producing as an output its dispersal probability (Fig. 1

:
A, C).176

Particularly, we assume that the individuals can sense the local population density (density-dependent

dispersal), or both the local population density and their own sex (density-dependent and sex-biased178

dispersal). In order to compare our model to the theoretically expected plastic response in the cases

of density-dependent dispersal and density-dependent and sex-biased dispersal, we develop additional180

models (Fig. 1 B, D) using the reaction norm approach described in Poethke and Hovestadt (2002).

Individuals are initially present in the central 10×5 grid
:::::::
patches

::
of out of a 500×5

:::
grid

:
landscape, for182

20000 generations (time-steps), in order for the dispersal genotypes to reach (quasi)-equilibrium. We then

compare the plastic responses when dispersal plasticty is represented by a GRN (GRN model) and when it184

is represented by the theoretically expected reaction norm (RN model) from Poethke and Hovestadt (2002)

. To explore the consequences of these modelling choices in a scenario in which the evolutionary potential186

of dispersal is relevant, we assume that individuals with these optimised plastic responses
:::::::
assume

::::
that

::::
these

:::::::::::
individuals can start range expansion in the x-dimension after 20000 generations. Therefore, the188

boundary conditions in the x-direction are reflecting for the first 20000 generations. In the y-direction,

boundary conditions are periodic
:::::::
toroidal, hence the landscape resembles a hollow tube. Range expansions190

can take place till the expanding population has moved 245 patches from the central 10 × 5 patches in

either direction along the x-dimension.
::::::
Range

::::::::::
expansions

::::
stop

::::::
when

:::
the

::::::::::
expanding

::::::::::
population

:::::::
reaches192

:::
the

:::::::::
boundary

::
of

::::
the

:::::::::
landscape

::
in

:::
the

::::::::::::
x-dimension.

:
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Life cycle194

Dispersal

We assume that dispersal is natal. The probability that an individual disperses is given by its genetically196

encoded plastic response to local population density (Fig. 1
:
A–B) alone or local population density and

sex (Fig. 1
:
C–D). The plastic response may either be encoded by a GRN or the threshold (Fig. 1

:
A, C) of198

a theoretically expected reaction norm (Fig. 1
:
B, D). If an individual disperses, one of the eight nearest

neighbouring patches
::::::
(Moore

:::::::::::::::
neighbourhood) is chosen as the target patch. Dispersal costs (Bonte et al.,200

2012) are captured by the dispersal mortality µ, which is the probability that an individual dies while

dispersing.202

Reproduction and inheritance

After dispersal, individuals reproduce
:::::::
sexually. The population dynamics in a patch follow the Beverton-204

Holt model
::
of

:::::::
logistic

:::::::
growth (Beverton and Holt, 1957):

Nx,y,t+1 = Nx,y,t
λ0

1 + αNx,y,t
. (1)

Here, λ0 is the intrinsic growth rate,
:

and α is the intra-specific competition coefficient.
::::
This

::::::
model206

::::::
reaches

:::
an

:::::::::
expected

::::::::::
equilibrium

:::::::
density

:::
of

:::::::::
N̂ = λ0−1

α :::
in

:::
the

::::::::
absence

::
of

:::::::
spatial

::::::::
structure

:::
for

:::::::
λ0 > 1.

::
A

female first chooses a mate at random, and then produces a number of offspring drawn from
:
a Poisson208

distribution with
:
a
:
mean 2λ0

1+αNx,y,t
. The factor

::
of 2 corrects for that

::
the

:
fact that only females reproduce

and keeps λ0 interpretable at the population level. The offspring inherit the alleles to the various param-210

eters to the GRN
::
of

:::
the

::::::
GRN, or the threshold of the theoretically expected reaction norm, one from each

parent at each locus. In the GRN model, we assume that
:::
the

:::
per

:::::
locus

::::
per

:::::
allele mutation rate decreases212

:::::::
linearly

::::
from

:::::::::::
mmax = 0.1

::
to

::::::::::::::
mmin = 0.0001

:
in the first 5000 time steps and is constant after (Deshpande

and Fronhofer, 2022). Since the GRN model has a large number of parameters, using larger mutation214

rates initially allows the fitness landscape to be coarsely explored quickly without the trait value getting

stuck in a local optimum.216

The parental generation then dies and is replaced by the offspring
::
In

:::
the

::::
RN

::::::
model,

:::::::::::::::::::::
mmin = mmax = 0.0001

::::::::::
throughout

:::
the

:::::::::::
simulation.

:::::
The

::::::::
mutation

:::::::
effects

:::
per

::::::
allele

:::
per

:::::
locus

::::
for

:::::
both

::::::
models

::::
are

::::::
drawn

:::::
from218

::::::::
Gaussian

:::::::::::
distribution

::::
with

::
a
::::::::
standard

:::::::::
deviation

:::::::::
σm = 0.1.

:

::::::::::
Generations

::::
are

:::::::::::::::
non-overlapping,

:::::::::
therefore,

:::
the

::::::::
offspring

::::::::::
generation

::::::::
replaces

:::
the

::::::::
parental

:::::::::
generation.220

In addition, we assume that there may be random patch extinctions every generation with a probability

::
of ε per patch. These extinctions represent density-independent, catastrophic external impacts.222
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:::::::::::::::::::
Gene-regulatory

:::::::::::
network

:
(GRN

:
)

:
model

We assume that dispersal probability (d) is genetically encoded and plastic to external conditions and224

internal states. Particularly, we represent the genotype-to-phenotype map of dispersal probability using

a
:::
The

:::::::
genetic

:::::
basis

::
of

::::::::::::::::
density-dependent

::::
and

::::::::::
sex-biased

::::::::
dispersal

::
is

:::::::::
modelled

::
by

::
a
::::::::
modified

:::::::::::
Wagner-like226

::::::::::::::
(Wagner, 1994) gene-regulatory network (Deshpande and Fronhofer, 2022). Since in our model dispersal

probability is plastic and and a quantitative trait, we follow the modifications made to the Wagner (1994)228

model by Draghi and Whitlock (2012)
::::::
model

::::::::::::::::::::::::::::::
(Deshpande and Fronhofer, 2022).

:::::
We

::::::::
assume

::::
that

::::
the

::::::::
dispersal

::::::::::
probability

::
d

::::::
results

:::::
from

::::
the

:::::
linear

::::::::::::
combination

:::::::::::::::::::::::::::
(Draghi and Whitlock, 2012)

:
of

:::::::::::
equilibrium230

::::
gene

::::::::::
expression

::::::
states

::::
Sd

∗
::
of

::::::
n = 4

:::::
genes

:::::
that

::::::::
interact

::::
with

:::::
each

:::::
other. We assume that individuals

can sense their external conditions (here,
::::::::
organisms

::::
can

::::::
detect

:
local population density but this can be232

extended to other cues such as predator presence) and can also receive internal cues (here, sexbut this

can also be extended to for example, body condition). These cues are then processed by a Wagner-like234

(Wagner, 1994) gene-regulatory network, which characterised by a vector of gene expressionstates at the

end of a dynamic developmental process. The linear combination of these equilibrium gene-expression236

states is the dispersal phenotype.

More concretely, the
::::::::::::::::::::::::::::::::::::::
(Fellous et al., 2012; Fronhofer et al., 2015)

::::
and

::::
their

::::
own

::::
sex,

:::::
which

::::
can

:::::::
produce238

:
a
:::::::
plastic

::::::::
response

:::
in

:::::
their

:::::
gene

::::::::::
expression,

:::::::
hence,

:::::
their

:::::::::
dispersal

:::::
trait.

:::::::
Thus,

::::::
these

::::::
genes

::::
take

:::
as

:::::
input

:::
the

::::::::::
population

:::::::
density

::::::::::
normalised

:::
by

:::
the

::::::::
expected

:::::::::::
equilibrium

:::::::
density

::
of

:::
the

:::::::::::::
Beverton-Holt

::::::
model240

:::::::::
N̂ = λ0−1

α ::::
and

:::
sex

:::
(0

::::
and

:
1
:::
for

:::::::
female

::::
and

:::::
male,

::::::::::::
respectively)

::
of

:::
an

:::::::::
organism

:::::
(Fig.

:
1
:::
A,

::::
C).

::::
The gene-

regulatory network has three layers: an input layer (which takes the external cue and /or internal state
:::
xd;242

::::::
taking

::::::::::
population

:::::::
density

:::
and

::::
sex

::
as

:::::
cues), a regulatory layer (

:::::
Sd(I);

:
vector of gene expression states )

::::::::::::
corresponding

:::
to

::
an

:::::::::
iteration

:
I
:::
of

:::
the

:::::::::::::
developmental

:::::::::
process), and an output layer (the

:
d;

::::
the

::::::::
dispersal244

::::::::::
probability trait) (van Gestel and Weissing, 2016). These layers are connected to each other by matrices

of weights: the input weights (Ud), regulatory weights (W d) and output weights (V d). :::
The

::::::::::
expression246

::::
state

:::
of

::
a

:::::
gene

::
is

::
a

:::::::
sigmoid

:::::::::
function

::
of

::::
the

:::::
input

:::
it

:::::::
receives

:::::
from

::::
the

::::::::::::
environment

::::
and

:::::
other

::::::
genes

:::::::::::::::::::::::::
(Siegal and Bergman, 2002)

:::
and

::::
can

::::
take

::::::
values

::::::::
between

:::
−1

::::
and

::
1.

:
Each gene has its own properties: a248

slope (rd) and a threshold (θd) . Therefore, the genotype of an individual is given by these weights and

gene properties. The subscript d indicates that the trait under study is dispersal, but more generally such a250

GRN can be used to study plasticity in other quantitative traits. The regulatory genes process the external

environmental cues or internal states (xd) that they receive as an input. In the case of density-dependent252

dispersal, organisms can, for example, sense reduced resource availability due to intra-specific competition

or might have quorum sensing mechanisms (Fellous et al., 2012; Fronhofer et al., 2015). We assume that254

any such external cue of population density increases linearly with it, therefore, the GRN takes the local
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population density Nx,y,t normalised by the expected equilibrium density of the Beverton-Holt model256

N̂ = λ0−1
α as an input. Further, when dispersal can be sex biased, along with population density, the

individual’s sex (0 for females 1 for males) is taken as an input.This may represent sex hormones or any258

other sex-dependent developmental cue
::
to

::::
this

:::::::
sigmoid.

:::::
The

:::::
slopes

::::
and

::::::::::
thresholds

::
of

:::
all

:::::
genes,

::::::
along

::::
with

:::
the

::::::::
elements

::
of

::::
the

::::::
input,

::::::::::
regulatory,

::::
and

:::::::
output

::::::
weight

:::::::::
matrices,

:::
are

::::::::
encoded

:::
by

::
a

::::::
diploid

:::::
locus

:::::
each260

::::
with

::::
two

::::::
alleles.

:::::
The

::::
mid

::::::::
parental

:::::
value

::
at

:::::
each

:::::
locus

::
is

:::::
used

::
to

::::::
iterate

::::::::
through

:::::
gene

:::::::::
expression

::::::
states

::::::::
according

:::
to

::::::::
equation

::::
Eq.

:
2.262

Thus, the developmental process for the dispersal trait is characterised by the following difference

equation (Deshpande and Fronhofer, 2022) where Sd(I) is the vector of gene expression states
::
for

::
n

:::::
genes264

:::
and

:::
m

::::::
inputs at each iteration of the developmental process:

Sd,i(I + 1) =
2

1 + exp(−rd,i(
∑j=m
j=1 Ud,j,ixd,j +

∑k=n
k=1 Wd,k,iSd,k(I)− θd,i)

− 1. (2)

Therefore, the expression state of a gene is a sigmoid function of the input it receives from the266

environment and other genes (Siegal and Bergman, 2002) and can take values between −1 and 1. The

equilibrium gene expression states S∗
d are obtained after I = 20 iterations. We discard

:::::::::
Individuals

:::::
with268

GRNs that do not reach a fixed point steady state equilibrium by this time
::
at

::::
this

:::::
point

:::
die

:
(Wagner,

1994). The dispersal probability is then calculated as
:::
the

::::::
linear

:::::::::::
combination

::
of
::::::

these
::::::::::
equilibrium

:::::
gene270

:::::::::
expression

::::::
states

::::::::::::::::::::::::::
(Draghi and Whitlock, 2012)

::
as:

d =

i=n∑
i=1

Vd,iS
∗
d,i. (3)

GRN (A, C) and RN (B, D) models for density-dependent (A–B) and density-dependent and sex-biased272

dispersal (C–D). The assumed GRN model has an input layer which is a vector xd of external states

or external cues, in our case, population density alone (A), and population density and sex (B). The274

regulatory genes receive this input via the input weights Ud. Genes have expression states denoted

by Sd, and interactions between these genes are encoded by a regulatory matrix W d. The effects276

of these genes are encoded by the matrix V d. In the case of density-dependent dispersal, the RN

model is represented by a single quantitative locus which is the threshold of the function derived by278

Poethke and Hovestadt (2002) and for density-dependent and sex biased dispersal, two loci with sex

dependent expression encode the threshold. We compare both, evolution of dispersal plasticity and range280

expansion dynamics, between the reaction norm and GRN approaches.

::::::::::
Reaction

::::::::
norm

:
(RN

:
)

:
model282
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Many different models have been used to represent
:::
We

::::::::
compare

:::
the

:::::::
plastic

::::::::
response

:::::
that

:::::
arises

:::
in

:::
the

:::::
GRN

::::::
model

::
to

::::
the

:::::::::::
theoretically

:::::::::
expected

:::::::
optimal

::::::::
reaction

:::::
norm

::::::
(RN)

:::::::
derived

:::::
from

::::
first

:::::::::
principles

:::
for284

density-dependent dispersal reaction norms. Travis and Dytham (1999), assume a threshold function, in

which
:::::::::::::::::::::::::::
(Poethke and Hovestadt, 2002)

:
.
:::

In
::::::::

discrete
:::::
time

:::::::::::::::
metapopulation

:::::::
models

::::
with

:::::::
logistic

::::::::
growth,286

dispersal probability is zero below the threshold and increases linearly beyond it, and optimise the

parameters representing this line. The theoretical model in Poethke and Hovestadt (2002) derives the288

optimal reaction norm of dispersal probability as a function of
:::::::
expected

:::
to

::
be

::
0
::::::
below

:
a
:::::::::

threshold
:::::
local

:::::::::
population

:::::::
density

::::
and

:::::::
increase

:::
in

:
a
::::::::::
saturating

:::::::
manner

::::
with

:::
it.

::::::
Thus,

::::::::
dispersal

::::::::::
probability

::
d

::
is

:::::
given

:::
by:290

d =


0 0 ≤ Nx,y,t

N̂
< Cthresh

1− N̂ Cthresh

Nx,y,t
otherwise.

(4)

:::::
Here,

:::::

Nx,y,t

N̂ ::
is
::::
the local population density to be a threshold function, which is zero below the threshold292

but has a saturating increase beyond it. Kun and Scheuring (2006) assume a sigmoid relationship in

their model, which is represented by three parameters that are optimised . We here choose to use294

the model by Poethke and Hovestadt (2002) as a control because it is derived from first principles, and

it has been shown to out-compete the other models in pairwise competition simulation experiments296

(Hovestadt et al., 2010). The threshold
::::::::::
normalised

::
by

::::
the

::::::::
expected

:::::::::::
equilibrium

::::::::::
population

:::::::
density,

::::
and

::::::
Cthresh::

is
::::
the

:::::::::
threshold

:::::::
density,

::::::
which

:::
can

:::
be

:::::::::
optimised

:::
by

:::::::::::
simulations

:::::::::::::::::::::::::::
(Poethke and Hovestadt, 2002)

:
.298

:::::
Thus,

::
in

::::
the

:::
RN

:::::::
model,

:::
we

:::::::
assume

::::
that

::::
the

::::::::
threshold

:::::::
density

:
Cthresh is

:::::::::
genetically

:
encoded by a single

::::::
diploid

:
locus with two alleles. N̂ is the expected equilibrium population density.300

Nx,y,t

N̂
is the

::::::::::
Individuals

::::::
detect

:
local population density normalised by the expected equilibrium

population density.
:::::
Nx,y,t :::

and
::::::::

disperse
:::::
with

:
a
:::::::::::
probability

:::::
given

:::
by

::::::::
equation

:::
Eq.

:::
4.302

We also extend this
::::::::
approach

:
to sex-biased and density-dependent dispersal by encoding two differ-

ent threshold normalised densities as two loci, Cthresh,M and Cthresh,F . Cthresh,M is expressed if the304

individual is a male, and Cthresh,F is expressed if the individual is female.

Analysis306

We analyse both GRN and RN models
::::
(Fig.

:::
1)

:
for density-dependent dispersal (GRN DDD and RN

DDD) alone and for density-dependent and sex-biased dispersal (GRN DDD + sex bias and RN DDD308

+ sex bias). Model parameters are found in Table 1. Since dispersal evolution ultimately is driven by

costs and benefits, we run 50 replicate model simulations for dispersal costs µ = 0.01, 0.1, 0.3
::::::::
mortality310

::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}

:
and a random patch extinction risk of ε = 0, 0.05, 0.1

:::::::::::::::
ε ∈ {0, 0.05, 0.1}.

::::
We

:::
first

::::::::
compare
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Figure 1:
::::
GRN

::::
(A,

:::
C)

::::
and

::::
RN

::::
(B,

:::
D)

:::::::
models

::::
for

:::::::::::::::::
density-dependent

::::::
(A–B)

::::
and

:::::::::::::::::
density-dependent

:::
and

::::::::::
sex-biased

::::::::
dispersal

:::::::
(C–D).

::::
The

:::::::::
assumed

:::::
GRN

::::::
model

::::
has

:::
an

:::::
input

::::::
layer,

::::::
which

::
is

::
a

::::::
vector

:::
xd ::

of

:::::::
external

::::::
states

::
or

::::::::
external

:::::
cues,

:::
in

:::
our

:::::
case,

:::::::::::
population

:::::::
density

:::::
alone

::::
(A)

::::
and

::::::::::
population

:::::::
density

::::
and

:::
sex

::::
(B).

::::
The

::::::::::
regulatory

:::::
genes

:::::::
receive

:::
this

::::::
input

:::
via

::::
the

:::::
input

:::::::
weights

::::
Ud.::::::

Genes
:::::
have

:::::::::
expression

::::::
states

:::::::
denoted

:::
by

::::
Sd, ::::

and
:::::::::::
interactions

::::::::
between

:::::
these

::::::
genes

:::
are

::::::::
encoded

:::
by

::
a
::::::::::

regulatory
:::::::

matrix
:::::
W d.:::::

The

:::::
effects

:::
of

:::::
these

::::::
genes

:::
are

::::::::
encoded

:::
by

::::
the

::::::
matrix

:::::
V d. :::

In
::::
the

::::
case

:::
of

::::::::::::::::
density-dependent

:::::::::
dispersal,

::::
the

:::
RN

::::::
model

::
is
:::::::::::
represented

:::
by

::
a

:::::
single

::::::::::::
quantitative

:::::
locus,

::::::
which

::
is
::::

the
:::::::::
threshold

::
of

::::
the

::::::::
function

:::::::
derived

::
by

:::::::::::::::::::::::::::
Poethke and Hovestadt (2002)

:
,
::::
and

:::
for

::::::::::::::::
density-dependent

::::
and

::::
sex

::::::
biased

:::::::::
dispersal,

:::
two

::::
loci

:::::
with

:::
sex

:::::::::
dependent

::::::::::
expression

::::::
encode

::::
the

:::::::::
threshold.

::::
We

::::::::
compare

::::
the

::::::::
evolution

:::
of

::::::::
dispersal

:::::::::
plasticity

::::
and

:::::
range

:::::::::
expansion

::::::::
dynamics

::::::::
between

::::
the

:::::::
reaction

::::::
norm

:::
and

::::::
GRN

::::::::::
approaches.

:::
the

::::
long

:::::
term

::::::::::
(t = 20000

:::::
time

:::::
steps)

::::::::
evolved

::::::
plastic

::::::::
response

:::
in

:::
the

:::::
GRN

::::::
DDD

::::
and

:::::
GRN

:::::
DDD

:::
+

:::
sex312

:::
bias

:::::::
models

:::
to

:::
the

:::::::::
expected

:::::::
optimal

::::::::
reaction

::::::
norms

::::
RN

:::::
DDD

::::
and

::::
RN

:::::
DDD

:::
+

:::
sex

::::
bias

:::::::
models

::::::
under

::::::::
standard

::::::::::::::
metapopulation

::::::::::
conditions.

:::::
After

::::::
20000

:::::
time

:::::
steps,

::::::::::
individuals

:::::
begin

::::::
range

::::::::::
expansions,

::::
and

:::
we314

:::::::
compare

::::::
range

:::::::::
expansion

::::::
speeds

::::::::
between

::::
the

:::::
GRN

::::
and

:::
RN

:::::::
models.

Results and discussion316

Evolution of the density-dependent dispersal plastic response in the GRN and

RN models.318
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Table 1: Model Parameters/Variables

Model Parame-
ter/Variable

Description Values

Nx,y,t Population density in the patch x, y at
time t

dynamical

λ0 Intrinsic growth rate in Beverton-Holt
model

2

α Intra-specific competition coefficient in
Beverton-Holt model

0.01

µ Dispersal mortality 0.01, 0.1, 0.3
ε Local patch extinction probability 0, 0.05, 0.1
mmin Mutation rate at equilibrium 0.0001
mmax Mutation rate at the beginning 0.1 for GRN, mmax = mmin for

others
σm Effect size (standard deviation) of mu-

tations
0.1

x Vector of inputs to the GRN in simulation
n Number of regulatory genes 4
Sd,I Vector of expression states of regulatory

genes at iteration I
in simulation

Ud m×n matrix with each element Uji rep-
resenting the connection between the
input j and gene i

evolves, initialised from a normal
distribution with sd = 1

Wd n×n matrix with each element Wki rep-
resenting the connection between the
gene k and gene i

evolves, initialised from a normal
distribution with sd = 1

V d 1× n matrix with each element Vi rep-
resenting the connection between the
gene k and the output

evolves, initialised from a normal
distribution with sd = 1

θd Thresholds of regulatory genes evolves, initialised from a normal
distribution with sd = 1

rd Slopes of regulatory genes evolves, initialised from a normal
distribution with sd = 1

Cthresh Threshold for density-dependent dis-
persal in RN model

evolves, initialised from a uni-
form distribution between 0 to 1

Cthresh,F Threshold for density-dependent and
sex-biased dispersal in RN model for fe-
males

evolves, initialised from a uni-
form distribution between 0 to 1

Cthresh,M Threshold for density-dependent and
sex-biased dispersal in RN model for
males

evolves, initialised from a uni-
form distribution between 0 to 1
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Our model shows that the plastic response of a trait (here, dispersal) can indeed emerge from cellular and

molecular processes, namely gene-regulatory network dynamics
::::
The

::::::::::::::::
density-dependent

:::::::::
dispersal

::::::
plastic320

:::::::
response

:
(Fig.2). Thus, this is an instance of a complex system model which leads to the emergence of

trait plasticity.322

Poethke and Hovestadt (2002)derived from first principles, in metapopulations with discrete-time

logistic dynamics (as assumed in our individual-based model) , that the optimal plastic response of324

dispersal to local population density is a threshold function, in which there is no dispersal below a

threshold, but a saturating increase beyond it. Fig. 2 shows that the optimal density-dependent dispersal326

plastic response produced by
:::
2)

::::::::
obtained

:::::
after

::::::
20000

:::::::::::
generations

::
in

::::
the

:::::
GRN

::::::
DDD

::::::
model

::::::::
matches

:::
the

::::::::::::
theoretically

::::::::
expected

:::::::::
optimum

:::::
(RN

::::::
DDD;

:::::::::::::::::::::::::::
Poethke and Hovestadt (2002)

:
)
:::::
most

:::::::
closely

:::
for

:::::
high328

:::::::::
extinction

::::::::::
probability

::::
(for

::::::::
ε = 0.05

::::
and

::::
0.1)

::::
and

:::::
high

::::::::
dispersal

:::::::::
mortality

::::
(for

:::::::
µ = 0.1

::::
and

:::::
0.3).

::::::
When

::::
there

::::
are

:::
no

::::::
patch

::::::::::
extinctions

::::
(for

:::::::
ε = 0),

:
the GRN DDD model matches this theoretically expected330

reaction norm (Poethke and Hovestadt, 2002). However, the concurrence between the GRN DDD and

the Poethke and Hovestadt (2002) RN DDD model only holds for those
::::::
plastic

::::::::
response

::::::
differs

:::::
from

:::
the332

:::::::::
theoretical

:::::::::
optimum

:::::
likely

:::::::
because

:::
the

::::::::::
individuals

:::
in

:::
the

::::::::::::::
metapopulation

:::
are

::::
not

:::::::
exposed

:::
to

:
a
:::::
wide

:::::
range

::
of

::::::::::
population

:::::::::
densities,

::::::::::
preventing

:::::::::::
optimisation

::::
(see

:::
SI

::::
Fig.

:::
S1

:::
for

::
a
:::::::::
histogram

:::
of population densities334

that occur during the course of the simulation, since these are the conditions for which the trait can be

optimized. Therefore,
::::::::::
equilibrium

:::::::::::::::
metapopulation

:::::::
phase).

::::::::
Finally,

::::
low

::::::::
dispersal

:::::::::
mortality

::::::::::
(µ = 0.01)336

:::
also

::::::::
reduces

::::::::::::
optimisation.

:::::
This

::
is
::::::

likely
:::::::
because

::::
the

::::::::
strength

:::
of

::::::::
selection

:::
for

::::::::
reduced

::::::::
dispersal

::
is
::::
low

::::
since

::::
the

::::::
fitness

::::
cost

:::
of

:
a
::::::::::::

non-optimal
::::::::
dispersal

::::::::
decision

::
is

::::
low.

:::
In

::::::::
addition

:::
to

:
Fig. 2shows the plastic338

response only at those population densities that occur frequently in each scenario. The histograms of

densities that occur during the equilibrium metapopulation phase of the simulation can be found in
:
,
:::
the340

::::::
quality

::
of

::::::::::::
optimisation

::
in

::::
the

:::::
GRN

:::::
DDD

::::::
model

::
is

::::::::
assessed

::
in

:::
SI Fig. S1.

Comparison between density-dependent dispersal plastic response in the GRN and RN models. Dispersal342

costs increases from left to right (µ = 0.01, 0.1, 0.3), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1). ES dispersal probability as a function of population density normalised by the expected344

equilibrium population density (N̂ = λ0−1
α ). The black lines lines represent the median, and shaded region

the inter-quartile range of the ES reaction norms in the RN model from Poethke and Hovestadt (2002).346

The black points represent the calculated GRN output for 1000 randomly chosen individuals at the end

of 20000 time steps. The transparency of the points is weighted by the frequency of occurrence of the348

population density so as to only represent the GRN plastic response for those densities that occur during

the simulation. Fixed parameters: λ0 = 2 and α = 0.01. Number of regulatory genes n = 4.350

Our results also contribute to the discussion on the shapes of functions assumed while modelling

density-dependent dispersal reaction norms in individual-based simulations (Bocedi et al., 2012; Poethke et al., 2016; Hovestadt et al., 2010)352
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. Various density-dependent dispersal reaction norm shapes have been assumed so far, as discussed

above. Our results concur with Hovestadt et al. (2010), supporting the shape of the plastic response354

(threshold function) derived by Poethke and Hovestadt (2002). Hovestadt et al. (2010) show that
:::
S2,

:::::
which

::::
also

::::::
shows

::::
that

:::
the

:::::
GRN

:::::
DDD

::::::
model

::
is

::::::
closest

::
to

::::
the

:::::::::
theoretical

:::::::::
optimum

:::::
under

::::::::::
conditions

::
of

::::
high356

:::::
patch

::::::::::
extinctions

::::
and

::::::::
dispersal

:::::::::
mortality.

:::::
Our

:::::
result

:::::
that

:::::::::::
optimisation

:::
in

:::
the

:::::
GRN

:::::
DDD

::::::
model

::
is
:::::
least

:::::::
effective

::::::
under

:::::::::
conditions

:::
of

::::
low

::::::::
dispersal

:::::::::
mortality

::::
and

:::::::::
extinction

:::::::::::
probability

::
is

:::::::::
consistent

:::::
with

:::::
those358

::
of

:::::::::::::::::::::
Hovestadt et al. (2010)

::::
who

:::::
show

:::::
that

:::::
other

:::::::::
strategies

::::
can

:::::::
co-exist

:::::
with

:
the theoretically expected

reaction norm shape (Poethke and Hovestadt, 2002) wins in pairwise competition simulation experiments360

between individuals with genotypes encoding the various reaction norm shapes described when dispersal

costs are not too high. We re-capture these results without the need for pairwise competition experiments,362

since the GRN approach allows for a flexibility of density-dependent dispersal plastic response shapes.

:::::::
optimal

::::::::
response

::::::::::::::::::::::::::::
(Poethke and Hovestadt, 2002)

::
in

:::::::::::
competition

:::::::::::
experiments

::::::
under

::::::
similar

::::::::::
conditions

::
of364

:::
low

:::::::::::::
environmental

::::::::::
variability

:::
and

::::
low

::::::::
dispersal

:::::::::
mortality.

:

More importantly, the GRN model also provides a mechanistic basis for plasticity. While the GRN is366

likely to be more complicated in reality, the different layers of the
::::
The

:::::::
amount

::::
and

::::::::
direction

::
of

::::::::::
phenotypic

::::::::
variation

::::
that

::
is
:::::::::::

maintained
:::
in

:::
the

:
gene-regulatory network that produce the plastic response can be368

interpreted biologically.For example, the input layer represents the external environmental cue, population

density, which can be sensed as, for example, the reduced availability of resources, or other chemical370

and mechanical cues (Fellous et al., 2012; Fronhofer et al., 2015) resulting from larger local density of

individuals.The regulatory layer can be interpreted as the gene expression states in cells of a relevant372

developmental stage that respond to local population density. A very clear example of this is the case of

dispersal polyphenism in pea aphids, a system in which female winged phenotypes specialise in dispersal as374

opposed to un-winged phenotypes (Brisson et al., 2010). Finally, the output weights are
:::::::
network

::::::
model,

:::::
again

:::::::
depends

:::
on

::::::::
dispersal

:::::::::
mortality

:::
and

::::::::::
extinction

::::::::::
probability.

::::::::::::
Particularly,

:::
this

:::::::::
variation

::
is

::::::::::
comparable376

::
in

:::
the

:::::
GRN

::::::
DDD

::::
and

:::
the

::::
RN

:::::
DDD

:::::::
models

:::
at

::::
high

::::::::
dispersal

:::::::::
mortality

::::
and

::::::::::
extinction

::::::::::
probability,

::::
but

::
at

::::
low

::::::::
dispersal

:::::::::
mortality,

:::::::
greater

:::::::::::
phenotypic

::::::::
variation

::
is
:::::::::::
maintained

::
in

:
the linear downstream effects378

of this developmental GRN, including structural genes and metabolic pathways.
::::
GRN

::::::
DDD

::::::
model

:::
(SI

:::
Fig.

::::
S3).

:::::
This

::
is

:::::::
because

::
of

::::
the

::::::::
evolution

::
of

:::::::
greater

:::::::::
sensitivity

:::
to

::::::::
mutation

:::::::
relative

::
to

::::
the

:::
RN

:::::
DDD

::::::
model380

:::
(SI

::::
Fig.

:::
S4)

::::::
when

::::::::
dispersal

:::::::::
mortality

::
is
:::::
low,

:::::
which

:::
is

::::::::
expected

:::::
since

::::
the

::::::::
negative

::::::
fitness

::::::::::::
consequences

::
of

:
a
::::::::::::

non-optimal
::::::::
dispersal

::::::::
decision

::::::::
increase

::::
with

::::::::::
increasing

::::::::
dispersal

::::::::::
mortality.

::::::::
Reduced

::::::::::::
optimisation382

:::
(SI

::::
Fig.

:::
S2)

::::
and

:::::::::
increased

::::::::::
phenotypic

:::::::::
variation

:::
(SI

::::
Fig.

::::
S3)

::
in
::::

the
:::::
GRN

::::::
DDD

::::::
model

:::::
under

::::::::::
conditions

::
of

:::
low

:::::::::
dispersal

:::::::::
mortality

::::
and

::::::::::
extinction

::::::::::
probability

:::
do

::::
not

:::::
seem

::
to

:::::
have

::::::::::
important

::::::::::::
consequences

:::
on384

::::::::::::::
metapopulation

:::::::::
dynamics

:::::
since

:::
the

:::::::::::
distribution

::
of

:::::::::
observed

::::::::::
population

::::::::
densities

::
in

:::::
both

:::::::
models

::
do

::::
not

:::::
differ

:::
(SI

::::
Fig.

::::
S1).

:
386
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Evolution of the density-dependent and sex-biased dispersal plastic response

in the GRN and RN models.388

::
In

:::::::::
summary,

:::
the

:::::
GRN

:::::
DDD

::::::
model

::::::::
produces

:
a
::::::
plastic

::::::::
response

:::::::
similar

::
to

::::::::::
theoretical

::::::::::
expectation

::::::::::::::::::::::::::::
(Poethke and Hovestadt, 2002)

:::::
when

:::
the

::::::::
strength

:::
of

::::::::
selection

:::
on

:::::::::
dispersal

::
is

::::::::::
sufficiently

:::::
high

::::
and

::::
the

::::::::::
individuals

::::::
across

:::::::::::
generations390

:::
are

:::::::
exposed

:::
to

::
a
:::::
wide

:::::
range

:::
of

::::::::::
population

:::::::::
densities,

:::::
that

::
is,

::::::
when

::::::::
dispersal

:::::::::
mortality

::::
and

::::::::::
extinction

::::::::::
probability

:::
are

:::::
high.

::::::::::
Deviations

:::::
from

::::
this

:::::::::::
expectation

:::::
occur

:::::
when

::::
the

::::::::
strength

::
of

::::::::
selection

:::
on

::::::::
dispersal392

:
is
::::
low

:::
(at

::::
low

::::::::
dispersal

::::::::
mortality

::::
and

::::::::::
extinction

::::::::::
probability)

::::
and

:::::
when

::::::::::
individuals

::::::
across

:::::::::::
generations

:::
are

:::
not

:::::::
exposed

:::
to

::
a

::::
wide

::::::
range

::
of

::::::::::
population

:::::::::
densities.

:
394

:::::::::::
Evolution

::::
of

::::
the

:::::::::::::::::::::::
density-dependent

:::::
and

:::::::::::::
sex-biased

:::::::::::
dispersal

:::::::::
plastic

:::::::::::
response

::
in

:::::
the

:::::::
GRN

:::::
and

:::::
RN

::::::::::
models.396

Dispersal may not only depend on the external context but also on internal conditions (Clobert et al.,

2009), such as the sex of the potentially dispersing individual. Fig. 3 shows that including the input of an398

internal condition, sex, along with local population density, as explored in the previous subsection, leads

to the emergence of a density-dependent and sex-biased dispersal plastic response . Again, this matches400

the theoretically expected plastic response and the additional information of sex does not change the

shape of the density-dependent dispersal reaction norm.Instead, the
::
in

:::
the

:::::
GRN

:::::
DDD

:::
+

:::
sex

::::
bias

::::::
model402

::::::
similar

::
to

::::
the

:::::::
optimal

::::::::
response

::
in

::::
the

:::
RN

::::::
DDD

::
+

:::
sex

::::
bias

:::::::
model.

::::
The

::::::::::
conditions

::
of

::::::::
dispersal

:::::::::
mortality

:::
and

::::::::::
extinction

::::::::::
probability

:::
for

:::::::
greater

:::::::::::
optimisation

:::
of

:::
the

:::::
GRN

::::::
model

:::::
with

:::::::
sex-bias

::::
are

::::::
similar

:::
to

:::::
those404

:::::
when

::::::::
dispersal

::
is

:::
not

::::::::::
sex-biased

:::
(SI

::::
Fig.

::::
S6).

:::::::
Similar

::
to

::::
the

:::::::
scenario

:::
in

:::::
which

:::::::::
dispersal

::
is

:::
not

::::::::::
sex-biased,

::::::
greater

::::::::::
phenotypic

:::::::::
variation

:::
(SI

::::
Fig.

::::
S7)

::::
and

:::::::::
sensitivity

:::
to

::::::::
mutation

::::
(SI

::::
Fig.

:::
S8)

::::::
occur

::
at

::::
low

::::::::
dispersal406

:::::::::
mortality.

:::::
These

::::::::::
differences

::
in

::::::::::
phenotypic

:::::::::
variation

::
in

::::::::
dispersal

::::::::
reaction

::::::
norms

::
do

::::
not

::::
have

::::::::::::
consequences

::
on

::::
the

::::::::::
distribution

:::
of

::::::::::
population

:::::::
density

::
in

:::
the

:::::::::::::::
metapopulation

:::
(SI

::::
Fig.

:::::
S10)408

::::::::
Focusing

:::
on

::::::::
sex-bias,

:::
the

:::::::::::::::::
density-dependent

::::::::
dispersal

:
threshold is lower for males than for females

:
,

leading to male-biased dispersal in our simulations.410

Sex-biased dispersal is known to evolve due to asymmetry in limiting resources, kin competition,

or inbreeding depression (Li and Kokko, 2019). In a similar simulation model by Gros et al. (2009),412

particularly one incorporating demographic stochasticity, it was shown that male-biased dispersal evolves

because of between patch variation in the number of available females. The expected fitness of both414

males and females in a patch decreases with a smaller female population size since females actually bear

the offspring. Therefore, the effect of demographic stochasticity dominates in patches with low female416

density. However, in a random mating system, males also experience a greater between patch variation in

fitness depending on the female population size because of the variation in the availability of mates
::::
This418
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Figure 2: Comparison between density-dependent dispersal and sex-biased plastic response
::::::::
responses

in the GRN
:::::
DDD

:::::::
(green)

:
and RN

::::
DDD

:::::::::
(purple)

:
models. Dispersal costs

::::::::
mortality

:
increases from

left to right (µ = 0.01, 0.1, 0.3
::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}).

:::::::::::::
Evolutionarily

::::::
stable

:
(ES

:
)
:
dispersal probability

::
is

::::::
plotted

:
as a function

of population density normalised by the expected equilibrium population density (N̂ = λ0−1
α :

;
::::::::
N̂ = 100

::
in

:::
the

:::::::
present

::::::
study). The red and blue lines represent

:::::
purple

::::
line

::::::::::
represents the ES reaction norms for

males
::::::::::::::::
density-dependent

::::::::
dispersal

:::::::
plastic

::::::::
response

:::::::::
calculated

::::
from

::::
the

:::::::
median

::::::::
threshold

:::::::
Cthresh::::::::

obtained

::::
after

::::::
20000

::::
time

:::::
steps

::::
over

:::
all

:::::::::::
individuals, and females

:::
the

::::::
shaded

::::::
region

:::::
from

:::
the

::::::::::::
inter-quartile

::::::
range in

the RN
:::::
DDD

:
modelfrom Poethke and Hovestadt (2002). The red and blue points

:::::
green

::::
lines

:
represent

the calculated GRN output for 1000 randomly chosen individuals
:::::
pooled

::::::
across

:::
all

:::
50

:::::::::
replicates

:
at the

end of 20000 time stepscorresponding to male and female sex respectively. The transparency of the points

:::::
green

::::
lines

:
is weighted by the frequency of occurrence of

::
the

:
population density so as to only represent the

GRN plastic response for those densities that occur
::::::::
frequently

:
during the simulation. Fixed parameters:

:::::::
intrinsic

:::::::
growth

::::
rate:

:
λ0 = 2and

:
,
:::::::::::
intraspecific

:::::::::::
competition

::::::::::
coefficient:

:
α = 0.01. Number

:
,
::::
and

:::::::
number

of regulatory genes:
:
n = 4.

:
is
::::::::::

consistent
:::::
with

::::::::
previous

:::::
work

:::
on

::::::::::
sex-biased

:::::::::
dispersal,

::::::
which

::::::
shows

:::::
that

::::::
males

::::::::::
experience

:::::::
greater

:::::::::::
stochasticity

::
in

:::::
mate

::::::
finding, which leads to an asymmetry in limiting resources, that is, mates, promoting420

male-biased dispersal .
::
the

:::::::::
evolution

::
of

:::::::
greater

::::::::
dispersal

:::
in

:::::
males

:::::::
relative

:::
to

:::::::
females

::::::::::::::::
(Gros et al., 2009)

:
.

422
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Figure 3:
:::::::::::
Comparison

::::::::
between

:::::::::::::::::
density-dependent

:::::::::
dispersal

::::
and

::::::::::
sex-biased

:::::::
plastic

::::::::
response

:::
in

::::
the

:::::
GRN

:::::
DDD

:::
+

::::
sex

::::
bias

::::
and

:::::
RN

:::::
DDD

:::
+

::::
sex

::::
bias

::::::::
models.

::::::::::
Dispersal

:::::::::
mortality

:::::::::
increases

:::::
from

::::
left

::
to

:::::
right

:::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

:::::
from

::::
top

::
to

::::::::
bottom,

::::::::::
extinction

::::::::::
probability

:::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

::::::::::::
Evolutionarily

:::::::
stable

:::::
(ES)

:::::::::
dispersal

::::::::::
probability

:::
as

::
a
:::::::::

function
::
of

:::::::::::
population

:::::::
density

:::::::::::
normalised

:::
by

:::
the

::::::::
expected

:::::::::::
equilibrium

:::::::::::
population

:::::::
density

:::::::::::
(N̂ = λ0−1

α ;
:::::::::
N̂ = 100

:::
in

:::
the

::::::::
present

:::::::
study).

:::::
The

:::::
blue

:::
and

:::::::
purple

:::::
lines

:::::::::
represent

::::
the

::::
ES

::::::::
reaction

:::::::
norms

:::
for

::::::
males

:::::
and

:::::::
females

:::
in

::::
the

::::
RN

:::::::
model

:::::
from

:::::::::::::::::::::::::::
Poethke and Hovestadt (2002).

:::::
The

:::::
dark

:::::
green

::::
and

::::::
green

:::::
lines

:::::::::
represent

:::
the

::::::::::
calculated

:::::
GRN

:::::::
output

::
for

:::::
1000

:::::::::
randomly

:::::::
chosen

::::::::::
individuals

::
at

::::
the

::::
end

::
of

::::::
20000

::::
time

:::::
steps

:::::::::::::
corresponding

:::
to

:::::
male

::::
and

::::::
female

:::
sex

:::::::::::
respectively.

::::
The

::::::::::::
transparency

::
of

::::
the

::::::
points

::
is

::::::::
weighted

::
by

::::
the

:::::::::
frequency

::
of

::::::::::
occurrence

::
of

::::::::::
population

::::::
density

:::
so

:::
as

:::
to

::::
only

:::::::::
represent

::::
the

::::::
GRN

::::::
plastic

:::::::::
response

:::
for

::::::
those

::::::::
densities

:::::
that

::::::
occur

::::::
during

::::
the

::::::::::
simulation.

:::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

:::::::::
α = 0.01.

::::::::
Number

::
of

:::::::::
regulatory

::::::
genes

::::::
n = 4.

Genetic architecture of dispersal plasticity impacts eco-evolutionary dynamics

of range expansion424

Under equilibrium metapopulation conditions, we have shown that both density-dependent dispersal and

sex-biased dispersal reaction norms
::::::
plastic

:::::::::
responses

:
readily evolve in gene-regulatory network models426

and match theoretical predictions
::::::
outline

::::
the

::::::::::
conditions

::
in

::::::
which

::::
they

::::::
match

:::::
their

::::::::::
theoretical

::::::::
optimum.

But what are the ecological consequence
:::::::::::
consequences of such plastic responses under novel conditions.

:
?428

In order to answer this questions
:::::::
question, after 20000 time steps, we allow for range expansions in both

, the GRN an
:::
the

:::::
GRN

::::
and

:
RN models. We find that range expansion speeds are greater in the GRN430

model overall when local density alone (Fig. 4) , and both local density and sex
:
, define dispersal decisions
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(Fig. 5). In general,
:
the difference between range expansion dynamics in the two models is greater when432

dispersal costs are low and
::::::::
mortality

::
is

::::
low

::::
and

:::
the

:
rate of external patch extinctions is high (Fig. 4–5).

These patterns of faster range expansions
:::::::::
expansion speeds in the GRN model and the conditions of434

low dispersal mortality and extinction probability that produce them can be understood on the basis of the

evolutionary history of the metapopulation before range expansions begin. Particularly, for an equilibrium436

metapopulation,
::
As

::::
seen

:::
in

:::
the

::::::::
previous

:::::::
section,

::::
the

:::::
GRN

::::::
model

:::::::::
maintains

:::::::
greater

::::::::::
phenotypic

::::::::
variation

:::
(SI Fig. S1–S5 show that individuals experience a set of conditions of population density that are around438

their expected equilibrium density N̂ . Even when there are patch extinctions, there is a bimodal

distribution of population sizes, with one peak close to extinction and another at carrying capacity.440

This prevents optimisation by selection of the density-dependent dispersal and density-dependent and

sex biased dispersal plastic response in the GRNs under densities that do not occur in the equilibrium442

metapopulation (
::
S3

::::
and

:::
S7)

::::::
under

:::::::::
conditions

::
of

::::
low

::::::::
dispersal

::::::::
mortality

::::
(see

::
SI

:
Fig. S9–S10 ). At the same

time, this implies that genetically based phenotypic variation in the plastic response can be maintained444

for these non-occurring density conditions, since individuals are not exposed to them. Essentially, these

parts of the plastic response in the GRN model are “hidden” to selection.446

Under conditions of range expansion, however, dispersal evolution is known to be driven by the spatial

sorting (Shine et al., 2011) of genetically encoded phenotypic variation at the range expansion front.448

Since in the reaction norm approach, selection optimises the threshold of the Poethke and Hovestadt (2002)

function
:::
for

:::::::::
individual

::::::::
reaction

:::::::
norms).

::::::::::
Moreover,

:::::
when

:::::
there

::::
are

:::
no

:::::
patch

::::::::::
extinctions, variation is not450

:::
also

:
maintained at low population densities . However, in the GRN model ample variation compared to

the RN model (SI
::::
since

:::::
these

::::::::::
population

::::::::
densities

:::
do

::::
not

:::::
occur

::::::
during

::::
the

:::::::::::
equilibrium

::::::::::::::
metapopulation452

:::::
phase,

::::::::
allowing

:::
for

::::
the

::::::::::::
accumulation

::
of

:::::::
genetic

:::::::::
variation

:
(Fig. S9–S10)is maintained at those conditions

that do not occur in equilibrium metapopulation conditions. This variation is then sorted
:::::::
spatially

::::::
sorted454

:::::::::::::::::
(Shine et al., 2011), leading to

:::
the evolution of greater dispersal rates at the range expansion front

::
in

:::
the

:::::
GRN

::::::
model

:::::::
relative

:::
to

:::
the

::::
RN

::::::
model (SI Fig. S11–S12). Travis et al. (2009) have previously shown456

that accelerating invasions can be found in models assuming sigmoid density-dependent dispersal reac-

tion norms. They argue that this allows them to have a relatively flexible function, where not just a458

threshold, as in Poethke and Hovestadt (2002), but also other properties of the reaction norm can evolve.

We reconcile the two approaches because, at the equilibrium metapopulation level without assuming a460

particular shape of the plastic response, on an average
:::::::
average,

:
the shape that emerges is the one predicted

by Poethke and Hovestadt (2002) but the GRN approach has greater evolutionary flexibility as in Travis462

et al. (2009).

Interestingly, the possibility for
:
of
:
sex-biased and density-dependent dispersal increases the difference464

between the dynamics of the RN model and the GRN model. Generally, male-biased dispersal (Fig. 3)
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slows down range expansions (Miller et al., 2011) due to the fact that males cannot reproduce by them-466

selves, implying that population, hence range expansion dynamicsare female limited,
:::
are

:::::::::::::
female-limited.

Thus, the availability of variation at densities that do not occur in equilibrium metapopulation conditions468

in the GRN model further amplifies differences between the two models relative to density-dependent

dispersal alone.470
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Figure 4: Range expansion dynamics in GRN vs
:
.
:
RN model for DDD. Dispersal costs increase

::::::::
mortality

::::::::
increases from left to right (µ = 0.01, 0.1, 0.3

::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probabil-

ity increases (ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). We plot the median and quartiles of range front position

as a function of time for the GRN model and RN model. The range front is defined as the farthest
occupied patch from the range core. Fixed parameters: λ0 = 2 and α = 0.01. Number of regulatory
genes:

:
n = 4.

General discussion

In summary, we have developed a model for density-dependent and sex-biased dispersal that assumes472

that dispersal results from the effects of a gene-regulatory network. We find that under conditions that

are experienced in equilibrium metapopulations, the emergent predicted plastic response matches existing474

theoretical predictions
:::
well

:::
for

::::::::::
conditions

::
of

::::
high

::::::::
dispersal

:::::::::
mortality

::::
and

:::::::::
extinction

::::::::::
probability. We then

compare range expansion dynamics between a GRN and an RN model and find that the GRN model476
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Figure 5: Range expansion dynamics in GRN vs
:
.
:
RN model for DDD and sex bias. Dispersal costs

increase
::::::::
mortality

::::::::
increases

:
from left to right (µ = 0.01, 0.1, 0.3

::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom,

extinction probability increases (ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). We plot the median and quartiles of

range front position as a function of time for the GRN model and RN model. The range front is defined
as the farthest occupied patch from the range core. Fixed parameters: λ0 = 2 and α = 0.01. Number of
regulatory genes

:
:
:
n = 4.

leads to faster range expansions because of the availability of important cryptic
:::::::::::
maintenance

::
of

:::::::
greater

variation.478

The theoretical literature usually uses highly simplified representations of the genetic architecture

of traits like dispersal, most often only representing them at the level of the phenotype (Saastamoinen480

et al., 2018). Particularly, adaptive dynamics approaches
::::::::::::::::::::
(Parvinen et al., 2006), which assume small

mutation effects and rare mutations, allow for optimal traits or reaction norms to be derived, analytically482

or by means of simulation, as a function of ecological equilibria (Govaert et al., 2019).
:::::::::::
Quantitative

:::::::
genetics

::::::::::
approaches

:::::
may

::::::
further

:::::::::
highlight

::::::::::
constraints

:::
on

:::::::::::
optimisation

:::
of

:::::::
reaction

::::::
norms

:::::
such

::
as

:::::::
genetic484

::::::::::
correlations

:::::::::::::::::::::::::::::::::::
(Gomulkiewicz and Kirkpatrick, 1992).

:
Further, in simulations similar to ours, one quan-

titative locus with additive effects is often assumed (Saastamoinen et al., 2018). On the other hand,486

studies of genetic architecture rarely make ecological conditions explicit, with
::
an

:
abstract representation

of selection on traits by assuming a fitness function that is a priori
:
a
::::::
priori defined rather than a result of488

underlying ecological processes (e.g., studies using the Wagner model; Wagner 1994). These approaches
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have been useful in highlighting key properties of genotype-to-phenotype relationship, such as robustness.490

Few studies highlight the advantage of incorporating both explicit ecological dynamics and genetic archi-

tectures. A notable exception is, for example, van Gestel and Weissing (2016), who compare GRN and492

RN approaches for bacterial sporulation , and show the GRN approaches maintain greater diversity of

plastic responses
:::::
which

::::::
makes

:::::
them

:::::
more

:::::::::
evolvable

:
under novel conditions.494

In our study, we recapture the theoretically expected and known phenotypic relationships between

population density and dispersal (Poethke and Hovestadt, 2002), confirming the validity of our approach.496

Importantly, under novel, low-density conditions experienced during range expansions, the differences

observed between expansion dynamics in the different models make clear that approaches based on498

reaction norms may not be able to predict eco-evolutionary dynamics under novel conditions.

Our results underline the relevance of understanding genotype-to-phenotype (GP) maps
::::::
genetic500

::::::::::
architecture

:::::::::::::::::::
(Yamamichi, 2022) for eco-evolutionary dynamics (Melián et al., 2018; Fronhofer et al.,

2023), particularly for dispersal (Saastamoinen et al., 2018) and its response to internal and external502

cues (Clobert et al., 2009). While empirical evidence supporting our work is scarce, Brisson et al. (2010)

showed differences in gene expression between winged and un-winged phenotypes of pea aphids, par-504

ticularly in their wing development gene-regulatory network. In this system, winged morphs are often

induced due to crowding
:
,
:
and the relative production of dispersive and non-dispersive (reproductive)506

females depends on developmental cues, including crowding. More generally, our GRN approach can

be used to understand how dispersal responds to other internal (e.g., infection state; Iritani and Iwasa508

2014 or body condition; Baines et al. 2020) and external cues, for example,
::::
the

:
presence of parasites

(Deshpande et al., 2021) or predators (Poethke et al., 2010).510

:::
Our

::::::
study

:::::
links

::::
very

:::::::
closely

:::
to

::::::::::::::::::::
Ezoe and Iwasa (1997)

:
,
::::
who

:::::
used

::
a

::::::
neural

::::::::
network

::
to

::::::::
compare

::::
the

::::::::
evolution

::
of
:::::::::

dispersal
::::::::
reaction

::::::
norms

:::
to

:::::::::
analytical

:::::::::::
predictions.

::::::
They

:::::::
showed

::::
that

::::
the

::::::
neural

::::::::
network512

:::
was

:::::
able

::
to

::::::::
produce

:::::::
plastic

:::::::::
responses

:::::::
similar

::
to

::::
the

:::::::::::
analytically

:::::::
derived

::::::::
reaction

::::::
norm

:::::
while

:::::::
finding

::::
some

::::::::::
consistent

::::::::::
deviations

:::::
from

::::
this

:::::::
optimal

:::::::::
response.

::::
In

::::
our

::::::
study,

:::
we

:::
go

:::::::
beyond

:::::
these

:::::::
results

:::
by514

::::::::::
highlighting

::::
the

::::::::::
conditions

::
of

:::::::::
dispersal

:::::::::
mortality

::::
and

:::::::::
extinction

:::::::::::
probability

::::
that

:::::
yield

::::::::
reaction

::::::
norms

::::::
closest

::
to

::::
the

::::::::
expected

:::::::
optimal

:::::::::
response.

:::::::::
Moreover,

::::::
using

:
a
::::::::::::::
gene-regulatory

::::::::
network

:::::::::
approach

::::::
allows

::
us516

::
to

:::::
place

:::
our

:::::
work

::
in

:::::::
context

::
of

::::::::
previous

:::::
work

::::::::::::
investigating

:::
the

:::::::::::
relationship

:::::::
between

::::::::::
phenotypic

:::::::::
plasticity

:::
and

:::::::::::
evolvability

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Draghi and Whitlock, 2012; van Gestel and Weissing, 2016; Brun-Usan et al., 2021).

:
518

GRN models and models of GP maps often use highly abstract representation
:::::::::::::
representations

:
of the

environment (for example, Draghi and Whitlock 2012) and gene expression as phenotype
::
the

::::::::::
phenotype520

:::::::
directly under selection (for example

:
,
:
Espinosa-Soto et al. 2011). These approaches have been useful in

defining, for example, how evolvability of phenotypes is linked with phenotypic plasticity (van Gestel522

and Weissing, 2016) and the alignment between genetic, environmental perturbations,
:
and direction of
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selection, and how this impacts evolvability in multi-trait systems (Draghi and Whitlock, 2012; Brun-Usan524

et al., 2021).

However, in an eco-evolutionary framework (Govaert et al., 2019; Fronhofer et al., 2023)
:::::::::::::::::::::::::::::::::::::::
(Govaert et al., 2019; Fronhofer et al., 2023)526

, ecological interactions define selection on a trait. Ecological dynamics also define the trait that is un-

der selection. Therefore, considering gene expression as
:
a
:

phenotype directly under selection may not528

always be appropriate, and gene expression state to phenotype map
:::::
maps

:
must be included (Chevin

et al., 2022). This is relevant because
:
, for example, the association of extremes of gene-expression

::::
gene530

:::::::::
expression

:
(Rünneburger and Rouzic, 2016) with increased mutational sensitivity (decreased robustness)

is actually reversed (Deshpande and Fronhofer, 2022). Further, while such a map is likely to be more532

complex than our assumed linear gene expression to phenotype map, approaches such as ours and that of

van Gestel and Weissing (2016) also narrow the range of possible environments under native conditions534

and also help define phenotypes under selection that are ecologically informed.

The latter point becomes clear when considering our results on range expansion dynamics. Taking536

into account both genetic architecture and the ecological conditions that shape the evolution of dispersal

plasticity, the GRN model leads to
:::
the

:
maintenance of variation in conditions (densities) that are not538

very frequent under equilibrium metapopulation conditions. This variation is then spatially sorted (Shine

et al., 2011) during range expansion. However, in the RN approach, this maintenance of variation540

under equilibrium metapopulation conditions does not happen , since only the threshold to the reaction

norm is under selection. We see the consequences of the spatial sorting of dispersal in the fact that542

range expansions are generally faster in GRN approaches, when dispersal is density-dependent alone, and

sex-bias
:::
sex

::::
bias

:
only increases the difference between the two models. This has previously been discussed544

in the literature as a form of cryptic variation
:
, particularly “hidden reaction norms” (Schlichting, 2008),

which represents
::::::::
represent

:
differences in genotypes that are not normally expressed at

:::
the phenotypic546

level but might be expressed if the genotype is perturbed due to mutation or recombination, but also

when the environment is perturbed. Our results are similar to the findings of van Gestel and Weissing548

(2016) who show
::::::
showed

:
that in their GRN model

:
,
:
the release of cryptic variation in native environments

can lead to more adaptive plastic responses in novel conditions.550

:::::
More

:::::::::::
importantly,

::::
the

:::::
GRN

::::::
model

::::
also

::::::::
provides

::
a

::::::::::::::::::::
molecular-mechanistic

:::::
basis

:::
for

:::::::::
plasticity.

::::::
While

:::
the

:::::
GRN

::
is

:::::
likely

:::
to

:::
be

:::::
more

:::::::::::
complicated

::
in

:::::::
reality,

::::
the

::::::::
different

:::::
layers

:::
of

:::
the

::::::::::::::
gene-regulatory

::::::::
network552

::::
that

:::::::
produce

::::
the

::::::
plastic

::::::::
response

:::
can

:::
be

::::::::::
interpreted

:::::::::::
biologically.

::::
For

::::::::
example,

::::
the

:::::
input

:::::
layer

:::::::::
represents

:::
the

::::::::
external

:::::::::::::
environmental

::::
cue,

::::::::::
population

::::::::
density,

::::::
which

::::
can

::
be

:::::::
sensed

:::
as,

:::
for

:::::::::
example,

:::
the

::::::::
reduced554

::::::::::
availability

::
of

::::::::
resources

::
or

:::::
other

::::::::
chemical

::::
and

::::::::::
mechanical

::::
cues

:::::::::::::::::::::::::::::::::::::::
(Fellous et al., 2012; Fronhofer et al., 2015)

::::::::
resulting

::::
from

::
a
::::::
larger

:::::
local

:::::::
density

::
of

:::::::::::
individuals.

::::
The

::::::::::
regulatory

:::::
layer

:::
can

:::
be

::::::::::
interpreted

:::
as

:::
the

:::::
gene556

:::::::::
expression

::::::
states

::
in

::::
cells

::
of

::
a
:::::::
relevant

::::::::::::::
developmental

:::::
stage

::::
that

:::::::
respond

:::
to

::::
local

::::::::::
population

:::::::
density.

:
Em-
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pirical studies of gene-regulation
:::
gene

::::::::::
regulation in a dispersal context remain rare. Yagound et al. (2022)558

have shown gene expression differences using mRNA sequencing in the brains of the invasive Australian

cane toad in
:
a
:

few genes. In their study, dispersal-related genes generally showed elevated expression at560

the range front. This systemand associated life-history
::
In

::::
this

:::::::
system,

:::::::::
associated

::::
life

::::::
history

:
and physio-

logical changes is
:::
are

:
particularly well studied in terms of range expansion dynamics (Phillips et al., 2006;562

Perkins et al., 2013). Other examples include wing polyphenism in pea aphids (Brisson et al., 2010), and

dispersal in yellow-bellied marmots (Armenta et al., 2019). This relative scarcity of empirical studies,564

together with the relatively important effects predicted by our model, clearly call for more work, both

empirical and theoretical
:
, to understand how genotype-phenotype

::::::::::::::::::::
genotype-to-phenotype

:
maps impact566

eco-evolutionary dynamics.
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Dehling, D. M., Hof, C., Trochet, A., and Baguette, M. (2014). A comparative analysis of dispersal

syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett., 17(8):1039–1052.700

Travis, J. M. J. and Dytham, C. (1999). Habitat persistence, habitat availability and the evolution of

dispersal. Proc R Soc Lond B Biol Sci, 266(1420):723–728.702

Travis, J. M. J., Mustin, K., Benton, T. G., and Dytham, C. (2009). Accelerating invasion rates result

from the evolution of density-dependent dispersal. J. Theor. Biol., 259(1):151–158.704

van Gestel, J. and Weissing, F. J. (2016). Regulatory mechanisms link phenotypic plasticity to evolvability.

Sci. Rep., 6(1):24524.706

Wagner, A. (1994). Evolution of gene networks by gene duplications: a mathematical model and its

implications on genome organization. Proc. Natl. Acad. Sci. U. S. A., 91(10):4387–4391.708

27



Weiss-Lehman, C. and Shaw, A. K. (2022). Understanding the drivers of dispersal evolution in range

expansions and their ecological consequences. Evol. Ecol., 36(2):181–197.710

Yagound, B., West, A. J., Richardson, M. F., Selechnik, D., Shine, R., and Rollins, L. A. (2022). Brain

transcriptome analysis reveals gene expression differences associated with dispersal behaviour between712

range-front and range-core populations of invasive cane toads in australia. Mol. Ecol., 31(6):1700–1715.

Yamamichi, M. (2022). How does genetic architecture affect eco-evolutionary dynamics? A theoretical714

perspective. Philos. Trans. R. Soc. B, 377(1855):20200504.

28



Supplementary Material1

2

Jhelam N. Deshpande and Emanuel A. Fronhofer3

A gene-regulatory network model for4

density-dependent and sex-biased dispersal evolution5

during range expansions.6

1



Supplementary figures7

0

0

0
0.

15
0.

3

 µ = 0.01

0

0

 µ = 0.1

0

0

 µ = 0.3

 ε
=

0

0

0

0
0.

15
0.

3

0

0

0

0

 ε
=

0.
05

0

0

0 0.75 1.5

0
0.

15
0.

3

0

0

0 0.75 1.5

0

0

0 0.75 1.5

 ε
=

0.
1

GRN
RN

Normalised population density

F
re

qu
en

cy
 o

f o
cc

ur
en

ce

E
xt

in
ct

io
n 

pr
ob

ab
ili

ty

Dispersal mortality

Figure S1: Histogram of occurrence of population densities for DDD in equilibrium metapop-
ulation conditions. Dispersal costs increase

:::::::
Dipersal

::::::::::
mortality

::::::::::
increases

:
from left to right

(µ = 0.01, 0.1, 0.3
::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). Histograms of occurence of population density normalised by

the expected equilibrium population density (N̂ = λ0−1
α ). The GRN model is indicated in points

:::::
green

and the RN model in solid lines
:::::
purple. A wider range of population densities occur for greater dispersal

mortality and extinction probability for both models. Fixed parameters: λ0 = 2 and α = 0.01. Number
of regulatory genes n = 4.
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Figure S2:
:::::::
Average

::::::::
distance

:::::
from

:::::::
optimal

::::::
plastic

::::::::
response

:::
as

::::::::
function

::
of

::::::::::
normalised

::::::::::
population

:::::::
density

::
for

::::::
GRN

::::
and

:::
RN

:::::::
models

:::
for

::::::
DDD.

::::::::
Dipersal

:::::::::
mortality

::::::::
increases

:::::
from

::::
left

::
to

:::::
right

:::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

::::
from

::::
top

::
to

::::::::
bottom,

:::::::::
extinction

::::::::::
probability

:::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

::::
The

::::::::
optimal

::::::
plastic

::::::::
response

::
is

:::::::::
calculated

:::::
from

:::
the

:::::::
median

::
of

::::
the

:::::::
evolved

:::::::::
threshold

:::::::
Cthresh::

in
::::
the

:::
RN

:::::::
model.

::::
The

:::::::
plastic

::::::::
response

:::
for

::::
1000

:::::::::
randomly

::::::
chosen

::::::::::
individuals

:::
in

:::
the

:::::
GRN

::::
and

::::
RN

::::::
models

:::
at

::::
end

::
of

:::
the

:::::::::::
equilibrium

::::::::::::::
metapopulation

:::::
phase

::::::
(20000

:::::
time

::::::
steps)

:::
are

:::::::::
evaluated

:::
at

:::::::
different

:::::::::::
normalised

::::::::::
population

::::::::
densities

:::::::::::
0, 0.1, ...1.5,

::::
and

:::
the

::::
root

:::::
mean

:::::::
squared

::::::::
distance

::
is
::::::::::::

calulculated
::
as

::
a
::::::::
measure

::
of

:::::::::
deviation

:::::
from

::::
this

:::::::::
optimum.

::::
We

::::
find

::::
that

::::::
overall

:::
the

:::::::::
deviation

:::::
from

:::
the

::::::::
optimal

::::::
plastic

::::::::
response

::
is
:::::::
greater

::
in

::::
the

:::::
GRN

::::::
model

:::::::
relative

:::
to

:::
the

::::
RN

::::::
model.

::::
As

::::::::
dispersal

:::::::::
mortality

::::
and

::::::::::
extinction

::::::::::
probability

::::::::
increase,

::::
the

:::::::::
deviation

:::::
from

::::::::
optimal

::::::
plastic

:::::::
response

:::::::::
decreases

:::
in

:::
the

::::::
GRN

::::::
model

::::
and

:::::::::
converges

::
to

::::
the

:::
RN

:::::::
model.

::::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

::::::::
α = 0.01.

::::::::
Number

::
of

::::::::::
regulatory

:::::
genes

::::::
n = 4
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Figure S3:
::::::::::
Phenotypic

::::::::
variation

:::::::::::
maintained

:::
in

::::
the

:::::
GRN

:::
vs.

:::::
RN

:::::::
model

:::
for

::::::
DDD

::
as

::
a
::::::::

function
:::

of

:::::::::
normalised

:::::::::::
population

:::::::
density.

::::::::
Dipersal

:::::::::
mortality

::::::::
increases

:::::
from

:::
left

:::
to

::::
right

:::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

:::::
from

:::
top

::
to

::::::::
bottom,

:::::::::
extinction

:::::::::::
probability

::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

::::::::::
Difference

:::::::
between

::::
the

:::::
95th

:::
and

::::
5th

::::::::
percentile

:::
in

::::::::
dispersal

:::::::::
phenotype

:::
as

:
a
::::::::
function

::
of

::::::::::
normalised

::::::::::
population

:::::::
density

:::::::
plotted

:::
for

:::
the

:::::
GRN

::::
and

:::
RN

::::::
model.

::::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

::::::::
α = 0.01.

::::::::
Number

:::
of

:::::::::
regulatory

::::::
genes

:::::
n = 4
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Figure S4:
:::::::::
Sensitivity

::
to

:::::::::
mutation

:::
in

:::
the

::::::
GRN

::::
and

::::
RN

::::::
model

:::
for

::::::
DDD

::
as

::
a
::::::::
function

:::
of

::::::::::
normalised

:::::::::
population

::::::::
density.

:::
In

:::::
both

::::::::
models,

:::::
1000

::::::::::
individual

:::::::::
genotypes

::::
are

::::::::
sampled

:::::
from

::::
the

::::
last

:::::
time

::::
step

::
of

:::
the

:::::::::::
equilibrium

:::::::::::::::
metapopulation

::::::
phase

:::::::::::
(t = 20000).

:::::::::
Dipersal

:::::::::
mortality

:::::::::
increases

:::::
from

:::
left

:::
to

:::::
right

::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

:::::
from

::::
top

:::
to

::::::::
bottom,

:::::::::
extinction

:::::::::::
probability

:::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

:::
In

::::
the

:::
RN

:::::::
model,

:
a
::::::::::::
perturbation

::::::
drawn

:::::
from

::
a

::::::::
Gaussian

:::::::::::
distribution

:::::
with

:::::
mean

::
0

::::
and

::::::::
standard

:::::::::
deviation

:::
0.1

:
is
::::::

added
:::

to
::::
the

:::::::
evolved

:::::::::
threshold

:::::::
Cthresh:::::

with
:::::::::::

probability
:::::
0.01.

:::
In

::::
the

:::::
GRN

:::::::
model,

::
a
::::::::::::
perturbation

::::
with

:::
the

::::::
same

:::::
mean

::::
and

::::::::
standard

:::::::::
deviation

::
is
::::::
added

:::
to

::
to

:::
an

:::::::::::
individual’s

:::::
locus

:::::
with

::::::::::
probability

:::::
0.01.

::::
This

::::::
makes

:::::
both

:::::::
models

:::::::::::
comparable,

:::::
since

::::
per

:::::
locus

::::::::::::
perturbation

:::::
rate

::::
and

:::::
effect

::::
are

:::
the

::::::
same.

:::::
The

:::::::::
sensitivity

::
to

:::::::::
mutation

::
is
:::::

then
::::::::::
calculated

::
as

::::
the

::::
root

::::::
mean

::::::::
squared

:::::::::
difference

::::::::
between

:::
the

::::::::::
phenotype

::::::::
evaluated

:::::
from

::::
the

::::::::::
perturbed

::::
and

::::::::::::
unperturbed

:::::::::
genotype.

:::::
The

::::::
green

::::
and

:::::::
purple

::::
lines

:::::::::
represent

::::
the

:::::::::
sensitivity

::
to

:::::::::
mutation

:::::::::::::
corresponding

:::
to

:
a
::::::

given
::::::::::
normalised

::::::::::
population

:::::::
density

:::
for

:::
10

:::::::::
replicates

::
of
::::

the

::::::::
sampling

:::::::::
procedure

:::::::::
described

::::::
above.

::::
We

::::
find

::::
that

:::
in

:::
the

:::::
GRN

:::::::
model,

:::::::::
sensitivity

:::
to

::::::::
mutation

::
is
:::::::
greater

::
at

:::
low

::::::::
dispersal

:::::::::
mortality

::::
and

::::::::
becomes

::::::::::
comparable

::
to

::::
the

:::
RN

::::::
model

::
as

::::::::
dispersal

:::::::::
mortality

::::
and

:::::::::
extinction

::::::::::
probability

::::::::
increases.

::::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

::::::::
α = 0.01.

::::::::
Number

:::
of

:::::::::
regulatory

::::::
genes

:::::
n = 4
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Figure S5: Histogram of occurrence of population densities for DDD + sex bias in equilib-
rium metapopulation conditions. Dispersal costs increase

:::::::
Dipersal

::::::::::
mortality

:::::::::
increases

:
from left

to right (µ = 0.01, 0.1, 0.3
:::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). Histograms of occurence of population density normalised by the ex-

pected equilibrium population density (N̂ = λ0−1
α ). The GRN model is indicated in points

::::
green

:::::
lines

and the RN model in solid
:::::
purple

:
lines. A wider range of population densities occur for greater dispersal

mortality and extinction probability for both models. Fixed parameters: λ0 = 2 and α = 0.01. Number
of regulatory genes n = 4.
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Figure S6:
:::::::
Average

::::::::
distance

:::::
from

::::::::
optimal

:::::::
plastic

:::::::::
response

:::
as

::::::::
function

:::
of

::::::::::
normalised

:::::::::::
population

::::::
density

::::
for

:::::
GRN

:::::
and

::::
RN

:::::::
models

:::
for

::::::
DDD

:::
+

::::
sex

:::::
bias.

:::::::::
Dipersal

:::::::::
mortality

:::::::::
increases

:::::
from

::::
left

:::
to

::::
right

::::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

:::::
from

::::
top

:::
to

::::::::
bottom,

::::::::::
extinction

:::::::::::
probability

:::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

:::
The

::::::::
optimal

:::::::
plastic

::::::::
response

::
is

::::::::::
calculated

:::::
from

:::
the

:::::::
median

:::
of

:::
the

::::::::
evolved

:::::::::
threshold

:::::::::::
Cthresh,male::::

and

::::::::::::
Cthresh,female::

in
::::
the

:::
RN

:::::::
model.

::::
The

:::::::
plastic

::::::::
response

:::
for

:::::
1000

::::::::
randomly

:::::::
chosen

::::::::::
individuals

::
in

::::
the

:::::
GRN

:::
and

::::
RN

:::::::
models

:::
at

::::
end

::
of

::::
the

:::::::::::
equilibrium

::::::::::::::
metapopulation

::::::
phase

:::::::
(20000

:::::
time

::::::
steps)

:::
are

:::::::::
evaluated

:::
at

:::::::
different

::::::::::
normalised

::::::::::
population

::::::::
densities

:::::::::::
0, 0.1, ...1.5,

::::
and

:::
the

:::::
root

:::::
mean

:::::::
squared

::::::::
distance

::
is

:::::::::::
calulculated

::
as

::
a

:::::::
measure

:::
of

:::::::::
deviation

::::
from

::::
this

:::::::::
optimum.

::::::::
Similar

::
to

::::::
when

::
on

:::::
only

:::::
DDD

::::::::
evolves,

:::::::
greatest

::::::::
distance

::::
from

:::::::::
optimum

::
in

::::
the

:::::
GRN

:::::::
model

::
is

:::::
when

:::::::::
dispersal

:::::::::
mortality

::
is

::::
low.

:::::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

::::::::
α = 0.01.

::::::::
Number

::
of

::::::::::
regulatory

:::::
genes

::::::
n = 4
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Figure S7:
::::::::::
Phenotypic

::::::::
variation

::::::::::
maintained

::
in

::::
the

:::::
GRN

:::
vs.

::::
RN

::::::
model

:::
for

:::::
DDD

::
+

:::
sex

::::
bias

:::
as

:
a
::::::::
function

::
of

::::::::::
normalised

::::::::::
population

::::::::
density.

::::::::
Dipersal

:::::::::
mortality

:::::::::
increases

:::::
from

:::
left

:::
to

:::::
right

:::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

::::
from

::::
top

::
to

:::::::
bottom,

::::::::::
extinction

::::::::::
probability

::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

::::::::::
Difference

:::::::
between

::::
the

::::
95th

::::
and

:::
5th

:::::::::
percentile

::
in

::::::::
dispersal

::::::::::
phenotype

::
as

::
a
::::::::
function

::
of

::::::::::
normalised

::::::::::
population

:::::::
density

:::::::
plotted

:::
for

:::
the

:::::
GRN

:::
and

::::
RN

::::::
model.

::::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

::::::::
α = 0.01.

::::::::
Number

:::
of

:::::::::
regulatory

::::::
genes

:::::
n = 4
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Figure S8:
::::::::::
Sensitivity

::
to

:::::::::
mutation

:::
in

:::
the

::::::
GRN

::::
and

::::
RN

::::::
model

:::
for

::::::
DDD

::
+

::::
sex

::::
bias

:::
as

::
a

::::::::
function

::
of

:::::::::
normalised

:::::::::::
population

:::::::
density.

::::::::::
Dispersal

:::::::::
mortality

:::::::::
increases

:::::
from

::::
left

:::
to

:::::
right

:::::::::::::::::::
(µ ∈ {0.01, 0.1, 0.3}),

::::
from

::::
top

::
to

::::::::
bottom,

:::::::::
extinction

::::::::::
probability

::::::::
increases

:::::::::::::::::
(ε ∈ {0, 0.05, 0.1}).

:::
In

:::::
both

:::::::
models,

:::::
1000

:::::::::
individual

:::::::::
genotypes

:::
are

::::::::
sampled

:::::
from

:::
the

::::
last

::::
time

:::::
step

::
of

:::
the

:::::::::::
equilibrium

::::::::::::::
metapopulation

::::::
phase

:::::::::::
(t = 20000).

:::
In

:::
the

:::
RN

:::::::
model,

::
a

:::::::::::
perturbation

::::::
drawn

:::::
from

::
a
:::::::::
Gaussian

::::::::::
distribution

:::::
with

:::::
mean

::
0
::::
and

::::::::
standard

:::::::::
deviation

:::
0.1

::
is

:::::
added

:::
to

:::
the

::::::::
evolved

::::::::
threshold

:::::::::::
Cthresh,male::::

and
:::::::::::::
Cthresh,female:::::

with
::::::::::
probability

:::::
0.01.

::
In

::::
the

:::::
GRN

::::::
model,

::
a

:::::::::::
perturbation

:::::
with

::::
the

:::::
same

:::::
mean

::::
and

::::::::
standard

:::::::::
deviation

::
is
::::::
added

:::
to

::
to

:::
an

:::::::::::
individual’s

:::::
locus

::::
with

::::::::::
probability

:::::
0.01.

:::::
This

::::::
makes

::::
both

:::::::
models

:::::::::::
comparable,

:::::
since

::::
per

:::::
locus

::::::::::::
perturbation

::::
rate

::::
and

:::::
effect

:::
are

:::
the

::::::
same.

::::
The

:::::::::
sensitivity

:::
to

::::::::
mutation

::
is

:::::
then

:::::::::
calculated

::
as

::::
the

::::
root

:::::
mean

::::::::
squared

::::::::
difference

::::::::
between

:::
the

::::::::::
phenotype

::::::::
evaluated

:::::
from

::::
the

:::::::::
perturbed

::::
and

::::::::::::
unperturbed

:::::::::
genotype.

:::::::
Similar

::
to

::::
the

::::::
model

:::
for

:::::
DDD

:::::
alone,

::::::
GRNs

::::
are

:::::
more

::::::::
sensitive

::
to

:::::::::
mutation

:::
at

:::
low

:::::::::
dispersal

:::::::::
mortality.

::::::
Fixed

:::::::::::
parameters:

:::::::
λ0 = 2

::::
and

::::::::
α = 0.01.

::::::::
Number

::
of

::::::::::
regulatory

:::::
genes

::::::
n = 4
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Figure S9: Density-dependent dispersal plastic responses in the GRN vs, RN model in the equi-
librium metapopulation range core before the beginning of range expansion shown across the
range of possible population densities. Dispersal costs increase

::::::::
mortality

:::::::::
increases

::
from left

to right (µ = 0.01, 0.1, 0.3
:::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). The black points

:::::
green

:::::
lines

:
show the GRN density-dependent dis-

persal plastic response 1000 sampled GRNs pooled across 50 replicates in the range core before range
expansions begin, whereas the

::::::
purple lines show the expected plastic response from the RN model. We

see that when we also depict plastic responses at population densities that do not occur frequently in
equilibrium metapopulation conditions (unlike in Fig. 2 , where only those population densities are shown
which occur frequently in equilibrium metapopulation conditions), there is a greater diversity of plastic
responses maintained. Fixed parameters: λ0 = 2 and α = 0.01. Number of regulatory genes n = 4
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Figure S10: Density-dependent and sex-biased dispersal plastic responses in the GRN vs, RN model
in the equilibrium metapopulation range core before the beginning of range expansion shown across
the range of possible population densities. Dispersal costs increase

::::::::
mortality

:::::::::
increases

:
from left

to right (µ = 0.01, 0.1, 0.3
:::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). The red

::::
dark

:::::
green

:
and blue points

:::::
green

::::
lines

:
show the GRN density-

dependent dispersal plastic response if male and female respectively for 1000 sampled GRNs pooled
across 50 replicatesin the range core before range expansions begin, whereas the

::::
blue

::::
and

::::::
purple

:
lines

show the expected plastic response from the RN model
::
for

::::::
males

::::
and

:::::::
females,

:::::::::::
respectively. We see that

when we also depict plastic responses at population densities that do not occur frequently in equilibrium
metapopulation conditions (unlike in main text Fig. 3, where only those population densities are shown
which occur frequently in equilibrium metapopulation conditions), there is a greater diversity of plastic
responses maintained. Fixed parameters: λ0 = 2 and α = 0.01. Number of regulatory genes n = 4
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Figure S11: Density-dependent dispersal plastic responses in the GRN vs. RN model in the
range front at the end of range expansion. Dispersal costs increase

::::::::
mortality

:::::::::
increases

:
from left

to right (µ = 0.01, 0.1, 0.3
:::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). The black points

:::::
green

::::
lines

:
show the GRN density-dependent disper-

sal plastic response for 1000 sampled GRNs pooled across 50replicates
::
50

:::::::::
replicates, whereas the

::::::
purple

lines show the expected plastic response from the RN model. Fixed parameters: λ0 = 2 and α = 0.01.
Number of regulatory genes n = 4
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Figure S12: Density-dependent and sex-biased dispersal plastic responses in the GRN vs. RN model
in the range front at the end of range expansion. Dispersal costs increase

::::::::
mortality

:::::::::
increases

:
from

left to right (µ = 0.01, 0.1, 0.3
::::::::::::::::
µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probability increases

(ε = 0, 0.05, 0.1
::::::::::::::
ε ∈ {0, 0.05, 0.1}). The red

::::
dark

:::::
green

:
and blue points

:::::
green

::::
lines

:
show the GRN density-

dependent dispersal plastic response if male and female
:
,
:
respectively for 1000 sampled GRNs pooled

across 50 replicates, whereas the
::::
blue

::::
and

::::::
purple

:
lines show the expected plastic response from the RN

model
::
for

::::::
males

:::
and

::::::::
females,

:::::::::::
respectively. Fixed parameters: λ0 = 2 and α = 0.01. Number of regulatory

genes n = 4
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