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Abstract

Dispersal is key to understanding ecological and evolutionary dynamics. Dispersal may itself evdlve and
exhibit phenotypic plasticity. Specifically, organizms may modulate their dispersal rates in response to the
density of their conspecifics {density-dependent dispersal) and their own sex (sex-biased dispersal). While
optimal dispersal plastic responses have been derived from first prineiples, the genetic and molecular basis
of dispersal plasticity has not been modelled. An understanding of the genetic architecture of disper-
sal plasticity & especially relevant for understanding dipersal evalution during rapidly chanping spatial
ecological conditions such as range expansions. In this context, we develop an individual-based metapop-
ulation model of the evolution of density-dependent and sex-biased dispersal during range expansions.
We represent the dispersal trait as a pene-regulatory network (GEN), which can take population density
and an individual's sex as an input and analyse emergent context- and condition-dependent dispersal
responses. We compare dispersal evolution and ecological dynamics in this GRN model to a standard
reaction norm (RN approach under equilibrium metapopulation conditions and during range expansions.
We find that under equilibrivm metapopulation conditions, the GEN model produces emergent density-
dependent and sex-biased dispersal plastic response shapes that match the theoretical expectation of the
h, the GEN maodel

BN model. However, during ranpe expansion, when mutation effects are large enon

leads to faster range expansion because GRNs can maintain higher adaptive potential. Our results imply
that, in order to understand eco-evolutionary dynamics in contemporary time, the genetic architecture

of traits must be taken into account.
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understanding of dispersal evolution. We focus on two examples of dispersal plastic responses that
have been well-studied: density-dependent {Harman et al., 2020) and sex-biased (Li and Kokko, 2019)
dispersal.

Dispersal rates of organisms show plastic responses to local population density and may merease
{ positive density-dependent dispersal), decrease (negative density-dependent dispersal), or even be uni-
modal (reviewed in Harman et al. (2020)). Theoretical work has focused on the evolution of positive
density-dependent dispersal, which evolves when there is negative density-dependence in density regula-
tion (Gyllenberg and Metz, 2001; Poethke and Hovestadt, 2002). If individuals are present in a patch that
has a smaller population density than an average patch, they experience less competition and, therefore,
tend to stay in their natal pateh (no dispersal), and those in patches with higher than averape densities
tend to leave their natal patch with a probability that ineresses with local population density due to
increased competition (Gyllenberg and Metz, 2001; Poethke and Hovestadt, 2002). Many theoretical
studies have assumed different shapes of positive density-dependence: linear {Travis and Dytham, 1999)
or sigmoid (Kun and Scheuring, 2006; Bocedi et al., 2012; Travis et al, 2009). However, the theoretical
expectation in discrete time models & given by a function in which dispersal is zero below a threshold
and then increases in a saturating manner beyond it {Poethke and Hovestadt, 2002). Apart from a fiest
principles justification, this reaction norm shape outcompetes all the others in pairwise competition sim-
ulation experiments {Hovestadt et al., 20107, Similarly, sex-biased dispersal & konown to evobe due to
asymmetry in imiting resources, kin competition, or inbreeding depression (Li and Kokko, 2019). When
females mate with a randomly chosen male, this leads to the evolution of male-bissed dispersal, that is,
males tend to disperse more than females, sinee they experience greater variability in mates, which is a
limiting resource (Gros et al, 2009).

Apart from the first principle approaches already deseribed above {e.g., Poethke and Hovestadt (2002)
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gence of plastic responses at the phenotypic levell One such representation of a penotype-to-phenotype
map is the gene-regulatory network ( GRN) model proposed by Wagner {(1994) and its variants (Spirov and
Holloway, 2013). While this is still a highly simplified representation of molecular processes that generate
plasticity, gene-regulatory network approaches can reveal how phenotypie plasticity modifies evolvahility
by introducing developmental constraints (Draghi and Whitlock, 2012; Brun-Usan et al, 2021). For ex-
ample, under conditions of rapid environmental change, Draghi and Whitlock (2012) modelled phenoty pic
plasticity of two correlated quantitative traits nsing a model combining GRN and quantitative genetics
approaches. They found that plastic populations, which evolve in heterogeneous environments and have
genes that receive an input from the external environment, exhibit evolvability in the direction of environ-
mental variation and adapt most easily. van Gestel and Weissing {2016) modelled bacterial sporulation
using a GRN approach, incorporating phenotypic plasticity by allowing the regulatory genes to receive
environmental inputs, and found that a GEN approach allows for greater diversity in the response to
novel conditions than a classical reaction norm approach, capturing a greater adaptive potential.

Thus, one context in which accounting for molecular mechanisms for dispersal plasticity may be
relevant is understanding rapid evolution during directional change, such as during range expansions
{Miller et al., 2020). How quickly organisms spread in space depends, besides reproduction, centrally
on dispersal. Since dispersal has a genetic basis (Saastamoinen et al., 2018) and can evolve (Ronce,
2007, the potentially rapid evolution of dispersal ability can impact ranpe expansion dynamics, but, vice
versa, range expansions can also drive dispersal evolution by spatial sorting and selection, wherein more
dispersive individuals end up at the range expansion front (Shine et al., 2011). It has also been shown
that the speed of ranpe expansions depends eritically on whether dispersal increases or decreases with
population density (Altwegg et al., 2013). In theoretical work, density-dependent dispersal can lead to
accelerating range expansions (Travis et al., 2009), due to the evolution of decreased positive density-

dependence of dispersal at range fronts. Yet, experimental studies have shown both, reductions (Fronhofer



{BN) shape proposed by Poethke and Hovestadt (2002). Finally, we also investigate whether such a
match to theoretical expectations holds if dispersal can additionally be sex-biased (Li and Kokko, 2019).
To highlipht how the genetic architecture of dispersal plasticity impacts predictions under conditions of
rapid change, we model ranpe expansions.

Thus, in this study, we address the following questions: 1) Does a more mechanistic GEN model
of plasticity lead to the emergence of what is predicted from first principles at the RN level? 2) What
are the ecological and evolutionary consequences of a more complex but mechanistic model under native

equilibrivm metapopulation conditions and during range expansions?

Model description

General description

We develop a discrete-time and discrete-space individual-based metapopulation model of a sexually re-
producing diploid species in which dispersal can evolve and be plastic to local population density and sex.
Density regulation is local within a patch of the metapopulation, and local dynamics follow a Beverton-
Holt model of logistic growth { Beverton and Holt, 1957). We represent the genetic basis of an ndividual’s
dispersal trait by a Wagner-like (Wagner, 1994) pene-repulatory network {GRN), that takes as input and
processes population density as an external cue and sex as an internal state, producing as an output its
dispersal probability (Fig. 1 A, C). In order to compare our madel to the theoretically expected plastic
response in the cases of density-dependent dispersal and density-dependent and sex-biased dispersal, we
develop additional models (Fig. 1 B, D) wsing the reaction norm approach deseribed in Poethke and
Hewestadt (2002).

Individuals are initially present in the central 10 x 5 patches of out of a 500 x 5 grid landscape, for

20000 generations (time-steps), in order for the dispersal penotypes to reach (quasi)-equilibrivm. We
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encoded plastic response to local population density (Fig. 1 A-B) alone or loeal population density and
sex (Fig. 1 C-D). The plastic response may either be encoded by a GREN or the threshold (Fig. 1 A, C) of
a theoretically expected reaction norm (Fig. 1 B, D). If an individual disperses, one of the eight nearest
neighbouring patches (Moore neighbourhood) is chosen as the target patch. Dispersal costs { Bonte et al.,
2012} are captured by the dispersal mortality g, which iz the probability that an individual dies while

dispersing.

Reproduction and inheritance

After dispersal, individuals reproduce sexually. The population dynamics in a pateh follow the Beverton-

Holt model of logistic growth (Beverton and Holt, 1957):

Ao

_ 1
1+ aNg . (1)

N ytr1 = Ne gy

Here, Ay is the intrinsic growth rate, and o is the intra-specific competition coefficient. This model reaches
an expected equilibrinimm density of N = 5"_;1 in the absence of spatial structure for Ay > 1. A female first
chooses a mate at random, and then produces a number of offspring dravwn from a Poisson distribution
with a mean H‘T%\)E-? The factor of 2 corrects for the fact that only females reproduce and keeps Ay
interpretable at the population level. The offspring inherit the alleles to the various parameters of the
GERN. or the threshold of the theoretically expected reaction norm, one from each parent at each locus. In
the GRN model, we assume that the per locus per allele mutation rate decreases linearly from my,,. = 0.1
to Win = 0.0001 in the fiest 5000 time steps and is constant after {Deshpande and Fronhofer, 2022).
Since the GEN model has a large ommber of parameters, using larger mutation rates initially allows the

fitness landscape to be coarsely explored quickly without the trait value petting stuck in a local optimum.

In the BN model, mypin = Mgee = 00001 throughout the simulation. The mutation effects per allele
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detect local population density (Fellons et al., 2012; Fronhofer et al., 2015) and their own sex, which
can produce a plastic response in their pene expression, hence, their dispersal trait. Thus, these penes
take as input the population density normalised by the expected equilibrinm density of the Beverton-
Holt model N = % and sex (0 and 1 for female and male, respectively) of an organism (Fig. 1 A,
). The pene-regulatory network has three layers: an input layer (xp; taking population density and
sex as cnes), a regulatory layer (84(1); vector of gene expression states corresponding to an iteration [
of the developmental process), and an output layer (d; the dipersal probability trait) (van Gestel and
Weissing, 2016). These layers are connected to each other by matrices of weights: the input weights (L7 ),
regulatory weights { W) and output weights (V' ;). The expression state of a gene & a sipmoid function
of the input it receives from the environment and other penes (Siegal and Bergman, 2002) and can take
values between —1 and 1. Each pene has its own properties: a slope (r;) and a threshold {8;) to this
sigmoid. The slopes and thresholds of all penes, along with the elements of the input, regulatory, and
output weight matrices, are encoded by a diploid locus each with two alleles. The mid parental value at
each locus & wsed to iterate through gene expression states according to equation Eq. 2.

Thus, the developmental process for the dispersal trait iz characterised by the following difference
equation { Deshpande and Fronhofer, 2022) where S4(7) is the vector of gene expression states for n genes

and m inputs at each iteration of the developmental process:

2
S*I:’.{I + ljl = =t - b= 1yr -1 {Ej
1+ {KP{—i‘;r:e{Zj_l Uu: Gty + Zk—l I-i-*,:,_.:,-ﬂ,: W) — 9;::.':'

The equilibrinvm pene expression states 8 are obtained after I = 20 iterations. Individuals with GEN=
that do not reach steady state equilibrivm at this point die {Wapner, 1994). The dispersal probahility
is then caleulated as the linear combination of these equilibrivin gene expression states (Draghi and

Whitlodk, 2012) as:

51
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Reaction norm (RN) model

We compare the plastic response that arises in the GRN model to the theoretically expected optimal
reaction norm (RN derived from first principles for density-dependent dispersal (Poethke and Hovestadt,
2002). In diserete time metapopulation models with logistic growth, dispersal probability is expected to
be 0 below a threshold loeal population density and increase in a saturating manner with it. Thuos,

dispersal probability d is given by:

[ (] E &\\I—i‘i < If-f‘!|’|.'|-'|:r\s|’|.
., ) @)

1-— P;fr—:{tﬁ:ﬂ;k otherusise.

Here, N—‘;\{i-i is the local population density normalised by the expected equilibrinvm population density,
and Chppesn 18 the threshold density, which can be optimised by simulations {Poethke and Hovestadt,
2002). Thus, in the BN model, we assume that the threshold density Cygpsp 15 genetically encoded by a
single diploid loeus with two alleles. Individuals detect kocal population density N, and disperse with
a probahility given by equation Eq. 4.

We alzo extend this approach to sex-biased and density-dependent dispersal by encoding two differ-
ent threshold normalised densities as two locl, Cupesh s a0d Conpesh 7. Ciaresh, 1r 13 expressed if the

individual is male, and Cy, 0p p 1% expressed if the individual & female.

A nalysis

We analyse both GEN and BN models (Fig. 1) for density-dependent dispersal (GRN DDD and BN
DDD) alone and for density-dependent and sex-biased dispersal {GRN DDD + sex bias and RN DDD
+ sex hias). Model parameters are found in Thble 1. Since dispersal evolution ultimately is driven by
costs and benefits, we run 50 replicate model simulations for dispersal mortality p € {0.01,0.1,0.3} and a
random patch extinetion risk of e € {0,0.05,0.1}. We first compare the long term {f = 20000 time steps)
evolved plastic response in the GRN DDD and GEN DDD + sex bias models to the expected optimal
reaction norms BN DDD and BN DDD + sex bias models under standard metapopulation conditions.
After 20000 time steps, individuals begin range expansions, and we compare range expansion speeds
between the GEN and BN models. In order to test the sensitivity of our results to assumed mutation

rates we mn additional simulations for the GREN DDD model with mutation effects that are 1/4 times

the standard GEN DDD model (termed the GEN DDD small mutation effects model).
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Figure 1: GEN (A, C) and BN (B, D) models for density-dependent { A-B) and density-dependent and
sex-biased dispersal {C-D). The assumed GEN model has an input layer, which is a vector x; of external
states or external cues, in our case, population density alone (A) and population density and sex (B).
The regulatory penes receive this input via the input weights U7, Genes have expression states denoted
by 84, and interactions between these genes are encoded by a regulatory matrix W The effects of
these genes are encoded by the matrix V. In the case of density-dependent dispersal, the BN model
is represented by a sinple quantitative locus, which & the threshold of the function derived by Poethke
and Hovestadt {2002), and for density-dependent and sex biased dispersal, two loci with sex dependent
expression encode the threshold. We compare the evolution of dispersal plasticity and ranpe expansion
dynamics between the reaction norm and GEN approaches.

Results and discussion

Evolution of the density-dependent dispersal plastic response in the GRN and

RN models.

The density-dependent dispersal plastic response (Fig. 2) obtained after 20000 geperations in the GREN
DDD model matches the theoretically expected optimum { BN DDD:; Poethke and Hovestadt (2002)) most
closely for high extinetion probability (for € = 0.05 and 0.1) and high dipersal mortality (for p = 0.1 and
0.3). When there are no patch extinetions (for € = 0), the GEN DDD plastic response differs from the
theoretical optimmm likely becanse the individuals in the metapopulation are not exposed to a wide range

O

of population densities, preventing optimisation (seeSEFip. 27
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that-ocenr—during-the-equilibriver-metapopulationphase?). Finally, low dispersal mortality (p = 0.01)
also reduces optimisation. This iz likely because the strength of selection for reduced dispersal is low
gince the fitness cost of a non-optimal dispersal decision is low. In addition to Fig. 2, the quality of
optimisation in the GEN DDD model is assessed in ST Fig. 81, which also shows that the GRN DDD
maondel is closest to the theoretical optimum wnder conditions of high patch extinctions and dispersal
mortality. Our result that optimisation in the GRN DDD model is least effective under conditions of
low dispersal mortality and extinction probability is consistent with those of Hovestadt et al. (2010) who
show that other strategies can co-exist with the theoretically expected optimal response (Poethke and
Heovestadt, 2002) in competition experiments under similar conditions of low environmental variability
and low dispersal mortality.

The amount and direction of phenotypie variation that i maintained in the gene-repulatory network
model, again depends on dispersal mortality and extinetion probability. Particularly, this wariation is
comparable in the GRN DDD and the RN DDD modeks at high dispersal mortality and extinetion
probability, but at low dispersal mortality, preater phenotypic variation is maintained in the GRN DDD
maodel (ST Fig. §2). This is because of the evolution of greater sensitivity to mutation relative to the RN
DDD model (51 Fig. S4) when dispersal mortality is low, which is expected since the negative fitness
consequences of a non-optimal dispersal decision increase with increasing dispersal mortality. Reduced
optimisation (SI Fig. 51) and inereased phenotypic variation (SI Fig. 82) in the GEN DDD model
under conditions of low dispersal mortality and extinction probability do not seem to have important
consequences on metapopulation dynamics since the distribution of obsgerved population densities in both

models do not differ (SEFig, 2242

. To test whether this maintenance of variation at low

densities & a conse

in_detail below,

In summary, the GEN DDD model produces a plastic response similar to theoretical expectation
{Poethke and Hovestadt, 2002) when the strength of selection on dispersal is sufficiently high and the
individuals across generations are exposed to a wide range of population densities, that is, when dispersal
mortality and extinction probability are high. Deviations from this expectation occur when the strength
of selection on dispersal is low (at low dispersal mortality and extimetion probability) and when individuals

across generations are not exposed to a wide range of population densities.
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low dispersal mortality. These differences in phenotypic variation in dispersal reaction norms do not have
consequences on the distribution of population density in the metapopulation (51 Fig. 59)

Focusing on sex-bias, the density-dependent dispersal threshold is lower for males than for females,
leading to male-biased dipersal m owr simulations. This is consistent with previous work on sex-biased
dispersal, which shows that males experience greater stochasticity in mate finding, which leads to the

evolution of greater dispersal in males relative to females {Gros et al., 2000).

Genetic architecture of dispersal plasticity impacts eco-evolutionary dynamics

of range expansion

Under equilibrinm metapopulation conditions, we have shown that both density-dependent dispersal and
sex-biased dispersal plastic responses readily evolve in gene-regulatory network models and outline the
conditions in which they match their theoretical optimum. But what are the ecological consequences of
such plastic responses under novel conditions? In order to answer this question, after 20000 time steps,
we allow for range expansions in both the GEN and BN models. We find that range expansion speeds
are greater in the GRN model overall when local density alone (Fig. 4) and both local density and sex,
define dispersal decisions (Fig. 5). In general, the difference between range expansion dynamics in the
two models is greater when dipersal mortality is low and the rate of external patch extinetions is high
{Fig. 4-5).

These patterns of faster range expansion speeds in the GEN model and the conditions of low dis-
persal mortality and extinetion probability that produce them can be understood on the basis of the
evolutionary history of the metapopulation before range expansions begin., As seen in the previous sec-
tion, the GRN model maintains greater phenotypic variation (SI Fig. 52 and 56) under conditions of low

dispersal mortality (see 51 Fig. 58-59 for individual reaction norms). Moreover, when there are no patch

11



extinctions, variation is also maintained at low population densities since these population densities do
not oceur during the equilibrium metapopulation phase, allowing for the accumulation of genetic vari-
ation (Fig. 58-59). This variation is then spatially sorted (Shine et al., 2011), leading to the evolution
of greater dispersal rates at the range expansion front in the GRN model relative to the RN model (5]
Fig. 510-511). This i evident in the trajectories of evolved dispersal as a function of time in the range
s1Fi F on in

front . 8127 in which the GEN maoadel keads to the evolution of preater dispersal rates ear

the range expansion indicating that standing penetic variation is being sorted. Travis et al. (2009) have
previously shown that accelerating invasions can be found in models assuming sigmoid density-dependent
dizpersal reaction norms. They argue that this allows them to have a relatively flexible finction, where
not just a threshold, as in Poethke and Hovestadt (2002), but also other properties of the reaction norm
can evolve. We reconcile the two approaches because, at the equilibrivm metapopulation level without
assuming a particular shape of the plastic response, on average, the shape that emerges is the one pre-
dicted by Poethke and Hovestadt (2002) but the GRN approach has greater evolutionary fexibility as in
Travis et al. {2009).

Our results that the GEN model leads to faster ranpe expansions are sensitive to the assumption

of smaller mutation effects. In simulations where the per locus per allele mutation effects are smaller

Interestingly, the possibility of sex-biased and depsity-dependent dispersal increases the difference

between the dynamics of the BN model and the GEN model. Generally, male-biased dispersal (Fig
3) slows down range expansions (Miller et al., 2011) due to the fact that males cannot reproduce by
themselves, implying that population, hence ranpe expansion dynamics, are female-limited. Thus, the
availability of variation at densities that do not oceur in equilibrinm metapopulation conditions in the
GEN model further amplifies differences between the two modeks relative to density-dependent dispersal
alone.

(General discussion

In summary, we developed a model for density-dependent and sex-biased dispersal that assumes that
dispersal results from the effects of a gene-regulatory network. We find that under conditions that are

experienced in equilibrinm metapopulations, the emergent predicted plastic response matches existing

11
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theoretical predictions well for conditions of high dispersal mortality and extinetion probability. We then
camnpare range expansion dynamics between a GRN and an BN model and find that the GEN model leads

to faster range expansions if mutation effects are larpe because of the maintenance of greater variation

when selection on dispersal & not hig opulation has relatively stable dynamics

extinctions).

The theoretical literature usually uses highly simplified representations of the penetic architecture of
traits like dispersal, most often only representing them at the level of the phenotype (Saastamoinen et al.,
2018). Particularly, adaptive dynamics approaches {Parvinen et al., 2006), which assume small mutation
effects and rare mutations, allow for optimal traits or reaction norms to be derived, analytically or by
means of simulation, as a function of ecological equilibria (Govaert et al., 2019). Quantitative genetics ap-
proaches may further highlight constraints on optimisation of reaction norms such as penetic correlations
{ Gomulkiewicz and Kirkpatrick, 1992). Further, in simulations similar to ours, one quantitative locns
with additive effects & often assumed (Sasstamoinen et al., 2018). On the other hand, studies of genetic
architecture rarely make ecological conditions explicit, with an abstract representation of selection on
traits by assuming a fitness function that is a priori defined rather than a result of underlying ecological
processes (e.g., studies using the Wagner model; Wagner 1994). Few studies highlipht the advantage of
incorparating both explicit ecological dynamics and peonetic architectures. A notable exception is, for ex-
ample, van Gestel and Weissing (2016), who compare GEN and BN approaches for bacterial sporulation
and show the GRN approaches maintain greater diversity of plastic responses which makes them more
evalvable under novel conditions.

In our study, we recapture the theoretically expected and known phenotypic relationships between
population density and dispersal {Poethke and Hovestadt, 2002), confirming the validity of our approach.
Importantly, under novel, low-density conditions experienced during range expansions, the differences
observed between expansion dynamics in the different models make clear that approaches based on
reaction norms may not be able to predict eco-evolutionary dynamics under novel conditions.

Our rezults underline the relevance of understanding genetic architecture (Yamamichi, 2022) for eco-
evolutionary dynamics (Melisn et al., 2018; Fronhofer et al., 2023), particularly for dispersal (Saasta-
moinen et al., 2018) and its response to internal and external cues (Clobert et al., 2009). While empirical
evidence supporting our work is scarce, Brisson et al. {2010) showed differences in gene expression between
winged and w-winged phenotypes of pea aphids, particularly in their wing development gene-regulatory
network. In this system, winged morphs are often induced due to crowding, and the relative production of
dispersive and non-dispersive {reproductive) females depends on developmental cues, inclnding erowding.
More generally, our GEN approach can be used to understand how dispersal responds to other internal

{e.g., infection state; Iritani and Twasa 2014 or body condition; Baines et al. 2020) and external enes, for
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{for example, Draghi and Whitlock 2012) and pene expression as the phenotype directly under selection
(for example, Fspinosa-Soto et al. 2011). These approaches have been useful in defining, for example,
how evolvability of phenotypes is linked with phenotypic plasticity (van Gestel and Wesing, 2016) and
the alignment between penetic, emvironmental perturbations, and direction of selection, and how this
impacts evolwability in multitrait systems (Draghi and Whitlock, 2012; Brun-Usan et al., 2021).

However, in an eco-evolutionary framework (Gowaert et al., 2019; Froohofer et al., 2023), ecological
interactions define selection on a trait. Feological dynamics also define the trait that is under selection.
Therefore, considering pene expression as a phenotype directly under selection may not always be ap-
propriate, and gene expression state to phenotype maps must be included (Chevin et al, 2022). This is
relevant because, for example, the association of extremes of pene expression (Rinneburger and Rowrie,
2016) with increased mutational sensitivity (decreased robustoess) is actually reversed (Deshpande and
Fronhofer, 2022). Further, while such a map & likely to be more complex than our assumed linear gene
expression to phenotype map, approaches such as ours and that of van Gestel and Weissing (2016) also
narrow the range of possible environments under native conditions and also help define phenotypes under
selection that are ecologically informed.

The latter point becomes clear when considering our results on range expansion dynamics. Taking
into account both genetic architecture and the ecological conditions that shape the evolution of dispersal
plasticity, the GEN model leads to the maintenance of variation in conditions {densities) that are not
very frequent under equilibrinm metapopulation conditions. This variation is then spatially sorted (Shine
et al., 2011) during ranpe expansion. However, in the BN approach, this maintenance of variation under
equilibrivm metapopulation conditions does not happen since only the threshold to the reaction norm
is under selection. We see the consequences of the spatial sorting of dispersal in the fact that range
expansions are penerally faster in GEN approaches, when dizpersal is density-dependent alone, and sex

bias only increases the difference between the two models. This has previonsly been discussed in the
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literature as a form of eryptic variation, particularly “hidden reaction norms” {Schlichting, 2008), which
represent differences in genotypes that are not normally expressed at the phenotypic level but might be
expressed if the genotype is perturbed due to mutation or recombination, but also when the environment
is perturbed. Our results are similar to the findings of van Gestel and Weissing {2016) who showed that
in their GRN model, the release of cryptic variation in native environments can lead to more adaptive
plastic responses in novel conditions,

We additionally nsion dynamics may

show that these mechanisms driving diferences in range ex

ertically depend on assumed mutation effects. This is becanse a comparison between the GBEN aml BN

mardel 1s not straipht forward sinee the sensitivity of the dispersal reaction norm to mut ations is determined

mutation effects at the loci encoding the plastic response.  While under conditions in which there is

robability) sufficient variation may not be maintained to speed up ranpe dynamics relative to an BN

More importantly, the GRN model also provides a molecular-mechanistic basis for plasticity. While
the GEN is hikely to be more complicated in reality, the different layers of the gene-regulatory network
that produce the plastic response can be interpreted biologically. For example, the input layer represents
the external environmental cue, population density, which can be sensed as, for example, the reduced
awailability of resources or other chemical and mechanical cues (Fellous et al, 2012; Fronhofer et al.,
2015) resulting from a larger local density of individuals. The regulatory layer can be interpreted as the
gene expression states in cells of a relevant developmental stage that respond to local population density.
Empirical studies of gene regulation in a dispersal context remain rare. Yagound et al. {2022) have shown
gene expression differences wsing mBNA sequencing in the brains of the inwasive Australian cane toad
in a few genes. In their study, dispersal-related genes penerally showed elevated expression at the range
front. In this system, associated life history and physiological changes are particularly well studied in
terms of ranpe expansion dynamics (Phillips et al., 2006; Perkins et al., 2013). Other examples include
wing, polyphenism in pea aphids {Brisson et al., 2010), and dispersal in yellow-bellied marmots {Armenta
et al, 2019). This relative scarcity of empirical studies, together with the relatively important effects
predicted by our model, clearly call for more work, both empirical and theoretical, to understand how

genotype-to-phenoty pe maps impact eco-evolutionary dynamics.
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Simulation code is available via GitHub and Zenodo (DOI: https:/ /doiorg /10,5281 fzenodo 8160132).
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Figure 2: The GEN DDD
{preen) H-I-H-l—lﬂﬂ't{:l'l{“i the RN DDD l[pu.rpl{-:l i-th—)-(-lr{-*lﬁfnnd{-l for hi h extinction r{:-hahilitv and dispersal
mortality, The match iz greatest at ulation densities that are most frequent. Dispersal mortality
increases from left to right (p € {0.01,0.1,0.3}), from top to bottom, extinction probability increases
(€€ {0,0.05,0.1}). Evelutionneib-TFor each combination of dispersal mortality and extinetion probability,
the evolutionarily stable (ES) dispersal probahility #-and the histogram of population densities that ocenr

during the simulation are platted for both GEN and BN models. ES dispersal probability as a funetion
of population density normalised by the expected equilibrium population density (N = 1.;,"—_1; N = 100 in
the present study). The purple line represents the density-dependent dispersal plastic response caleulated
from the median threshold Chy,eon obtained after 20000 time steps over all individuals, and the shaded
region from the inter-quartile range in the BN DDD maodel. The green inessepresestline represents

the caleulated median GRN output for 1000 randomly chosen |r1d|v|{1|1a|*s p{H}l{bd across all 50 replicates
at the end of 20000 tlrn{- steps. - ; : ' - g ' :

H&H*m#mﬂﬂ*eh&mﬂf%mmel param{ft{-r's int rinsic gr{:-wt h rate: J'.n = 2, intraspecific

canpetition coefficient: o = 0.01, and mmber of regulatory genes: n = 4.
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Figure 3: Comparisenbetwees—Lhe density-dependent dispersal and sex-biased plastic response in the
GEN DDD + sex bias ssfnodel matches the RN DDD + sex bias ssedelsmodel at high dispersal
mortality and extinction probability, The match is greatest at population densities that are most frequent.
Dispersal mortality increases from left to rght (p € {0.01,0.1,0.3}), from top to bottom, extinetion
probability increases (e € {0,0.05,0.1}). EselutionaslyFor each combination of dispersal mortality and
extinction probahility, the evolutionarily stable (E3) dispersal probability and the histogram of population
densities that occur durin lotted for both GEN and BN models. ES dispersal
probability as a function of population density normalised by the expected equilibrium population density

- the simulation are

(N = l“"_—l; N = 100 in the present study). The blue and purple lines represent the ES reaction norms
for males and females in the BN model from Poethke and Hovestadt (2002). The dark green and green
lines represent the caleulated GRN ontput for 1000 randomly chosen individuals at the end of 20000 time
steps corresponding to male and female sex respectively. The transparency of the points & weighted by
the frequency of oceurrence of population density so as to only represent the GRN plastic response for
those densities that oceur during the simulation. gix{bd parameters: Ay = 2 and o = (.01, Number of
regulatory genes n = 4. -
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Ap =2 and o = 0.01. Number of regulatory genes: n = 4.
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Figure 5: Range expansion dynamics in GRN vs. BN model for DDD and sex bias. Dispersal mortality
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GEN model and BN model. The range front is defined as the farthest oceupied patch from the range
care. Fived parameters: Ay = 2 and o = 0.01. Number of regulatory genes: n = 4.
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Figure 81: Average distance from optimal plastic response as function of normaliked population density
for GRN and BN maodels for DDD. Dipersal mortality increases from left to right {p € {0.01,0.1, 0.3}),
from top to bottom, extinction probability increases (e € {0,0.05,0.1}). The optimal plastic response is
calenlated from the median of the evolved threshold C,. . in the BN model. The plastic response for
1000 randomly chosen individuals in the GEN and BN models at end of the equilibrivm metapopulation
phase (20000 time steps) are evalnated at different normalised population densities 0,0.1,...1.5, and the
root mean squared distance is caluleulated a8 a measure of deviation from thi optimum. We find that
overall the deviation from the optimal plastic response & greater in the GRN model relative to the BN
model. As dispersal mortality and extinetion probability increase, the deviation from optimal plastic
response decreases in the GRN model and comverges to the BN model. Fived parameters: Ay = 2 and
= 0.01. Number of regulatory genes n = 4.
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Figure 52: Phenotypic variation maintained in the GEN vs. BN model for DDD as a function of
normalised population density. Dipersal mortality increases from left to right (p € {0.01,0.1,0.3}), from
top to bottom, extinction probability increases (e € {0,0.05,0.1}). Difference between the 95th and 5th
percentile in dispersal phenotype as a function of normalized population density plotted for the GRN and
EN model. Fixed parameters: Ay = 2 and a = 0.01. Number of regulatory genes n = 4.
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increases (e & 10,0.05,0.11). Difference between the 95th and 5th

lotted for the GEN and BN model. Phenotypic variation in
ulation densities relative to the BN model even when mutation

function of normalised population density
the GRN DDD model is preater at low
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Figure 54: Sensitivity to mutation in the GEN and BN model for DDD as a function of normalised
population density. In both models, 1000 individual genotypes are sampled from the last time step
of the equilibrivm metapopulation phase (# = 20000). Dipersal mortality incresses from left to right
{p € {0.01,0.1,0.3}), from top to bottom, extinction probability increases (e € {0,0.05,0.1}). In the
BN model, a perturbation drawn from a Gauwssian distribution with mean 0 and standard deviation (0.1
is added to the evolved threshold Cypesp with probability 001, In the GEN model, a perturbation
with the same mean and standard deviation is added to to an individual’s locus with probability 0.01.
Thiz makes both models comparable, since per locus perturbation rate and effect are the same. The
sensitivity to mutation iz then caleulated as the root mean squared difference between the phenotype
evaluated from the perturbed and unperturbed genotype. The preen and purple lines represent the
sensitivity to mutation corresponding to a given normalised population density for 10 replicates of the
sampling procedure described above. We find that in the GEN model, sensitivity to mutation is greater
at low dispersal mortality and becomes comparable to the BN model as dispersal mortality and extinetion
probability increases. Fixed parameters: Ay = 2 and a = 0.01. Number of regulatory genes n = 4,
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Figure 85: Average distance from optimal plastic response as function of normaliked population density
for GEN and BN models for DDD + sex bias. Dipersal mortality increases from left to right (p €
10.01,0.1,0.3}), from top to bottom, extinction probability increases (e € {0,0.05,0.1}). The optimal
plastic response is caleulated from the median of the evolved threshold Cinvestmate and Ceipe sh, femate in
the BN model. The plastic response for 1000 randomly chosen individuals in the GEN and BN models
at end of the equilibrium metapopulation phase (20000 time steps) are evalnated at different normalizsed
population densities 00,0.1,...1.5, and the root mean squared distance is caluleulated as a measure of
deviation from this optimum. Similar to when on only DDD evolves, greatest distance from optimum in
the GEN model is when dispersal mortality is low. Fixed parameters: A\p = 2 and o = 0.01. Number of
regulatory genes n = 4.
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Figure 56: Phenotypic variation maintained in the GEN vs. BN model for DDD + sex bias as a function
of normalised population density. Dipersal mortality increases from left to right (p € {0.01,0.1, 0.3}),
from top to bottom, extinction probability inereases (e € {0,0.05,0.1}). Difference between the 95th and
5th percentile in dispersal phenotype as a function of normalised population density plotted for the GRN
and RN model. Fixed parameters: Ay = 2 and a = 0.01. Number of regulatory genes n =4,
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Figure 57: Sensitivity to mutation in the GEN and BN model for DDD + sex bias as a function of
normalised population density. Dispersal mortality increases from left to right (p € {0.01,0.1, 0.3}),
from top to bottom, extinetion probability increases (e € {0,0.05,0.1}). In both models, 1000 individnal
genotypes are sampled from the last time step of the equilibrivm metapopulation phase (# = 20000). In
the BN madel, a perturbation drawn from a Ganssian distribution with mean 0 and standard deviation
0.1 is added to the evolved threshold Cingesh mate a0d Cippesh femate with probability 0.01. In the GEN
model, a perturbation with the same mean and standard deviation is added to to an individual's locns
with probability 0.01. Thiz makes both models camparable, since per locws perturbation rate and effect
are the same. The sensitivity to mutation is then calenlated as the root mean squared difference between
the phenotype evaluated from the perturbed and woperturbed genotype. Similar to the model for DDD
alone, GEN=z are more sensitive to mutation at low dipersal mortality. Fived parameters: Ay = 2 and
= 0.01. Number of regulatory genes n = 4.
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Figure 88: Density-dependent dispersal plastic responses in the GRN vs, BN model in the equilibrinm
metapopulation range core before the beginming of range expansion shown across the ranpe of possible
population densities. Dispersal mortality increases from left to right (p € {0.01,0.1,0.3}), from top to
bottom, extinction probability increases (e € {0,0.05,0.1}). The green lines show the GRN density-
dependent dispersal plastic response 1000 sampled GENs pooled across 50 replicates in the range core
before range expansions begin, whereas the purple lines show the expected plastic response from the
RN model. We see that when we also depict plastic responses at population densities that do not oecur
frequently in equilibrium metapopulation conditions (unlike in Fig. 2 , where only those population
densities are shown which ocour frequently in equilibrinvm metapopulation conditions), there is a greater
diversity of plastic responses maintained. Fixed parameters: Ay = 2 and o = 0.01. Number of regulatory
genes no= 4,
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Figure 59: Density-dependent and sex-biased dispersal plastic responses in the GRN vs, BN model in the
equilibrivm metapopulation range core before the beginning of ranpe expansion shown across the range
of possible population densities. Dispersal mortality increases from left to rght (p € {0.01,0.1, 0.3}),
from top to bottom, extinction probability increases (e € {0,0.05,0.1}). The dark green and green lines
show the GEN density-dependent dispersal plastic response if male and female respectively for 1000
sampled GENz pooled across 50 replicates, whereas the blue and purple lines show the expected plastic
response from the BN model for males and females, respectively. We see that when we also depict plastic
responses at population densities that do not oceur frequently in equilibrivm metapopulation conditions
{unlike in main text Fig 3, where only those population densities are shown which oceur frequently
in equilibrinm metapopulation conditions), there is a greater diversity of plastic responses maintained.
Fixed parameters: A\p = 2 and o = 0.01. Number of regulatory genes n = 4.
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Figure 510: Density-dependent dispersal plastic responses in the GRN vs. RN model in the range front
at the end of range expansion. Dispersal mortality increases from left to right (p £ {0.01,0.1, 0.3}),
from top to bottom, extinction probability increases (e € {0,0.05,0.1}). The green lines show the GRN
density-dependent dispersal plastic response for 1000 sampled GRNs pooled across 50 replicates, whereas
the purple lines show the expected plastic response from the RN model. Fixed parameters: Ay = 2 and
= 0.01. Number of regulatory genes n = 4.
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Figure S11: Density-dependent and sex-biased dispersal plastic responses in the GREN vs. BN model
in the range front at the end of range expansion. Dispersal mortality increases from left to right (p €
{0.01,0.1,0.3}), from top to bottom, extinction probability increases (e £ {0,0.05,0.1}). The dark
green and preen lines show the GRN density-dependent dispersal plastic response if male and female,
respectively for 1000 sampled GRNs pooled across 50 replicates, whereas the blue and purple lines show
the expected plastic response from the BN model for males and females, respectively. Fixed parameters:
Ap = 2 amd o = 0.01. Number of regulatory genes n = 4.
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Figure 513: Sensitivity of range expansion dynamics to smaller mutation effects.  Dispersal mortality
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