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Abstract

Disentangling the effects of selection and drift is a long-standing problem in15

population genetics. Simulations show that pervasive selection may bias the infer-
ence of demography. Ideally, models for the inference of demography and selection
should account for the interaction between these two forces. With simulation-based
likelihood-free methods such as Approximate Bayesian Computation (ABC), de-
mography and selection parameters can be jointly estimated. We propose to use20

the ABC-Random Forests framework to jointly infer demographic and selection pa-
rameters from temporal population genomic data (e.g., experimental evolution,
monitored populations, ancient DNA). Our framework allowed the separation of
demography (census size, N) from the genetic drift (effective population size, Ne)
and the estimation of genome-wide parameters of selection. Selection parameters25

informed us about the adaptive potential of a population (the scaled mutation rate
of beneficial mutations, θb), the realized adaptation (the number of mutation under
strong selection), and population fitness (genetic load). We applied this approach to
a dataset of feral populations of honey bees (Apis mellifera) collected in California,
and we estimated parameters consistent with the biology and the recent history of30

this species.
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Introduction
One aim of population genomics is to understand how demography and natural selection35

shape the genetic diversity of populations. A classical approach assumes that demography
(migration, population subdivision, population size changes) leaves a genome-wide signal. In
contrast, selection leaves a localized signal close to where the causal mutation is located. Many
methods follow this approach to infer demography or selection (reviewed by Beichman et al.,
2018; Casillas and Barbadilla, 2017). Demographic inference assumes that most of the genome40

evolves without the influence of selection and that any deviation from the mutation-drift equi-
librium observed in the data was caused by demographic events (Beichman et al., 2018). Many
of the methods search for locus-specific signals of selection left on nearby neutral mutations
(Tajima, 1989; Fay and Wu, 2000; Kim and Nielsen, 2004) (low genetic diversity and high differ-
entiation) to localize the region affected by selection mutation, assuming a specific demography45

(constant population size in early methods; Nielsen, 2005; Pool et al., 2010).
Conducting demographic and selection inference separately may have some shortcomings.

First, there is the assumption that the signal left by demography is little affected by selection
because the selection is rare. However, linked selection can affect neutral and weakly selected
sites that are far from the mutation targeted by selection (Sella et al., 2009; Neher, 2013) and50

selection can be pervasive (Sella et al., 2009; Lange and Pool, 2018). In addition, some methods
for selection scans are not robust to misspecifications of demographic history. Consequently,
an unspecified bottleneck or population increase, for example, can inflate the false positive rate
of genome scans (Jensen et al., 2005, 2007; Schrider et al., 2016). These findings highlight the
necessity of inferential methods that jointly accounts for the multiple evolutionary forces that55

act on populations (Lin et al., 2011; Li et al., 2012; Bank et al., 2014).
It

:::::
Some

::::::::::
methods

::
to

:::::::::
perform

::::
the

::::::
joint

:::::::::
inference

:::
of

:::::::::::::
demography

::::
and

:::::::::
selection

::::::
have

:::::
been

:::::::::
proposed

::
by

::::::::
making

:::
the

::::::::
explicit

:::::::::::
assumption

:::::
that

:
a
:::
set

:::
of

:::::::
neutral

:::::::::::::::
polymorphisms

::::
can

:::
be

:::::::::::::
distinguished

::::
from

::::::::
another

:::
set

:::
of

:::::::::::::::
polymorphisms

::::::::::
putatively

::::::
under

::::::::
selection

:::::::::
(usually

::::::::::::
synonymous

:::
vs.

::::::::::::::::
non-synonymous

::::::
sites).

:
McDonald and Kreitman (1991)

::::
first

:::::::::
proposed

::
to

:::::::::
compare

::::::::::::::
polymorphism

::::
and

:::::::::::
divergence60

::::::::
between

::::::::::::
synonymous

::::
and

::::::::::::::::
non-synonymous

:::::
sites

::::
and

:::::
soon

:::::
after

:::::::::::::::::::::::::
Sawyer and Hartl (1992)

::::::::
proposed

::
to

:::::::
model

:::
the

::::::::::
evolution

:::::
both

::::::
types

:::
of

:::::
sites

:::::
with

::
a

::::::::
Poisson

::::::::
random

:::::
field.

::::::::
Several

::::::::::::::
developments

:::::
based

:::
on

::::::
these

::::::
ideas

:::::
have

:::::
been

::::
put

::::::::
forward

:::::
over

::::
the

::::::
years,

::::::::::
improving

:::::
and

::::::::
refining

::::
the

:::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Boyko et al., 2008; Messer and Petrov, 2013)

:
.
:::::::::::::
Alternatively,

::::::
other

:::::::::::
approaches

:::
do

::::
not

:::::
make

:::
the

::::::::::::
assumption

::::::
about

:::
the

::::::::
neutral

:::::::
nature

::
of

::::::
some

:::::::
specific

::::::::::::::::
polymorphisms.

:::
In

::::::
these,

::::
the

::::::
effect

::
of65

::::::::
selection

::
is

:::::::::
assumed

::
to

:::
be

::::::::::::::
heterogeneous

:::::::
among

::::
loci

:::
or

::::::::
genomic

::::::::
regions,

::::
and

:::::
they

:::::
often

:::::
have

::::
the

::::::::::
additional

:::::::::
objective

::
to

::::::::
identify

::::
the

:::
loci

:::
or

:::::::
regions

::::::
under

::::::::
(strong)

::::::::::
selection.

:::
In

:::
the

:::::::
models

:::::
used

:::
by

:::::
these

::::::::::::
approaches,

::
it is often difficult to calculate the likelihood of models including demography

and selection (but see Vitalis et al., 2014). Methods that rely on simulations provide easier
alternatives to using likelihood functions (Csilléry et al., 2010; Schrider and Kern, 2018). One of70

the first works that proposed such a strategy addressed the inference of local adaptation (Bazin
et al., 2010). With coalescent simulations of an island model, Bazin et al. (2010) estimated
demographic parameters and inferred the number of loci under selection. In their simulations,
the selection was modeled as locus-specific migration rates in which a selected locus had lower
migration rates than neutral loci. However, locus-specific migration rates or effective population75

size (as in Roux et al., 2016; Fraïsse et al., 2021) represent crude approximations of the selection
process. Forward-in-time simulation allows more realistic models of selection. These were used
to make inferences on Ne in the presence of selection by Sheehan and Song (2016) (selective
sweeps and balancing selection) and Johri et al. (2020) (background selection). However, these
works rely on independent simulation loci or genomic regions which prevents the modeling of80

genome-wide effects of selection as the reduction of effective population size due to the variance
of reproductive success of individuals (Santiago and Caballero, 1995) or the combined effects
of mutations on individual fitness. Nevertheless, this

:::::
This

:
strategy brought new insights into
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the dynamics of selection. Laval et al. (2019) Laval et al. (2019) estimated the number of past
selective sweeps in the human genome in the past 100,000 years, their intensity, and their age.85

Besides some limitations, these
:::::
These

:
works exemplify the power of likelihood-free methods to

infer the complex interaction between demography and selection.
:::::::::
However,

:::
all

::::
the

:::::::::
methods

:::::::::
discussed

::::::
above

:::::
rely

:::
on

::::::::::::
independent

:::::::::::
simulation

:::
or

::::::::::
modeling

::
of

:::::
loci

::
or

:::::::::
genomic

::::::::
regions

::::::
which

::::::::
prevents

::::
the

:::::::::
modeling

::
of

:::::::::::::
genome-wide

:::::::
effects

::
of

:::::::::
selection

::
as

::::
the

::::::::::
reduction

::
of

::::::::
effective

:::::::::::
population

:::
size

:::::
due

::
to

::::
the

:::::::::
variance

:::
of

::::::::::::
reproductive

::::::::
success

::
of

::::::::::::
individuals

:::::::::::::::::::::::::::::::
(Santiago and Caballero, 1995)90

::
or

::::
the

::::::::::
combined

::::::
effects

:::
of

::::::::::
mutations

:::
on

::::::::::
individual

::::::::
fitness.

:

Most population genetic studies use samples collected at a one-time point to infer the neutral
processes (mutation, recombination, random genetic drift) and selection throughout the history
of populations. Temporal data allows a better understanding of recent evolutionary processes
(e.g. Feder et al., 2021; Dehasque et al., 2020) because they contain information about the95

allele frequency changes through time. By tracking the allele frequency changes over time, it is
possible to estimate the relative role of selection and drift. Consequently, temporal data has the
potential to give us a better understanding of the interaction between drift and selection (see
for example, Buffalo and Coop, 2019, 2020).

Here, we propose using ABC to jointly estimate demography and positive selection from100

temporal genomic data. In our framework, we use individual-based, forward-in-time simulations,
which allow the modeling of the genome-wide, linked selection and additive effects of beneficial
mutations. Until recently, such computationally demanding simulations in ABC inference were
unrealistic since many simulations are required to achieve accuracy in ABC (Frazier et al.,
2018). However, with the introduction of Random Forests (ABC-RF), it is now possible to105

reduce the computational burden as fewer simulations are required to achieve reliable estimates
(Pudlo et al., 2016; Raynal et al., 2019). While many methods focus on the detection of targets
of selection, our work addresses the inference of parameters that characterizes the genome-
wide signal of demography and selection. Our genome-wide estimates were reasonably accurate
for a wide range of adaptation rates and strength of selection. We were able to separate the110

estimates of Ne (a measure of genetic drift) from the population census size N . We also estimated
the influx of new beneficial mutations as measured by the population scaled mutation rate of
beneficial mutations. The separation between demography and drift and the inference of genome-
wide selection was only possible using latent variables. Latent variables emerged as properties
of each simulation, and consequently, they better captured the emerging interaction between115

demography and selection than model parameters. We first evaluated the performance of an
ABC-RF approach with forward-in-time simulations. Finally, we applied this framework to the
analysis of a real time-series population genomics dataset of the feral population of honey bees
(Apis mellifera) (Cridland et al., 2018)

::::::::::::::::::::::::::::::::::::
(Apis mellifera, Cridland et al., 2018). Our results were

consistent with the species’ biology and with events that occurred recently in the history of the120

analyzed populations, taking into account the limitations of the current implementation of our
approach.

Methods

Inference model
We assumed a closed population (no migration) of N diploid individuals that evolved under125

a Wright-Fisher model with selection. The population census size N was constant, and selection
only acted on de novo beneficial mutations that were allowed to arise in the population since the
first generation (generation one corresponds to the first burn-in generation). Every beneficial
mutation had a selection coefficient of s higher than zero, and all were co-dominant. The values
of the selection coefficients s were drawn from a gamma distribution with mean γ and scale130

parameter 1. Beneficial mutations entered the population with a rate of µb per generation

3



independent of the mutation selective strength. Consequently, we defined the scaled mutation
rate of the beneficial mutations per generation θb as the product the population size N , the
mutation rate of beneficial mutation µb and the genome size G, θb = 4NµbG. This rate
determines the amount of new beneficial mutations that arise in the population every generation.135

It can also be viewed as the waiting time for the appearance of a new beneficial mutation in the
population. Populations with high θb receive new beneficial mutations every generation (Karasov
et al., 2010), but a population with low θb needs to wait more time for a new beneficial mutation
to arise.

We divided the model into two periods: 1) the burn-in period, which is necessary to remove140

from the simulations any footprint of the initial simulation state; the duration of this period
was defined as the time necessary to reach a point were the most recent common ancestors for
all genomic regions are more recent than the start of the simulation (i.e. the burn-in was run
until this condition was fulfilled); and 2) the inference period, where we defined the longitudinal
samples of individuals. These two periods were defined by their time spam and the population145

census size, being N0 and N as the population size of the burn-in and the inference period,
respectively. Population size is constant within each simulated period and changes between
periods.

First sample of individuals was taken at t1, the immediate next generation after burn-in
ended; the second was taken at t2, after τ generations from t1. Individuals were sampled150

following the sample plan II of Nei and Tajima (1981), where individuals were taken before
reproduction and permanently removed from the population. In this way, their genotypes did
not contribute to the next generation.

Each individual’s genome of size G (in base pairs) consisted of a single linkage group with a
per base recombination rate per generation of r. We modeled the selection effect in this genome155

by dividing it into “neutral” and “non-neutral” regions. Non-neutral regions held both neutral
and beneficial mutations. This division can be interpreted as a genomic architecture in which
genic regions have a combination of neutral (synonymous intron mutations) and selected (non-
synonymous mutation) sites with intergenic regions (neutral mutations) in between. However,
this architecture allowed simulating the heterogeneous selection action along the genome.160

We chose this simplification because it is a general and straightforward way to define in-
dependent priors for the relative number of non-neutral to neutral regions and for the number
of beneficial mutations in non-neutral regions. The probability of beneficial mutation to arise
in the simulation (i.e. the mutation rate per generation, µb) was determined by the product of
the proportion of non-neutral regions PR, the proportion of beneficial mutation in a non-neutral165

region PB and the mutation rate per generation µ. Figure 1 shows a schematic representation
of the model template (and see Table S1 for a summary of the notation).

Calculation of summary statistics and latent variables
The above model was used to simulate the dynamic of drift and selection in a closed popula-

tion. In the two sample periods, individuals from the whole population were sampled and used170

for the calculation of the summary statistics for the ABC-RF framework. For each simulation,
we calculated summary statistics that: 1) compared the two samples (e.g. genetic differentia-
tion, FST), and 2) quantified the diversity within-sample (e.g. expected heterozygosity, HE).
For the latter, statistics were obtained for each and all pooled samples. Some summary statis-
tics were calculated genome-wide. For example, global FST, global HE and the total number of175

polymorphic sites S; others were calculated SNP-by-SNP as the HE; or they were calculated in
windows as S, the nucleotide diversity π, and Tajima’s D. For every simulation, we measured
the mean, variance, kurtosis, skewness, and 5% and 95% quantiles among all locus-specific or
window summary statistics. These statistics inform about the heterogeneity of genome-wide
distribution of locus-specific or window summary statistics. We set three window sizes for the180

4



burn-in period

Forward-in-time simulation

neutral mutations: 

beneficial mutations:

Neutral region

Non-neutral region

t

N

genome

N0

(A) (B)

inference period

t1 2t0

Figure 1: A schematic representation of the model used to simulate temporal
population genomic data. (A) the population model consisted of 1) the burn-in period,
where the number of generations was determined by the time necessary to contain the
MRCA for all genomic regions. 2) the inference period between the two time points, where
the inference of demography and selection was made. (B) the genomic architecture model
consisted of 1) a diploid genome of one linkage group divided into neutral and non-neutral
regions composed of neutral and a combination of neutral and beneficial mutations.

:::::
Note

:::::
that,

::::::::
despite

::::
the

:::::::::::
graphical

::::::::::::::::
representation,

::::
the

:::::::
model

:::::
does

:::::
not

::::::::::
condition

:::
N

:::
to

:::
be

:::::::
larger

:::::
than

::::
N0,::::::

both
:::::::::::
expansions

:::::
and

::::::::::::
contraction

::::
are

::::::::::::
considered

::
in

::::
the

::::::::
model.

window summary statistics: 500, 5,000, and 10,000 bp. Windows overlapped because each was
composed around every SNP, putting the targeted variation in the middle of the window with
other surrounding SNPs in half the window size on each side of the targeted SNP. The site-
frequency spectrum was obtained as a global summary statistics with three different numbers
of discrete classes (bin sizes): 10, 15, and 20 bins (the complete list of summary statistics can185

be found in Supplementary Methods, section S1.1 List of summary statistics).
For every simulation, we combined a vector of summary statistics with the vector of X

model parameters and the vector of five latent variables. Latent variables represent values
from the simulation or that emerged by combining a latent variable and a model parameter.
In our inferential framework, for example, the effective population size Ne is a latent variable190

calculated within each simulation. The ratio between the effective population size Ne and the
population census size N , Ne/N , on the other hand, was derived by combining a latent variable
and a model parameter for each simulation. The other three latent variables were: the number
of beneficial mutations under strong selection P , the average selection coefficient of strongly
selected mutations s̄, and the average substitution load L.195

The effective population size Ne measures the increase of inbreeding at each generation.
In this definition, Ne is the size of an ideal population with the same amount of drift as the
population under consideration. Defined in these terms, Ne is the inbreeding effective size
(Santiago and Caballero, 1995; Walsh and Lynch, 2018). It was calculated in every generation
i of the sampling period as:200

Ne,i =
4N

σ2
ki
+ 2

σ2
ki

being the variance among parents of the number of gametes produced that contributed to
offspring in generation i. The Ne for the whole inference period was obtained by calculating the
harmonic mean of Ne,i. The population size of N was kept constant for the whole period, as
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shown above, representing a simulation parameter. From the Ne we obtained the ratio Ne/N
(it measures how the census size reflects the actual effective population size: we expect to have205

a reduction on Ne compared to N when beneficial mutations are more pervasive).
We also recorded the selection coefficient of all beneficial mutations present in every genera-

tion i from t1 to t2 in each simulation. After, we calculated the fraction of beneficial mutations
that were strongly selected (where s > 1/Ne over all mutations that were segregating in the
period). This fraction represented all beneficial mutations present between t1 and t2, regardless210

if they were lost or fixed at any generation of the period or if their frequency fluctuated but
never reached fixation. We decided on it because any beneficial mutation can impact the allele
frequency trajectories of other mutations (neutral or beneficial). For these mutations, we also
calculated the average across all selection coefficients. We also calculated, in every generation of
this period, the substitution load Li as the difference between the total fitness of the individual215

with the highest fitness Wmaxi and the mean total fitness of the population W̄i (it measures the
overall diversity of beneficial mutations present in the inference period),

Li =

{
0, if Wmaxi = 0
Wmaxi−W̄i

Wmaxi
, otherwise

The average substitution load was obtained by averaging all values of Li.

Implementation
The model was simulated with the software SLiM v3.1 (Haller and Messer, 2017; Haller220

et al., 2019). To calculate the inbreeding effective size, we needed to activate an optional SLiM
3.1 behavior to track the pedigrees of each individual in the population. It allowed us to obtain
the number of each parent gamete and the population variance of the number of gametes. For
calculating the generation substitution load, we used a SLiM built-in function that allowed us
to obtain the fitness vector of all individuals in the population. The cached fitness was the sum225

of all fitness determined by each beneficial mutation.
Each simulation was produced by using different combinations of the model’s parameters:

1) the mutation rate per bp per generation µ, 2) the per-base recombination rate per generation
r, 3) the mean γ of a gamma distribution (with the shape parameter equal to the mean), from
which the selection coefficients s of each beneficial mutation in the simulation were sampled, 4)230

the number of non-neutral genomic regions PR, 5) the parameter that determines the probability
of beneficial mutation in non-neutral regions PB, 6) the population census size of the burn-in
period N0, and, finally, 7) the population size of the inferential period N .

We set SLiM to output genotypic data of samples of individuals as single nucleotide poly-
morphisms (SNPs), at t1 and t2, in the VCF file format. Using bcftools (Li, 2011), custom235

R function (R Core Team, 2020) and EggLib (Siol et al., 2022), SLiM outputs were processed
and summary statistics calculated. We implemented a pipeline in an R script that automates
the sampling of the prior values, runs each simulation, manipulates the VCF files, calculates
the summary statistics, and organizes the final reference table. This script was also produced
to facilitate the model test with a few simulations and the job submission in an HPC node(s).240

The main R and additional scripts are available on Zenodo (Pavinato et al., 2022). In this
pipeline, for every simulation, a row of the reference table was produced by combining the
model parameters, latent variables, and summary statistics.

ABC-RF
In this work, we use Random Forests (RF) in the ABC procedure, where the parameter245

estimation is a machine learning problem (Pudlo et al., 2016; Raynal et al., 2019). The perfor-
mance of this approach was evaluated through simulations. First, we assumed a target dataset
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consisting of two samples of 100 individuals sampled ten generations apart from the same pop-
ulation. A reference table for that target data was produced by simulating the whole-genome
SNPs of diploid individuals using the model described above and calculating the previous sum-250

mary statistics. At each simulation, we sampled 100 individuals at each time point and recorded
their genotypes. Only polymorphic SNPs were retained for each sample. In each simulation,
each individual had a genome size of 100 Mbp divided into 2,000 fragments of 50,000 bps. A
number of these fragments were randomly set as either neutral or non-neutral, based on the
probability PR. For all model parameters, values of each simulation were sampled from a log-255

uniform distribution with range: 1 to 2,000 for N0 and N , 10−10 to 10−6 for µ, 5 × 10−10 to
5 × 10−7 for r, 10−5 to 1 for PB, and 10−3 to 1 for γ. Furthermore, uniform distribution with
range 0 to 1 for PR (Figure S1 shows the prior distribution for all model parameters and latent
values).

The raw reference table produced by the pipeline was processed to remove missing data.260

Missing data were present in several summary statistics of simulations with low genetic diversity
that can be produced, for example, by low mutation rate, small population size, selection, or the
combination of these parameters. Missing data were also present in the entire row of a simulation
if the combination of population size, mutation, and especially recombination rate produced
simulations that were memory intense, which caused the simulation to crash. A final reference265

table containing 55,634 simulations with 405 summary statistics was used to train the ABC-RFs.
Independent RFs were obtained for each parameter and latent variable using R package abcrf
(Pudlo et al., 2016; Raynal et al., 2019). Each RF was obtained by growing 1,000 trees. The RFs
were grown with the default parameters. Average genetic load, L, and P were logit-transformed
before the training. For these latent variables and for s̄, simulations with L = 0, P = 0 or s̄ = 0270

were also excluded from the training set, which reduced it to 36,026 simulations for L, and with
29,264 simulations for P and s̄. We performed log transformation before training for the other
parameters and latent variables and used the reference table containing all simulations.

The performance of each trained Random Forest was evaluated with out-of-bag (OOB) es-
timates (Breiman, 2001). The trained model produced these estimates for the data used for275

training. Regression trees that compose the actual RF are grown using part of the data selected
randomly from the initial set of simulations. Consequently, for each simulation, a subset of
trees was grown without the data from that simulation. The estimate from that subset of trees
is called the OOB estimate, and with it, the trained model is validated without splitting the
reference table into the training and testing sets. We calculated the mean squared error (MSE)280

and the correlation coefficient (R2) between the true and the OOB estimated values obtained
with the function regAbcrf implemented in the R package abcrf. For neutral simulations of the
latent variables L, P , and s̄, we evaluated the performance with the MSE and the bias on the
parameters estimated in the original parameter scale.

An additional 1,000 simulations were used to evaluate the method’s robustness to hetero-285

geneous recombination rates along the genome. The simulation model was identical to the
previously described simulations, except that a recombination map was used with varying re-
combination rates along the genome. We used the already implemented genomic fragmentation
of the genome in “neutral” and “non-neutral” regions, which split the genome into 2,000 blocks
of 50 Kbp, to define the positions at which the recombination rate changed. Each correspond-290

ing fragment had a recombination rate sampled from a log-uniform distribution with a range
between 10log10 r−0.5 and 10log10 r+0.5, with r sampled from the prior distribution as described
above. This range allowed the genome to have recombination rates spanning one order of mag-
nitude. We evaluate the RF performance in these simulations by calculating the mean squared
error (MSE) and the correlation coefficient (R2) between the true parameter values and the295

RF estimates. For neutral simulations of the latent variables L, P , and s̄, we evaluated the
performance with the MSE and the bias.

7



Alternative estimates of Ne from temporal data
We compared the ABC-RF Ne estimates with estimates obtained with the global FST be-

tween temporal genomic samples (Frachon et al., 2017). This estimator is defined as:300

N̂e =
τ(1− F̂ST)

4F̂ST

where τ accounts for the time-interval, in generations, between the first and the last samples
used to estimate the FST, and F̂ST is the Weir and Cockerham’s FST estimator (Weir and Cock-
erham, 1984). The Ne from the FST was calculated for all simulations used to train the random
forest. We calculated the mean squared error (MSE) and the squared correlation coefficient of
linear regression (R2) between the observed (true) and the FST-based Ne estimated values of305

all simulations. We also evaluated the performance of each estimator by calculating the MSE
for simulations within a specific range of values of θb (local MSE estimates). By comparing the
changes in MSE values of each estimator as a function of θb we could better understand how
the amount of selection affected each estimator.

Analysis of temporal genomic data of feral populations of Apis mellifera310

We used our framework to analyze the whole-genome sequencing data of feral populations
of honey bees from California (Cridland et al., 2018). Eight out of fourteen sites in this work
were composed of samples from museum and contemporary collections of freely foraging honey
bees: 1) Avalon site in Catalina Island, Los Angeles County, 2) Arcata and Blue Lake sites
in Humboldt county, 3) Placerita Canion Nature Area in Los Angeles County, 4) Sky Valley315

and Idyllwild in Riverside County, 5) La Grange, Stanislaus county, 6) Stebbins Cold Canyon
Reserve, Solano county and 7) UC Davis Campus, Yolo county (Table 1). This dataset contains
pairs spanning 104 years (as in the Avalon site, Catalina Island, Los Angeles county) and pairs
spanning only 15 years (as in the Placerita Canyon Nature Area, Southern California, and
Idyllwild, in Riverside county). For the temporal samples from Riverside County, we only used320

the two samples collected in May 1999 in Idyllwild as the first sample. We combined all samples
collected in September 2014 (in Idyllwild and Sky Valley) as the second sample (Table 1).
Publicly available whole genomes fastq files for the contemporary and museum samples are
available from the Sequence Read Archive (PRJNA385500) as described by Cridland et al.
(2018); we performed the data analysis from VCF files (the same files used in Cridland et al.,325

2018) kindly provided by J. Cridland
::::::::
available

::
in

::::::::::::::::::::::
Pavinato et al. (2022).

Individual VCF files of each population were combined with bcftools (Li, 2011), and a custom
R script was used to convert each dataset to the input format required to run an EggLib custom
implementation (in Pavinato et al., 2022). We first produce simulated data to train the RF
to apply our model to this targeted dataset. A reference table was produced by simulating330

whole-genome SNPs for diploid individuals of Apis mellifera, changing three model parameters
specifically for this targeted dataset: the sample size for population time points t1 and t2, and
the size of the haploid genome. For each population, we set the simulation to sample the same
number of sequenced individuals from the pool of simulated individuals (as detailed in Table 1).
For the Avalon population, for example, at t1 and t2 we set the simulation to sample two and335

five individuals apart τ = 104 generations (assuming one generation/year). Only polymorphic
SNPs were retained for each sample. We set the haploid genome size to 250 Mbp (similar to the
most recent estimates of A. mellifera genome size; Elsik et al., 2014). We measured the amount
of missing data present in the original VCF files (Cridland et al., 2018) for each population. We
found a negligible amount (< 1%) in most of the populations (except populations from Avalon340

and Placerita that had 10% of the total missing genotypes), and we decided not to simulate
missing data for any population analyzed.
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The simulation model to generate the reference tables for the ABC analysis of A. mellifera
populations was similar to the model described above but required some modification to adjust
it to the specificities of the species and samples available. The simulated genome was divided345

into 5,000 fragments of 50,000 bps. These fragments were randomly set as neutral or non-
neutral according to the parameter PR. We used a Normal distribution for µ with a mean
of 3.4 × 10−9 with a standard deviation of 0.5 to have a prior distribution center around the
estimated mutation rate for Hymenoptera (Liu et al., 2017). The per base recombination rate
was set as Uniform, ranging from 10−8 to 10−4. A single linkage group represented the genome.350

The population sizes N0 and N were taken from a Uniform prior distribution ranging from 1
to 10,000 individuals. Other prior probability distributions of the parameters were set with the
same prior as described above. Sample sizes and times were adjusted to match each population’s
population (see table 1). We used the same summary statistics described above. However, we
calculated only one window size of 10Kbp for summary statistics calculated in windows and355

one bin size of 10 bins for the site-frequency spectrum. The raw reference table containing the
vector of parameters, latent variables, and summary statistics produced by the pipeline was
processed to remove missing data. A final reference table containing 162 summary statistics for
each population pair was used to train the ABC-RFs. We visually assessed the model goodness-
of-fit by performing a principal component analysis on the summary statistics of each population360

training reference table and projecting the corresponding PC of the target population reference
table on the PCA plot. We consider a good model fit when the target population data point
falls within the cloud of population simulated data points.

Like the ABC analyses described above, independent RFs were obtained for each parameter
and latent variable using R package abcrf (Pudlo et al., 2016; Raynal et al., 2019). Each RF365

was obtained by growing 1,000 trees. The RFs were grown with the default parameters. Average
genetic load, L, and P were logit-transformed before the training. For these latent variables
and for s̄, simulations with L = 0, P = 0 or s̄ = 0 were also excluded from the training set. We
performed log transformation before training for the other parameters and latent variables and
used the reference table containing all simulations. As before, we evaluate the RF performance370

by calculating the mean squared error (MSE) and the correlation coefficient (R2) between the
true and the OOB estimated values obtained with the function regAbcrf implemented in the
R package abcrf. For neutral simulations of the latent variables L, P , and s̄, we evaluated the
performance with the MSE and the bias on the parameters estimated in the original parameter
scale. See Table 1 for the number of simulations of each reference table.375

Table 1: Populations and number of simulations in the reference table.

Location Date Sample Sizes Simulations

Avalon, Catalina Island, Los Angeles county 1910/2014 2/5 13,953
Blue Lake and Arcata, Humboldt county 1966/2015 6/6 14,216
Placerita Canyon Nature Area, Los Angeles county 1999/2014 5/6 14,125
Idyllwild and Sky Valey, Riverside county 1999/2014 2/8 13,930
La Grange, Stanislaus county 1976/2014 2/6 13,956
Stebbins Cold Canyon Reserve, Los Angeles county 1996/2014 5/5 14,121
UC Davis Campus, Yolo county 1968/2015 2/6 13,970

Names highlighted in bold letters correspond to the population code we used in this work. For sample
sizes, the first value indicates the size of the first (older) sample and the second value the size of the
second (contemporary) sample.
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Results

Joint inference of adaptive and demographic history
The proposed framework allowed us to estimate parameters informative about adaptive and

demographic history in temporal population genomics settings. Independent random forests
estimated the population scaled beneficial mutation rate θb, the population census size N , and380

the effective population size Ne (Figure 2). Trained RFs performed well in predicting N and
Ne with small MSE and higher R2 (Figure 2 b and c). But, the trained RF for θb had a
lower performance than the trained RFs for demographic parameters, with high MSE and low
R2 (Figure 2a). Still, the estimates were robust for intermediate to higher values of θb. For
the results of other model parameters and latent variables informative about demography and385

selection (see Figure S2 and section S2 Supplementary Results). Similar values of MSE and
R2 on true vs. RF estimated values (Figure S5 a, b, and c) indicated similar performance RF
for θb, N , and Ne on simulations with heterogenous recombination rates (see Figure S4 for an
example of how r could vary across the genome). For the results of other model parameters
and latent variables for simulation with heterogenous recombination rate, see Figure S5 and390

Table S2, section S2 Supplementary Results.
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Figure 2: Out-of-bag estimates of ABC-RF trained for the joint inference of
demography and selection, and N̂e estimates from the temporal FST to compare
with the ABC-RF -based N̂e estimates. (a) population scaled mutation rate of
beneficial mutations θb; (b) population census size N ; (c) effective population size Ne;
and (d) Ne from temporal FST

The automatic selection of informative summary statistics is an important feature of ABC-
RF. For each tree of a random forest, summary statistics were selected given its ability to split
the data. How many times summary statistics were selected in each RF informs us of their
importance for predicting a given parameter. For the prediction of θb values, the RF picked395
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more frequently statistics that reflect the heterogeneity of the genome, such as the 5% quantile
of Tajima’s D calculated in the second sample, with the kurtosis and skewness of FST and Da
calculated globally (Figure S6 e). The population size was trained with a combination of within
and between sample summary statistics: FST and Da, with their respective derived statistics
frequently selected (Figure S7 c). For Ne, summary statistics that inform about the cumulative400

divergence between samples as FST and Da, were frequently selected (Figure S7 d).

Comparison with FST method to estimate Ne

We compared our ABC-RF Ne estimates the temporal FST estimates (Frachon et al., 2017).
The FST-based N̂e was more affected by the amount of selection in larger populations when
selection is more efficient. The FST-based N̂e showed higher overall MSE compared to the405

ABC-based estimates (Figure 2c and d). ABC-RF and the temporal FST N̂e performed well
and similarly, regardless of the strength of selection, when the beneficial mutations were less
frequent (low θb). However, the ABC-based estimator had less local MSE than the temporal
FST-based estimator. When the frequency of selection is high, the Ne estimator based on the
temporal FST had dramatically higher error (Figure 3).410
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Figure 3: Local MSE of Ne estimates as a function of θb. The lines corresponds
to the MSE on Ne estimates from ABC-RF and from temporal FST. Dashed lines cor-
respond to local MSE estimated from pseudo-observed data (POD) with heterogeneous
recombination rates along the genome.

Analysis of temporal genomic data of feral populations of Apis mellifera
The projection of each population target data point (in black) into the cloud of the training

data points (in grey) in the PCA plots revealed that each population model could capture
some dimension of the observed genetic diversity (Figures S8-S14). However, some PCs showed
the observed data point outside the simulated data cloud of points, indicating some model415

inadequacies, possibly because we did not include gene flow or admixture in our simulations. For
the analysis of feral A. mellifera populations, we first grew independent RF for each parameter
in each population. Despite the differences in time intervals between samples, all populations
had a similar performance of the ABC-RF estimator for Ne, as they showed similar values of
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MSE and R2 (Figure S15). For N , trained RF for Humboldt, Stebbins and Placerita performed420

similarly well, with the lowest MSE and higher R2 (Figure S16). For θb, Riverside had trained
RF with the worst performance (Figure S17). Overall, both MSE and R2 obtained with OOB
estimates from simulated data for A. mellifera dataset were comparable to these parameters
obtained with OOB estimates for the simulated data in the evaluation of the method.

Trained RFs for N and Ne were able to predict these parameters in all populations, as the425

inference of the mean posterior value and the posterior distribution differentiated from the mean
prior value and distribution (Figure 4 b and c). For N , posterior distribution were wider than for
Ne. Trained RF for θb, for all populations had a similar posterior mean, except for the Avalon
population that had a peak at a lower value (Figure 4 a). However, the posterior distributions
were wider and followed the prior distribution, making it difficult to predict the posterior mean430

and variance in all populations accurately. It is possible to see together with the posterior mean
estimates that the ABC-RF estimates for θb were concentrated in lower values (Table S3) in all
populations. Ne were also lower, and Ne and N were similar. For the results of OOB estimates
of other model parameters and latent variables and posterior estimates for these parameters, see
section S2 Supplementary Results.435
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Figure 4: Inference of demography and selection for feral A. mellifera popu-
lations. (a) the scale mutation rate of selected mutations θb, (b) the population census
size N , (c) the effective population size Ne. Dashed and filled lines correspond to the
prior and posterior distributions, respectively. See Table S3, Supplementary Results for
mean and 95% credibility intervals.

Discussion

Separating demography from drift, and the inference of θb

With temporal population genomics data, we can see the evolution in “action” as opposed
to single time-point population genomics data (Feder et al., 2021). Consequently, temporal data
have more information about the ongoing process, making them interesting for understanding440

the short-term effects of the interaction between demography and selection (Buffalo and Coop,
2019; Dehasque et al., 2020; Williams and Pennings, 2020). When samples from more than
two time points are available, correlations among allele frequency changes allow to separate
the effects of drift and selection (e.g., Buffalo and Coop, 2020; Feder et al., 2014). Our results
showed that two samples collected at different time points are sufficient for the inference of the445

genome-wide footprint of adaptive evolution and to separate the demography (population census
size N) from drift (effective population size Ne).
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It is important to stress that Ne, calculated as a latent variable, captures the feedback
dynamics between drift and linked selection. Selection, either positive or negative, causes a
deviation of Ne from N . The impact of selection on the genome can extend far from the target450

of selection since individuals that carry beneficial mutations have more chance to reproduce,
and their beneficial mutations are more likely to be in the next-generation offspring (Walsh and
Lynch, 2018). In this complex dynamic, with many loci under selection which creates a dynamic
that cannot be easily described analytically, latent variables obtained from simulations can
summarize the by-product of drift and selection interactions. With our approach, N̂e quantifies455

the drift due to demographic and selection processes, unaffected by the bias of outlier loci.
This genome-wide reduction in Ne is not captured when loci are assumed to evolve inde-

pendently (as in Sheehan and Song, 2016; Laval et al., 2019, for example). In contrast, the
complexity of linked selection and the genome-wide effect of selection are taken into account
using individual-based simulations with the whole genome in an ABC approach.460

Estimates of genetic load or other genome-wide parameters about selection are obtained
when annotated genomic data is available (Henn et al., 2015), or by conducting experiments on
crossing populations (for the genetic load; Plough, 2016). However, we obtained estimates of
selection parameters only using polymorphism data. Differently, Buffalo and Coop (2020) mea-
sured the genome-wide signature of selection by estimating the covariance of allele frequencies465

at consecutive time points. The allele frequency covariance matrix allowed the quantification of
the genome-wide contribution of selection to the observed allele frequency changes, even when
selection involved many loci of small effect. In this work, we estimated the population scale
mutation rate of beneficial mutations θb, which informs about the diversity of beneficial mu-
tations that existed in the population between the two time points and the potential speed of470

adaptation at the genome level (Hermisson and Pennings, 2017). These estimates reflect the
potential number of beneficial mutations between the two time points regardless of their impact
as determined by their selection coefficients.

The variable importance plot of each parameter shows us the global importance of each sum-
mary statistic in the trained Random Forests. For Ne, N , and θb summary statistics calculated475

from the distribution of locus-specific summary statistics -skewness, kurtosis, mean, variance,
5% and 95% quantiles were more frequently used. Summary statistics derived from the dis-
tribution of locus-specific calculated from all segregating loci in the genome inform about the
heterogeneity that selection and drift produce genome-wide. For example, a de novo a beneficial
mutation entered the simulation and was selected; it left a signal of lower diversity around the480

region it was located. The genome, after selection, contained spots where diversity was high
and where it was low, and this heterogeneity was captured by the distribution of locus-specific
HE, more specifically, the lower tail of the distribution where the diversity values of the statistic
were lower. The covariance matrix of allele frequencies through time (Buffalo and Coop, 2020)
can be used as a summary statistic to capture additional information about the selection and485

drift when more than two temporal samples are available. Including this matrix as summary
statistics for further development of the method would be interesting.

Comparison with FST method to estimate Ne

We compared the Ne obtained with ABC-RF framework to the Ne obtained with FST esti-
mator (Frachon et al., 2017). Overall, the FST-based Ne estimator performed poorly compared490

to the ABC-RF-based estimator. The lower performance was caused by Ne values that were
underestimated when beneficial mutations were more frequent (higher θb). Consequently, the
Ne estimates from the temporal FST were strongly affected by selection. Both estimators per-
formed similarly when the selection was infrequent or rare, but the ABC-RF estimator had lower
MSE than the FST one. Positive selection can increase the variance of allele frequency between495

samples taken at different time points. When selection is infrequent or rare, drift determines
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most allele frequency changes between samples. Still, when selection is pervasive, selection dom-
inates, which causes dramatic and rapid changes in allele frequency, increasing the variance
between samples. Ne estimator based on the FST depends on the differences in allele frequencies
between samples; consequently, it is naturally biased by strong and frequent selection. We can500

assume that the Ne estimator from ABC-RF was insensitive to the amount of selection since we
trained the ABC-RF with Ne values from the simulation. In our simulations, Ne was a latent
variable that captured the deviation that selection imposed on the number of individuals able
to reproduce (selected for); unaccounted factors did not bias it.

The amount of selection for θb > 1 could be unrealistic in some organisms, but plausible in505

virus (Feder et al., 2014) and many arthropod species, with large Ne, which have larger popula-
tion sizes (except in eusocial insects that have vertebrate-like population sizes; Romiguier et al.,
2014). The selection also acts on weaker and milder beneficial mutations in larger populations.
In those organisms, it might be unreasonable to assume mutation-drift equilibrium given the
pervasive role of selection. Consequently, attempts to estimate demography parameters as Ne510

without properly accounting for the pervasive role of selection could be biased.

Analysis of temporal genomic data of feral populations of Apis mellifera
Overall, the performance of the ABC-RF for selection and demography inference was similar

across populations despite the differences in sample size and age. For θb, Avalon and Humboldt
populations had posterior probability distributions similar to the prior, indicating that the anal-515

ysis provides no additional information on this parameter. These two populations also present
low effective population size estimates, reducing the selection signal. For the rest of the popula-
tions, the posterior probability distribution of θb is tilted toward the higher values but without a
clear peak differentiating the distribution from the prior. Still, lower θb values could be excluded.
It favors the interpretation that selection was acting during the study period without providing520

a precise parameter estimate. The presence of selection in these analyses comes mainly from the
heterogeneity of the polymorphism along the genome. Thus, for a thorough interpretation of the
results, it is important to discuss other processes that have not been modeled but could affect
this signal. The studied bee populations in California show a mixture of Eastern and West-
ern European ancestry, with some populations presenting African ancestry in the most modern525

samples Cridland et al. (2018). Different levels of African admixture along the genome could
create some heterogeneity and affect the inference. However, in Placerita and Riverside, the
populations with higher African ancestry present similar estimates of θb that populations with
little or no African admixture. The Humboldt population changed from predominately Western
European to Eastern European ancestry, meaning that there was substantial gene flow into the530

population. These results suggest that admixture does not dramatically affect the inference of
selection but also highlights the importance of incorporating admixture in the future develop-
ment of the approach. Other processes, such as recombination and mutation rate, might be
heterogeneous along the genome. Our analysis of simulations with heterogeneous recombination
rate suggest that the approach is robust to those. However, more complex models also seem535

necessary to fully capture the observed genetic diversity (see Figures S7-S13, section S2 Supple-
mentary Results). Including additional factors (admixture, heterogeneity of recombination and
mutation rate, and other forms of selection) could be key to obtaining models that fit the data
better. Further developments of this approach should take them into account.

Our ABC-RF approach estimated Ne with the same order of magnitude of other Ne estimates540

obtained for hymenopterans (Zayed, 2004). Lower values of Ne might reflect the presence of
admixture, either African admixture or admixture that occurred with domesticated lineages
facilitated by changes in beekeeping practices (Cridland et al., 2018). Northern populations,
especially from Humboldt County, shared similarities with bees from reared colonies (with higher
Eastern European ancestry). Southern populations, as shown by Cridland et al. (2018), showed545

14



a higher level of admixture with African lineages. Populations from the southernmost cities
(Riverside County, Placerita, and Avalon, Los Angeles County) showed higher genetic diversity
than the others but did not show the highest values of Ne. On the other hand, the population of
Stanislaus County had the highest value of Ne, possibly because it had lower levels of admixture
with domesticated lineages compared to the population from Riverside, Placerita, Avalon, and550

Los Angeles counties.
We observed that Ne and N had similar estimates. We were aware that our simulation model

did not account for key characteristics of eusocial insect reproductive biology: the monopoliza-
tion of reproduction by the queen and the division of labor. In honey bees, a queen mates
with more than one male (a process called polyandry), which leads to a biased breeding sex555

ratio (Estoup et al., 1994). Assuming that only queens can reproduce in the colony, polyandry
increases the variance in the number of parents contributing to the offspring gene pool, which
leads to a decrease in the Ne compared to N (Nomura and Takahashi, 2012). In our simulations,
we only simulated panmictic random mating. Therefore, the difference between estimates of Ne
and N only reflects the selection action. Therefore N must be interpreted with caution as it is560

probably reflecting more the total number of female breeders per generation rather than the size
of the population. Individual-based forward simulators such as SLiM allows setting different
mating schemes. It is possible to simulate the haplodiploidy, the cast system, diocy, and sex
ratio found in honey bees. These simulation modifications could allow us to estimate N and
other parameters that could better reflect the species’ biology, but that was not the focus of565

this work.
One possible explanation for the similarities between Ne and N estimates, thus, relies on

cast specialization and concentration of reproduction to one of few females in the colony. These
came to a cost of reduced Ne, which reduces the efficacy of selection (either positive or negative).
Bees are the few insect groups that show very small Ne potentially linked with the evolution570

of eusociality (Romiguier et al., 2014). Knowing that lower Ne reduces the effectiveness of
selection, it is plausible to think that lower Ne is restricting the effects of mutation affecting
fitness to stronger beneficial mutations. Since these mutations are less frequent than weak or
mild mutations, their effects on Ne were small, which explains why Ne and N had values in
the same range. Low Ne and low θb pointed to a biological system limited where adaptation is575

limited by the influx of adaptive mutations (Rousselle et al., 2020).
Our ABC-RF framework also estimated the per-site mutation rate per generation µ (Sup-

plementary Results, S18). The mean posterior µ for all populations exceeds the mean prior µ.
The higher estimated values we obtained might be due to the higher true mutation rate but also
reflect recent admixture events between these populations. Modeling admixture could help us580

correctly separate the effects of selection and drift since the introgression of African genes might
have biased some estimates of selection parameters.

Perspectives and Limitations
Our model is relatively simple, as it only considered the impact of

::::
new beneficial mutations,

neglecting the effect of background selection and standing variation. Background selection can585

mimic directional selection because they cause
::
it

::::::
causes

:
a similar pattern of diversity reduction

around the target of selection (Stephan, 2010)
:
.
:::::
This has been discussed for a long time. Much

:
;

::::::::
however,

::::::
much

:
less has been discussed about the patterns of background selection on temporal

data and their differences with selective sweeps. Cvijović et al. (2018) showed that neutral alle-
les linked to less deleterious backgrounds could quickly rise to high frequencies due to purifying590

selection, which could mimic the temporal signal of a selective sweep
::
in

:::::::::
temporal

:::::
data. How-

ever, if background selection is not localized to specific regions of the genome,
:::::::::::::::
Schrider (2020)

::::::::
suggests

:::::
that the signal of selective sweeps will be distinct from the effects of background selec-

tion (Schrider, 2020)
:
if

::::::::::::
background

::::::::
selection

:::
is

:::
not

:::::::::
localized

:::
to

:::::::
specific

::::::::
regions

::
of

::::
the

:::::::
genome. In
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an attempt to jointly accommodate the effect of demography and selection on the inference of595

Ne, Johri et al. (2020) modeled the effect of background selection and developed an ABC-based
approach that jointly estimated the distribution of fitness effects and Ne. In their simulations,
they modeled deleterious mutations and the classical hard sweep with the inclusion of beneficial
mutations. They showed an unbiased estimate of Ne regardless of positive and negative selec-
tion presence. Future developments

::
of

::::
our

:::::::::
approach

:
should include a more realistic genomic600

architecture were negative and positive mutations can co-occur and explore different concentra-
tions of deleterious mutations.

::::
This

:::::
will

:::::::::
elucidate

::::
the

::::::::::::
importance

::
of

::::::::::::
background

:::::::::
selection

:::
in

::::
this

::::::::
context,

::::::
which

:::::::::
probably

:::::::
affects

::::
our

::::::::::
inferences

:::
in

::
a

::::
way

:::::
that

::
is

::::::::
difficult

:::
to

:::::::
predict

:::::
with

::::
our

:::::::
current

:::::::
results.

:
In addition, further developments should explore scenarios of de novo mutations

and selection acting on standing variation. It can be achieved with our pipeline and allows
:
,605

::::::
which

::::
will

::::::
allow

:
for a more general treatment of the selection of

::::::::
including

:
soft sweeps. The

model can also be expanded to more complex demographic scenarios, including changes in pop-
ulation size and genetic exchange with external sources (migration). Including such admixtures
will be key in the future development of this approach since it is also a source of heterogeneity
in the genome and, thus, might influence the method’s performance.610

Conclusion
We show that an ABC-RF -based approach can jointly infer adaptive and demographic

history from temporal population genomics data. This approach quantifies the genome-wide
footprint of selection expressed in the scaled mutation rate of beneficial mutations. The ABC-
RF Ne is robust to varying degrees of strength of selection and frequency of beneficial mutations.615

Our ABC-RF -based approach can be applied to temporal population genomics datasets to gain
insight into natural populations’ adaptive and demographic history.

Acknowledgements
This project has received funding from the LabEx AGRO (convention ANR-10-LABX-0001-

01), CEMEB (convention ANR-10-LABX-0004), and NUMEV (convention ANR-10-LABX-20)620

through the AAP Inter-LabEx (ABCSelection). This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement No 791695 (TimeAdapt). S. De Mita was funded by INRAE (Projet Innovant
EFPA). We are thankful for the Genotoul bioinformatics platform Toulouse Occitanie (Bioinfo
Genotoul, https://doi.org/10.15454/1.5572369328961167E12), for the High-Performance Com-625

puting Center University of Montpellier (MESO@LR-Platform) and for the Ohio Super Computer
Center (OSC OSC (1987))

:::::::::::::::
Supercomputer

:::::::
Center

::::::::::::::
(OSC, 1987) for providing computing re-

sources. The authors would like to thank Julie Cridland for sharing the processed data and
Andrew P. Michel for providing suggestions to improve an early version of the manuscript.

References630

Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M., and Jensen, J. D. (2014). Thinking
too positive? Revisiting current methods of population genetic selection inference. Trends in
Genetics, 30(12):540–546.

Bazin, E., Dawson, K. J., and Beaumont, M. A. (2010). Likelihood-free inference of population
structure and local adaptation in a Bayesian hierarchical model. Genetics, 185(2):587–602.635

Beichman, A. C., Huerta-Sanchez, E., and Lohmueller, K. E. (2018). Using genomic data to infer

16



historic population dynamics of nonmodel organisms. Annual Review of Ecology, Evolution,
and Systematics, 49(1):433–456.

Boyko, A. R., Williamson, S. H., Indap, A. R., Degenhardt, J. D., Hernandez, R. D., Lohmueller,
K. E., Adams, M. D., Schmidt, S., Sninsky, J. J., Sunyaev, S. R., White, T. J., Nielsen, R.,640

Clark, A. G., and Bustamante, C. D. (2008). Assessing the evolutionary impact of amino acid
mutations in the human genome. PLOS Genetics, 4(5):e1000083.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Buffalo, V. and Coop, G. (2019). The linked selection signature of rapid adaptation in temporal
genomic data. Genetics, 213(3):1007–1045.645

Buffalo, V. and Coop, G. (2020). Estimating the genome-wide contribution of selection to
temporal allele frequency change. Proceedings of the National Academy of Sciences of the
United States of America, 2:201919039.

Casillas, S. and Barbadilla, A. (2017). Molecular population genetics. Genetics, 205(3):1003–
1035.650

Cridland, J. M., Ramirez, S. R., Dean, C. A., Sciligo, A., and Tsutsui, N. D. (2018). Genome
sequencing of museum specimens reveals rapid changes in the genetic composition of honey
bees in California. Genome Biology and Evolution, 10(2):458–472.

Csilléry, K., Blum, M. G. B., Gaggiotti, O. E., and Francois, O. (2010). Approximate Bayesian
Computation (ABC) in practice. Trends in Ecology and Evolution, 25(7):410–418.655

Cvijović, I., Good, B. H., and Desai, M. M. (2018). The effect of strong purifying selection on
genetic diversity. Genetics, 209(4):1235–1278.

Dehasque, M., Ávila-Arcos, M. C., Díez-del Molino, D., Fumagalli, M., Guschanski, K., Loren-
zen, E. D., Malaspinas, A.-S., Marques-Bonet, T., Martin, M. D., Murray, G. G. R., Pa-
padopulos, A. S. T., Therkildsen, N. O., Wegmann, D., Dalén, L., and Foote, A. D. (2020).660

Inference of natural selection from ancient DNA. Evolution Letters, 29:753–15.

Elsik, C. G., Worley, K. C., Bennett, A. K., Beye, M., Camara, F., Childers, C. P., de Graaf,
D. C., Debyser, G., Deng, J., Devreese, B., Elhaik, E., Evans, J. D., Foster, L. J., Graur,
D., Guigo, R., HGSC production teams, Hoff, K. J., Holder, M. E., Hudson, M. E., Hunt,
G. J., Jiang, H., Joshi, V., Khetani, R. S., Kosarev, P., Kovar, C. L., Ma, J., Maleszka,665

R., Moritz, R. F. A., Munoz-Torres, M. C., Murphy, T. D., Muzny, D. M., Newsham, I. F.,
Reese, J. T., Robertson, H. M., Robinson, G. E., Rueppell, O., Solovyev, V., Stanke, M.,
Stolle, E., Tsuruda, J. M., Vaerenbergh, M. V., Waterhouse, R. M., Weaver, D. B., Whitfield,
C. W., Wu, Y., Zdobnov, E. M., Zhang, L., Zhu, D., Gibbs, R. A., and Honey Bee Genome
Sequencing Consortium (2014). Finding the missing honey bee genes: lessons learned from a670

genome upgrade. BMC Genomics, 15:86.

Estoup, A., the, M. S. P. o., and 1994 (1994). Precise assessment of the number of patrilines
and of genetic relatedness in honeybee colonies. Proceedings of the Royal Society B, 258:1–7.

Fay, J. C. and Wu, C.-I. (2000). Hitchhiking under positive darwinian selection. Genetics,
155(3):1405–1413.675

Feder, A. F., Kryazhimskiy, S., and Plotkin, J. B. (2014). Identifying signatures of selection in
genetic time series. Genetics, 196(2):509–522.

17



Feder, A. F., Pennings, P. S., and Petrov, D. A. (2021). The clarifying role of time series data
in the population genetics of HIV. PLoS Genetics, 17(1):e1009050.

Frachon, L., Libourel, C., Villoutreix, R., Carrère, S., Glorieux, C., Huard-Chauveau, C.,680

Navascués, M., Gay, L., Vitalis, R., Baron, E., Amsellem, L., Bouchez, O., Vidal, M.,
LE CORRE, V., Roby, D., Bergelson, J., and Roux, F. (2017). Intermediate degrees of
synergistic pleiotropy drive adaptive evolution in ecological time. Nature Ecology & Evolu-
tion, 1(10):1551–1561.

Fraïsse, C., Popovic, I., Mazoyer, C., Spataro, B., Delmotte, S., Romiguier, J., LOIRE, E.,685

Simon, A., Galtier, N., Duret, L., Bierne, N., Vekemans, X., and Roux, C. (2021). DILS:
Demographic inferences with linked selection by using ABC. Molecular Ecology Resources.

Frazier, D. T., Martin, G. M., Robert, C. P., and Rousseau, J. (2018). Asymptotic properties
of approximate Bayesian computation. Biometrika, 105(3):593–607.

Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W., and Ralph, P. L. (2019). Tree-sequence690

recording in SLiM opens new horizons for forward-time simulation of whole genomes. Molec-
ular Ecology Resources, 19(2):552–566.

Haller, B. C. and Messer, P. W. (2017). SLiM 2: flexible, interactive forward genetic simulations.
Molecular Biology and Evolution, 34(1):230–240.

Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G., and Gravel, S. (2015). Estimating695

the mutation load in human genomes. Nature Reviews Genetics, 16(6):333–343.

Hermisson, J. and Pennings, P. S. (2017). Soft sweeps and beyond: understanding the patterns
and probabilities of selection footprints under rapid adaptation. Methods in Ecology and
Evolution, 8(6):700–716.

Jensen, J. D., Kim, Y., DuMont, V. B., Aquadro, C. F., and Bustamante, C. D. (2005). Distin-700

guishing between selective sweeps and demography using DNA polymorphism data. Genetics,
170(3):1401–1410.

Jensen, J. D., Thornton, K. R., Bustamante, C. D., and Aquadro, C. F. (2007). On the utility
of linkage disequilibrium as a statistic for identifying targets of positive selection in nonequi-
librium populations. Genetics, 176(4):2371–2379.705

Johri, P., Charlesworth, B., and Jensen, J. D. (2020). Toward an evolutionarily appropriate null
model: jointly inferring demography and purifying selection. Genetics, 215(1):173–192.

Karasov, T., Messer, P. W., and Petrov, D. A. (2010). Evidence that adaptation in drosophila
is not limited by mutation at single sites. PLoS Genetics, 6(6):e1000924.

Kim, Y. and Nielsen, R. (2004). Linkage disequilibrium as a signature of selective sweeps.710

Genetics, 167(3):1513–1524.

Lange, J. D. and Pool, J. E. (2018). Impacts of recurrent hitchhiking on divergence and demo-
graphic inference in Drosophila. Genome Biology and Evolution.

Laval, G., Patin, E., Boutillier, P., and Quintana-Murci, L. (2019). A genome-wide Approximate
Bayesian Computation approach suggests only limited numbers of soft sweeps in humans over715

the last 100,000 years. bioRxiv, 5:2019.12.22.886234.

Li, H. (2011). Improving SNP discovery by base alignment quality. Bioinformatics, 27(8):1157–
1158.

18



Li, J., Li, H., Jakobsson, M., Li, S., Sjödin, P., and Lascoux, M. (2012). Joint analysis of
demography and selection in population genetics: where do we stand and where could we go?720

Molecular Ecology, 21(1):28–44.

Lin, K., Li, H., Schlötterer, C., and Futschik, A. (2011). Distinguishing positive selection from
neutral evolution: boosting the performance of summary statistics. Genetics, 187(1):229–244.

Liu, H., Jia, Y., Sun, X., Tian, D., Hurst, L. D., and Yang, S. (2017). Direct determination
of the mutation rate in the bumblebee reveals evidence for weak recombination-associated725

mutation and an approximate rate constancy in insects. Molecular Biology and Evolution,
34(1):119–130.

McDonald, J. H. and Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in
Drosophila. Nature, 351(6328):652–654.

Messer, P. W. and Petrov, D. A. (2013). Frequent adaptation and the McDonald-Kreitman test.730

Proceedings of the National Academy of Sciences, 110(21):8615–8620.

Neher, R. A. (2013). Genetic draft, selective interference, and population genetics of rapid
adaptation. Annual Review of Ecology, Evolution, and Systematics, 44(1):195–215.

Nei, M. and Tajima, F. (1981). Genetic drift and estimation of effective population size. Genetics,
98(3):625–640.735

Nielsen, R. (2005). Molecular signatures of natural selection. Annual Review of Genetics,
39(1):197–218.

Nomura, T. and Takahashi, J. (2012). Effective population size in eusocial Hymenoptera with
worker-produced males. Heredity, 109(5):261–268.

OSC (1987). Ohio supercomputer center.740

Pavinato, V., De Mita, S., Cridland, J., and Navascués, M. (2022). Tracking-selection.
doi:10.5281/zenodo.4599735.

Plough, L. V. (2016). Genetic load in marine animals: a review. Current Zoology, 62(6):567–579.

Pool, J. E., Hellmann, I., Jensen, J. D., and Nielsen, R. (2010). Population genetic inference
from genomic sequence variation. Genome Research, 20(3):291–300.745

Pudlo, P., Marin, J.-M., Estoup, A., Cornuet, J. M., Gautier, M., and Robert, C. P. (2016).
Reliable ABC model choice via random forests. Bioinformatics, 32(6):859–866.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Raynal, L., Marin, J.-M., Pudlo, P., Ribatet, M., Robert, C. P., and Estoup, A. (2019). ABC750

random forests for Bayesian parameter inference. Bioinformatics, 35(10):1720–1728.

Romiguier, J., Lourenco, J., Gayral, P., Faivre, N., Weinert, L. A., Ravel, S., Ballenghien, M.,
Cahais, V., Bernard, A., Loire, E., Keller, L., and Galtier, N. (2014). Population genomics of
eusocial insects: the costs of a vertebrate-like effective population size. Journal of Evolutionary
Biology, 27(3):593–603.755

Rousselle, M., Simion, P., Tilak, M.-K., Figuet, E., Nabholz, B., and Galtier, N. (2020). Is
adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the
adaptive substitution rate in animals. PLoS Genetics, 16(4):e1008668.

19



Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., and Bierne, N. (2016). Shedding
light on the grey zone of speciation along a continuum of genomic divergence. PLOS Biol,760

14(12):e2000234–22.

Santiago, E. and Caballero, A. (1995). Effective size of populations under selection. Genetics,
139(2):1013–1030.

Sawyer, S. A. and Hartl, D. L. (1992). Population genetics of polymorphism and divergence.
Genetics, 132(4):1161–1176.765

Schrider, D. R. (2020). Background selection does not mimic the patterns of genetic diversity
produced by selective sweeps. Genetics, 216(2):499–519.

Schrider, D. R. and Kern, A. D. (2018). Supervised machine learning for population genetics: a
new paradigm. Trends in Genetics, 34(4):301–312.

Schrider, D. R., Shanku, A. G., and Kern, A. D. (2016). Effects of linked selective sweeps on770

demographic inference and model selection. Genetics, 204(3):1207–1223.

Sella, G., Petrov, D. A., Przeworski, M., and Andolfatto, P. (2009). Pervasive natural selection
in the Drosophila genome? PLoS Genetics, 5(6):e1000495.

Sheehan, S. and Song, Y. S. (2016). Deep learning for population genetic inference. PLoS
Computational Biology, 12(3):e1004845.775

Siol, M., Coudoux, T., Ravel, S., and De Mita, S. (2022). EggLib 3: A python package for
population genetics and genomics. Molecular Ecology Resources.

Stephan, W. (2010). Genetic hitchhiking versus background selection: the controversy and
its implications. Philosophical Transactions of the Royal Society B: Biological Sciences,
365(1544):1245–1253.780

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics, 123(3):585–595.

Vitalis, R., Gautier, M., Dawson, K. J., and Beaumont, M. A. (2014). Detecting and measuring
selection from gene frequency data. Genetics, 196(3):799–817.

Walsh, B. and Lynch, M. (2018). Evolution and selection of quantitative traits. Oxford University785

Press.

Weir, B. S. and Cockerham, C. C. (1984). Estimating F-Statistics for the analysis of population
structure. Evolution, 38(6):1358.

Williams, K.-A. and Pennings, P. (2020). Drug resistance evolution in HIV in the Late 1990s:
hard sweeps, soft sweeps, clonal interference and the accumulation of drug resistance muta-790

tions. G3: Genes|Genomes|Genetics, 10(4):1213–1223.

Zayed, A. (2004). Effective population size in Hymenoptera with complementary sex determi-
nation. Heredity, 93(6):627–630.

20


