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Abstract

Disentangling the effects of selection and drift is a long-standing problem in15

population genetics. Recently, simulations shows
:::::::::::
Simulations

::::::
show

:
that perva-

sive selection may bias the inference of demography. Ideally, models for the in-
ference of demography and selection should account for the interaction between
these two forces. With simulation-based likelihood-free methods such as Approxi-
mate Bayesian Computation

:::::::
(ABC), demography and selection parameters can be20

jointly estimated(ABC). We propose a
::
to

::::
use

::::
the ABC-Random Forests framework

to jointly infer demographic and selection parameters from temporal population
genomic data (e.g.

:
,
:

experimental evolution, monitored populations, ancient DNA).
Our framework allowed the separation of demography (census size, N) from the
genetic drift (effective population size, Ne) , and the estimation of genome-wide pa-25

rameters of selection. Selection parameters informed us about the adaptive poten-
tial of a population (the scale

:::::
scaled

:
mutation rate of beneficial mutations, θb), the

realized potential, as
::::::::::
adaptation

::
(the number of strong beneficial under selection,

and fitness diversity as the population genetic load
::::::::
mutation

::::::
under

:::::::
strong

::::::::::
selection),

::::
and

::::::::::
population

:::::::
fitness

::::::::
(genetic

::::::
load). We applied this approach to a dataset of feral30

populations of honey bees (Apis mellifera) collected in California, and we estimated
parameters consistent with the biology and the recent history of this species.

Keywords— Temporal data, Population genomics, Machine learning, Adaptation
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Introduction35

One aim of population genomics is to understand how demography and natural selection
shape the genetic diversity of populations. A classical approach is to assume

::::::::
assumes

:
that demog-

raphy (migration, population subdivision, population size changes) leaves a genome-wide signal,
whereas

:
.
:::
In

:::::::::
contrast, selection leaves a localizes

:::::::::
localized signal close to where the causal muta-

tion is located. Many methods follow this approach to infer demography or selection (reviewed40

by Beichman et al., 2018; Casillas and Barbadilla, 2017). Methods for demographic inference
assume

::::::::::::
Demographic

:::::::::
inference

:::::::::
assumes

:
that most of the genome evolves without the influence

of selection and that any deviation from the mutation-drift equilibrium observed in the data
was caused by demographic events (Beichman et al., 2018). For selection, the majority

::::::
Many of

the methods search for locus-specific signals left by the beneficial mutation
::
of

:::::::::
selection

::::
left

:
on45

nearby neutral mutations (Tajima, 1989; Fay and Wu, 2000; Kim and Nielsen, 2004) (low genetic
diversity and high differentiation) to localize the beneficial

::::::
region

::::::::
affected

:::
by

::::::::::
selection muta-

tion, assuming constant population size (Nielsen, 2005; Pool et al., 2010)
:
a
::::::::
specific

::::::::::::
demography

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(constant population size in early methods; Nielsen, 2005; Pool et al., 2010).

Conducting demographic and selection inference separately may have some shortcomings.50

First, there is the assumption that the signal left by demography is little affected by selection
because

:::
the

:
selection is rare. However, linked selection can affect neutral and weakly selected

sites that are far from the mutation targeted by selection (Sella et al., 2009; Neher, 2013) and
selection can be pervasive (Sella et al., 2009; Lange and Pool, 2018). In addition, some methods
for selection scans are not robust to misspecifications of demographic history. Consequently,55

an unspecified bottleneck or population increase, for example, can inflate the type I error
::::
false

:::::::
positive

:
rate of genome scans (Jensen et al., 2005, 2007; Schrider et al., 2016). These findings

highlight the necessity of inferential methods that jointly accounts for the multiple evolutionary
forces that act on populations (Lin et al., 2011; Li et al., 2012; Bank et al., 2014).

It is difficult to obtain
::::
often

:::::::::
difficult

::
to

:::::::::
calculate

:
the likelihood of models including demog-60

raphy and selection (but see Vitalis et al., 2014). Methods that rely on simulations provide
alternatives to the use of

:::::
easier

::::::::::::
alternatives

:::
to

::::::
using likelihood functions (Csilléry et al., 2010;

Schrider and Kern, 2018). One of the first works that proposed such
:
a
:
strategy addressed the in-

ference of local adaptation (Bazin et al., 2010). With coalescent simulations of an island model,
Bazin et al. (2010) estimated demographic parameters and inferred the number of loci under65

selection. In their simulations,
:::
the selection was modeled as differential locus-specific migration

rates in which a selected locus had lower migration rates than neutrally-evolved
:::::::
neutral

:
loci.

However, locus-specific migration rates or effective population size (as in Roux et al., 2016;
Fraïsse et al., 2021) represent

:::::
crude

:
approximations of the selection process. Forward-in-time

simulation allows more realistic models of selection. These were used to make inferences on Ne70

in the presence of selection by Sheehan and Song (2016) (for selective sweep
::::::::
selective

:::::::
sweeps

and balancing selection) and Johri et al. (2020) (background selection). However, these works
rely on simulations of few independent loci-not more than 50Kbp-which prevents the modelling
::::::::::::
independent

:::::::::::
simulation

::::
loci

:::
or

::::::::
genomic

::::::::
regions

:::::::
which

:::::::::
prevents

:::
the

::::::::::
modeling

:
of genome-wide

effects of selection as the reduction of effective population size due to the variance of reproduc-75

tive success of individuals (e.g. Santiago and Caballero, 1995)
::::::::::::::::::::::::::::::
(Santiago and Caballero, 1995)

::
or

:::
the

::::::::::
combined

::::::
effects

:::
of

::::::::::
mutations

:::
on

::::::::::
individual

:::::::
fitness. Nevertheless, this strategy brought new

insights into the dynamics of selection. For instance, Laval et al. (2019) estimated the number of
past selective sweeps that occurred in the human genome in the past 10

:::
100,000

:::::
years, their inten-

sity, and their age. Besides some limitations, these works exemplify the power of likelihood-free80

methods for the inference of
::
to

:::::
infer

:
the complex interaction between demography and selection.

Most population genetic studies use samples collected at one time
:
a

:::::::::
one-time point to infer

the neutral processes (mutation, recombination, random genetic drift) and selection throughout
the history of populations. Temporal data allows a better understanding of recent evolutionary
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processes (Feder et al., 2021; Dehasque et al., 2020)
:::::::::::::::::::::::::::::::::::::::::::::
(e.g. Feder et al., 2021; Dehasque et al., 2020)85

because they contain information about the allele frequency changes through time. By tracking
the allele frequency changes over time, it is possible to estimate the relative role of selection and
drift. Consequently, temporal data has the potential to give us a better understanding of the
interaction between drift and selection (see for example, Buffalo and Coop, 2019, 2020).

Here, we propose the use of
:::::
using ABC to jointly estimate demography and positive selection90

from temporal genomic data. In our framework, we use agent-based
:::::::::::::::
individual-based, forward-in-

time simulationswhich allowed the modelling
:
,
::::::
which

::::::
allow

:::
the

::::::::::
modeling of the genome-wideand

linked selection ,
:::::::

linked
:::::::::
selection

:::::
and

::::::::
additive

:
effects of beneficial mutations. Until recently,

the use of such computationally demanding simulations in ABC inference was unrealistic since
a great number of

:::::
were

::::::::::
unrealistic

::::::
since

::::::
many

:
simulations are required to achieve accuracy in95

ABC (Frazier et al., 2018). However, with the introduction of Random Forests (ABC-RF), it
was

::
is

:::::
now possible to reduce the computational burden as fewer simulations are required to

achieve reliable estimates (Pudlo et al., 2016; Raynal et al., 2019). While many methods focus
on the detection of targets of selection, our work addresses the inference of parameters that
characterizes the genome-wide signal of demography and selection. Our genome-wide estimates100

showed to be
:::::
were reasonably accurate for a wide rate of adaptation

:::::
range

:::
of

:::::::::::
adaptation

:::::
rates

and strength of selection. We were able to separate the estimates of Ne , which reflect the
short-term drift

::
(a

::::::::
measure

::
of

::::::::
genetic

:::::
drift)

:
from the population census size N . We also estimated

the rate of influx of new beneficial mutations as measured by genome-wide
:::
the

:::::::::::
population scaled

mutation rate of beneficial mutations. The separation between demography and drift , and the105

inference of genome-wide selection were only possible with the use of
::::
was

:::::
only

::::::::
possible

::::::
using

latent variables. Latent variables emerged as properties of each simulation,
:
and consequently,

they better captured the emerging interaction between demography and selection than model
parameters. We first evaluated the performance of an ABC-RF approach with forward-in-time
simulations, and finally

:
.
::::::::
Finally, we applied this framework to the analysis of a real time-series110

population genomics dataset of the feral population of honey bees (Apis mellifera) (Cridland
et al., 2018). Our results were consistent with the biology of the species

::::::::
species’

:::::::
biology

:
and with

events that occurred recently in the history of the analyzed populations, taking into account the
limitations of

:::
the

::::::::
current

::::::::::::::::
implementation

::
of

:
our approach.

Methods115

Inference model
We assumed a closed population (no migration) of N diploid individuals that evolved under

a Wright-Fisher model with selection. Selection
::::
The

:::::::::::
population

:::::::
census

::::
size

:::
N

::::
was

::::::::::
constant,

::::
and

::::::::
selection

:
only acted on de novo beneficial mutations and that were allowed to arise in the

population since the first generation
:::::::::::
(generation

::::
one

::::::::::::
corresponds

:::
to

:::
the

::::
first

::::::::
burn-in

:::::::::::
generation).120

Every beneficial mutation had a selection coefficient of s higher than zero
:
,
:
and all were co-

dominant. The values of the selection coefficients s were drawn from a gamma distribution
with mean γ .

::::
and

:::::
scale

:::::::::::
parameter

:::
1.

:
Beneficial mutations entered the population with a

rate of µb per generation that is independent of the mutation selective strength. Consequetly
:::::::::::::
Consequently,

:
we defined the scaled mutation rate of the beneficial mutations per generation125

θb as the product the population size N , the mutation rate of beneficial mutation µb and the
genome size G, θb = 4NµbG. This rate determines the amount of new beneficial mutations that
arises

::::
arise

:
in the population every generation. It can also be viewed as the waiting time for the

appearance of a new beneficial mutation in the population. Populations with high θb receive
new beneficial mutations every generation (Karasov et al., 2010), but

:
a
:
population with low θb130

needs to wait more time for a new beneficial mutation to arise.
We needed to divide the model in

:::::::
divided

::::
the

::::::
model

::::
into

:
two periods: 1) the burn-in period,
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that
:::::
which

:
is necessary to remove , from the simulations , any footprint of the initial parameters

set
::::::::::
simulation

:::::
state; the duration of this period was defined as the time necessary to contain all

:::::
reach

::
a
::::::
point

:::::
were

::::
the

:
most recent common ancestors (MRCA) for all genomic regions in the135

simulation
:::
are

:::::
more

:::::::
recent

:::::
than

::::
the

:::::
start

::
of

::::
the

:::::::::::
simulation

::
(

:::
i.e.

:::
the

::::::::
burn-in

::::
was

:::::
run

:::::
until

::::
this

:::::::::
condition

::::
was

:::::::::
fulfilled); and 2) the inference period, where we defined the longitudinal samples

of individuals; the sampled genotypes were used to make inference of demography and selection.
This .

:::::::
These

:
two periods were defined by their time span and by

:::::
spam

::::
and

:
the population census

sizewith
:
,
::::::
being N0 and N as the sample

::::::::::
population

:
size of the burn-in and the inference period

:
,140

::::::::::::
respectively.

::::::::::::
Population

::::
size

:::
is

:::::::::
constant

:::::::
within

:::::
each

::::::::::
simulated

:::::::
period

:::::
and

::::::::
changes

:::::::::
between

:::::::
periods.

The first
:::::
First

:
sample of individuals was taken at t1, that was the first generation after

the
::::::::::
immediate

:::::
next

::::::::::
generation

::::::
after burn-in period ended, and

::::::
ended;

:
the second was taken at

t2, after τ generations from t1. Individuals were sampled following the sample plan II of Nei145

and Tajima (1981), where individuals were taken before their reproduction and permanently
removed from the population. In this way,

::
their genotypes did not contribute to the next

generationgenotypes.
Each individuals

:::::::::::
individual’s

:
genome of size G (in base pairs) consisted of a single linkage

group with
:
a
:
per base recombination rate per generation of c0. In this genome, we modeled the150

act of selection
:
r.

::::
We

:::::::::
modeled

::::
the

::::::::
selection

::::::
effect

::
in

:::::
this

:::::::
genome

:
by dividing it in

::::
into “neutral”

and “non-neutral” regions. Non-neutral regions held both neutral and beneficial mutations.
This division can be interpreted as a genomic architecture in which there are genic regions
that

:::::
genic

:::::::
regions

:
have a combination of neutral (synonymous intron mutations) and selected

(non-synonymous mutation) sites , and
::::
with

:
intergenic regions (neutral mutations) but also155

other characteristics of the genome that would make the action of selection heterogeneous
::
in

::::::::
between.

::::::::::
However,

::::
this

::::::::::::
architecture

::::::::
allowed

::::::::::
simulating

::::
the

::::::::::::::
heterogeneous

:::::::::
selection

::::::
action

:
along

the genome.
We chose this simplification because it is general and it was a

:
a
:::::::
general

:::::
and straightforward

way to define independent priors for the relative number of non-neutral to neutral regions ,160

and for the number of beneficial mutations in non-neutral regions. The probability of beneficial
mutation to arise in the simulation , or their

:
(
:::
i.e.

::::
the

:
mutation rate per generationµb,

:
,
::::
µb)

was determined by the product of the proportion of non-neutral regions PR, the proportion of
beneficial mutation in a non-neutral region PB and the mutation rate per generation µ. Figure 1
shows a schematic representation of the model template (and see Table S1 for a summary of the165

notation).

Calculation of summary statistics and latent variables
The above model was used to simulate the dynamic of drift and selection in a closed popula-

tion. In the two sample periods, individuals
::::
from

::::
the

::::::
whole

:::::::::::
population

:
were sampled and used

for the calculation of the summary statistics for the ABC-RF framework. For each simulation,170

we calculated summary statistics that: 1) compared the two samples (e.g.genetic differentiation
:::::::
genetic

::::::::::::::
differentiation,

:
FST), and 2) quantified the diversity within-sample (e.g.expected heterozygosity

:::::::::
expected

:::::::::::::::
heterozygosity,

:
HE). For the later, calculations

::::::
latter,

:::::::::
statistics

:
were obtained for

each sample and the pooled sample (when the genetic data of populations were combined in
one population)

::::
and

:::
all

:::::::
pooled

::::::::
samples. Some summary statistics were calculated genome-wide,175

for
:
.
::::
For

:
example, global FST, global HE and the total number of polymorphic sites S; others

were calculated SNP-by-SNP as the HE; or they were calculated in windows as S, the nucleotide
diversity π, and Tajima’s D

::
D. For every simulation, we measured the mean, variance, kurtosis,

skewness, and 5% and 95% quantiles among all locus-specific or window summary statistics.
These statistics informed

::::::
inform

:
about the heterogeneity of genome-wide distribution of locus-180

specific or window summary statistics. We set three window sizes for the window summary
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burn-in period

Forward-in-time simulation

neutral mutations: 

beneficial mutations:

Neutral region

Non-neutral region

t

N

genome

N0

(A) (B)

inference period

t1 2t0

Figure 1: A schematic representation of the model used to simulate temporal
population genomic data. (A) the population model that consisted of : 1) the burn-in
period, where the number of generations was determined by the time necessary to contain
the MRCA for all genomic regions. 2) the sampling

:::::::::
inference

:
period between the two

time points, where the inference of demography and selection was made. (B) the genomic
architecture model that consisted of : 1) a diploid genome of one linkage group that
was divided in

::::
into

:
neutral and non-neutral regions that were composed of neutral and a

combination of neutral and beneficial mutations.

statistics: 500, 5,000, and 10,000 bp. Those windows
::::::::
Windows

:
overlapped because each window

was composed around every single SNPwhich put
:::::
SNP,

::::::::
putting

:
the targeted variation in the

middle of the window with the other
:::::
other

::::::::::::
surrounding

:
SNPs in half of the window size on

each side of the targeted SNP. The site-frequency spectrum was obtained as a global summary185

statistics with three different numbers of discrete classes (bin sizes): 10, 15, and 20 bins (the
complete list of summary statistics can be found in Supplementary Methods, section S2

::
S1.1 List

of summary statistics).
For every simulation, we combined a vector of summary statistics with the vector of X

model parameters and the vector of five latent variables. Latent variables represents values that190

emerged
::::::::
represent

:::::::
values from the simulation or values that emerged by combining a latent vari-

able and a model parameter. In our inferential framework, for example, the effective population
size Ne is a latent variable and it was calculated within each simulation. The ratio between the
effective population size Ne and the population census size N , Ne/N , on the other hand, was
derived by combining a latent variable and a model parameter for each simulation. The other195

three latent variables were: the number of beneficial mutations under strong selection P , the
average selection coefficient of strongly selected mutations s̄, and the average substitution load
L.

The effective population size Ne measures the increase of inbreeding at each generation.
In this definition, Ne is the size of an ideal population with the same amount of drift as the200

population under consideration. Defined in these terms, Ne is the inbreeding effective size
(Santiago and Caballero, 1995; Walsh and Lynch, 2018). It was calculated in every generation
i of the sampling period as:

Ne,i =
4N

σ2
ki
+ 2

σ2
ki

being the variance among parents of the number of gametes produced that contributed to
offspring in generation i. The Ne for the whole inference period was obtained by calculating205

5



the harmonic mean of Ne,i. The population size of N was kept constant for the whole period
:
,

as shown above, and it represents a parameter of the simulation
::::::::::::
representing

::
a
:::::::::::
simulation

::::::::::
parameter. From the Ne we obtained the ratio Ne/N (it measures how the census size reflects
the actual effective population size: we expect to have a reduction on Ne compared to N when
beneficial mutations are more pervasive).210

We also recorded the selection coefficient of all beneficial mutations that arose
:::::::
present

:
in

every generation i from t1 to t2 in each simulation. After, we calculated the fraction of beneficial
mutations that were strongly selected (where s > 1/Ne over all mutations that were segregating
in the period). This fraction represented all beneficial mutations that arose in

::::::
present

:
between t1

and t2, regardless if they were lost or fixed at any generation of the period , or if their frequency215

oscillated
:::::::::
fluctuated

:
but never reached fixation. We decided for

::
on

:
it because any beneficial

mutation that arise can impact the allele frequency trajectories of other mutations (neutral or
beneficial). For these mutations, we also calculated the average across all selection coefficients.
We also calculated, in every generation of this period, the substitution load Li as the difference
between the total fitness of the individual with the highest fitness Wmaxi and

:::
the

:
mean total220

fitness of the population W̄i (it measures the overall diversity of beneficial mutations present in
the inference period),

Li =

{
0, if Wmaxi = 0
Wmaxi−W̄i

Wmaxi
, otherwise

The average substitution load was obtained by averaging all values of Li.

Implementation
The model was simulated with the software SLiM v3.1 (Haller and Messer, 2017; Haller et al.,225

2019). For the calculation of
::
To

:::::::::
calculate

:
the inbreeding effective size, we needed to activate an

optional SLiM 3.1 behavior to track the pedigrees of each individual in the population. It allowed
us to obtain the number of each parent gamete and the population variance of the number of
gametes. For the calculation of

::::::::::
calculating

:
the generation substitution load, we used a SLiM

built-in function that allowed us to obtain the vector of fitness
::::::
fitness

::::::
vector

:
of all individuals230

in the population. The cached fitness was the sum of all fitness determined by each beneficial
mutation.

Each simulation was produced by using different combinations of the model’s parameters:
1) the mutation rate per bp per generation µ, 2) the per-base recombination rate per generation
c0:
r, 3) the mean γ of a gamma distribution

:
(with the shape parameters

::::::::::
parameter

:
equal to the235

mean
:
), from which the selection coefficients s of each beneficial mutation in the simulation were

sampled, 4) the number of non-neutral genomic regions PR, 5) the parameter that determines
the probability of beneficial mutation in non-neutral regions PB, 6) the population census size
of the burn-in period N0, and, finally, 7) the population size of the inferential period N .

We set SLiM to output genotypic data of samples of individuals as single nucleotide poly-240

morphisms (SNPs), at t1 and t2, in the VCF file format. Using bcftools (Li, 2011), custom
R function (R Core Team, 2020) and EggLib (De Mita and Siol, 2012)

::::::::::::::::
(Siol et al., 2022), SLiM

outputs were processed and summary statistics calculated. We implemented a pipeline in an R
script that automates the sampling of the prior values, runs each simulation, manipulates the
VCF files, calculates the summary statistics, and organizes the final reference table. This script245

was also produced to facilitate the model test with
:
a

:
few simulations and the job submission

in a
::
an

:
HPC node(s). The main R and additional scripts are available on Zenodo (Pavinato

et al., 2021). In this pipeline, for every simulation, a row of the reference table was produced
by combining the model parametersused to launch a SLiM simulation, latent variables, and the
summary statistics.250
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ABC-RF
In this work, we take advantage of the use of

:::
use

:
Random Forests (RF) in

:::
the

:
ABC procedure,

where the parameter estimation is a machine learning problem (Pudlo et al., 2016; Raynal et al.,
2019).

:::
The

:::::::::::::
performance

::
of

:::::
this

:::::::::
approach

::::
was

::::::::::
evaluated

:::::::::
through

::::::::::::
simulations.

::::::
First,

:::
we

:::::::::
assumed

::
a255

::::::
target

:::::::
dataset

:::::::::::
consisting

::
of

::::
two

::::::::
samples

:::
of

::::
100

:::::::::::
individuals

:::::::::
sampled

:::
ten

::::::::::::
generations

::::::
apart

:::::
from

:::
the

:::::
same

::::::::::::
population.

:
A reference table was generated with

:::
for

::::
that

:::::::
target

:::::
data

::::
was

:::::::::
produced

:::
by

::::::::::
simulating

::::
the

::::::::::::::
whole-genome

::::::
SNPs

::
of

::::::::
diploid

:::::::::::
individuals

::::::
using the model described above

:::
and

::::::::::
calculating

::::
the

:::::::::
previous

:::::::::
summary

::::::::::
statistics.

:::
At

:::::
each

::::::::::::
simulation,

:::
we

::::::::
sampled

::::
100

:::::::::::
individuals

:::
at

::::
each

:::::
time

::::::
point

::::
and

:::::::::
recorded

::::::
their

::::::::::
genotypes.

::::::
Only

:::::::::::::
polymorphic

::::::
SNPs

:::::
were

:::::::::
retained

:::
for

:::::
each260

:::::::
sample. In each simulation, each individual had a genome of size

:::
size

:::
of

:
100 Mb that was

::::
Mbp

divided into 2,000 fragments of 50,000 bps. A number of these fragments were randomly set as
either neutral or non-neutral, based on the parameter

::::::::::
probability

:
PR. In the inference period,

100 individual genotypes were sampled at t1 and t2 after τ = 10 generations. For all model
parameters, values of each simulation were sampled from a log-uniform distribution with range:265

1 to 2,000 for N0 and N , 10−10 to 10−6 for µ, 5× 10−10 to 5× 10−7 for r, 10−5 to 1 for PB, and
10−3 to 1 for γ. And

::::::::::::
Furthermore,

:
uniform distribution with range 0 to 1 for PR (Figure S1

shows the prior distribution for all model parameters and latent values).
The raw reference table produced by the pipeline was processed to remove missing data.

Missing data were present in several summary statistics of simulations with low genetic diversity270

, that can be produced, for example, by low mutation rate, by small population size, by selection,
or by the combination of these parameters. Missing data were also present in the entire row
of a simulation if the combination of population size, mutation, and especially recombination
rate produced simulations that were memory intense, which caused the simulation to crash. A
final reference table containing 55,634 simulations with 405 summary statistics was used to train275

the ABC-RFs. Independent RFs were obtained for each parameter and latent variable using R
package abcrf (Pudlo et al., 2016; Raynal et al., 2019). Each RF was obtained by growing 1,000
trees. The RF

::::
RFs

:
were grown with the default parameters. Average genetic load, L

:
,
:
and P

were logit transformed prior
:::::::::::::::::
logit-transformed

:::::::
before

:
the training. For these latent variables

and for s̄, simulations with L = 0, P = 0 or s̄ = 0 were also excluded from the training set,280

which reduced it to 36,026 simulations for L, and with 29,264 simulations for P and s̄. For
:::
We

::::::::::
performed

:::
log

:::::::::::::::
transformation

:::::::
before

::::::::
training

:::
for

:
the other parameters and latent variables , we

performed log transformation prior training and use
::::
and

:::::
used

:
the reference table containing all

simulations.
The performance of each trained Random Forest was evaluated with out-of-bag (OOB) esti-285

mates (Breiman, 2001). These estimates were produced by the trained model
::::
The

::::::::
trained

::::::
model

:::::::::
produced

:::::
these

::::::::::
estimates for the data used for training. Regression trees that compose the actual

RF are grown using part of the data , selected randomly from the initial set of simulations. As
a consequence

:::::::::::::
Consequently, for each simulation, there is a subset of trees that were

::::
was grown

without the data from that simulation. The estimate from that subset of trees is called OOB290

estimate
:::
the

:::::
OOB

::::::::::
estimate, and with it, cross-validation of the trained model is done

:::::::::
validated

without splitting the reference table in
::::
into

:
the training and testing sets. We calculated the

mean squared error (MSE) and the correlation coefficient (R2) between the true and the OOB
estimated values obtained with the function regAbcrf implemented in the R package abcrf.

:::
For

:::::::
neutral

:::::::::::
simulations

:::
of

::::
the

::::::
latent

:::::::::
variables

:::
L,

:::
P ,

::::
and

:::̄
s,

:::
we

::::::::::
evaluated

::::
the

::::::::::::
performance

:::::
with

::::
the295

:::::
MSE

::::
and

::::
the

::::
bias

:::
on

::::
the

:::::::::::
parameters

::::::::::
estimated

:::
in

::::
the

::::::::
original

::::::::::
parameter

::::::
scale.

:

::
An

:::::::::::
additional

:::::
1,000

:::::::::::
simulations

:::::
were

:::::
used

::
to

:::::::::
evaluate

:::
the

:::::::::
method’s

:::::::::::
robustness

::
to

::::::::::::::
heterogeneous

::::::::::::::
recombination

:::::
rates

::::::
along

::::
the

:::::::::
genome.

:::::
The

:::::::::::
simulation

::::::
model

:::::
was

:::::::::
identical

::
to

::::
the

:::::::::::
previously

:::::::::
described

::::::::::::
simulations,

:::::::
except

:::::
that

::
a
::::::::::::::
recombination

:::::
map

:::::
was

:::::
used

:::::
with

::::::::
varying

::::::::::::::
recombination

:::::
rates

:::::
along

::::
the

::::::::
genome.

::::
We

:::::
used

::::
the

:::::::
already

:::::::::::::
implemented

::::::::
genomic

::::::::::::::
fragmentation

:::
of

:::
the

::::::::
genome300

::
in

:::::::::
“neutral”

:::::
and

::::::::::::::
“non-neutral”

::::::::
regions,

::::::
which

:::::
split

::::
the

::::::::
genome

::::
into

::::::
2,000

::::::
blocks

:::
of

:::
50

:::::
Kbp,

:::
to

7



::::::
define

:::
the

:::::::::
positions

:::
at

::::::
which

::::
the

::::::::::::::
recombination

::::
rate

:::::::::
changed.

::::::
Each

::::::::::::::
corresponding

:::::::::
fragment

::::
had

:
a
::::::::::::::
recombination

:::::
rate

::::::::
sampled

:::::
from

::
a
::::::::::::
log-uniform

::::::::::::
distribution

:::::
with

:
a
::::::
range

:::::::::
between

:::::::::::
10log10 r−0.5

::::
and

::::::::::::
10log10 r+0.5,

:::::
with

::
r
:::::::::
sampled

:::::
from

::::
the

::::::
prior

::::::::::::
distribution

:::
as

::::::::::
described

:::::::
above.

::::::
This

::::::
range

:::::::
allowed

::::
the

::::::::
genome

::
to

:::::
have

:::::::::::::::
recombination

:::::
rates

:::::::::
spanning

::::
one

::::::
order

::
of

::::::::::::
magnitude.

::::
We

::::::::
evaluate305

:::
the

::::
RF

::::::::::::
performance

:::
in

:::::
these

::::::::::::
simulations

:::
by

:::::::::::
calculating

::::
the

::::::
mean

::::::::
squared

:::::
error

:::::::
(MSE)

::::
and

::::
the

::::::::::
correlation

::::::::::
coefficient

:::::
(R2)

::::::::
between

::::
the

:::::
true

::::::::::
parameter

::::::
values

::::
and

::::
the

:::
RF

:::::::::::
estimates.

::::
For

:::::::
neutral

:::::::::::
simulations

::
of

::::
the

::::::
latent

:::::::::
variables

:::
L,

:::
P ,

::::
and

::̄
s,

:::
we

::::::::::
evaluated

::::
the

::::::::::::
performance

:::::
with

::::
the

:::::
MSE

::::
and

:::
the

:::::
bias.

:

Alternative estimates of Ne from temporal data310

We compared the the ABC-RF Ne estimates with estimates obtained with the global FST
between temporal genomic samples (Frachon et al., 2017). This estimator is defined as:

N̂e =
τ(1− F̂ST)

4F̂ST

where τ accounts for the time-interval, in generations, between the first and the last samples
used to estimate the FST, and F̂ST is the the Weir and Cockerham’s FST estimator (Weir
and Cockerham, 1984). The Ne from the FST was calculated for all simulations used to train315

the random forest. We calculated the mean squared error (MSE) and the squared correlation
coefficient of linear regression (R2) between the observed (true) and the FST-based Ne estimated
values of all simulations. We also evaluated the performance of each estimator by calculating the
MSE for simulations within a specific range of values of θb (local MSE estimates). By comparing
the changes in MSE values of each estimator as a function of θb we could better understand how320

the amount of selection affected each estimator.

Analysis of temporal genomic data of feral populations of Apis mellifera
To give an example of an application of our framework , we analyzed a subset of

:::
We

:::::
used

::::
our

::::::::::
framework

:::
to

:::::::
analyze

::::
the

:
whole-genome sequencing data of feral populations of honey bees from

California (Cridland et al., 2018). Eight out of fourteen sites in this work were composed of sam-325

ples from museum and contemporary collections of freely foraging honey bees: 1) Avalon site in
Catalina Island, Los Angeles county

:::::::
County, 2) Arcata and Blue Lake sites in Humboldt county,

3) Placerita Canion Nature Area in Los Angeles county
:::::::
County, 4) Sky Valley and Idyllwild in

Riverside County, 5) La Grange, Stanislaus county, 6) Stebbins Could
::::
Cold

:
Canyon Reserve,

Solano county and 7) UC Davis Campus, Yolo county
::::::
(Table

:::
1). This dataset contains pairs330

spanning 104 years (as in the Avalon site, Catalina Island, Los Angeles county) and pairs span-
ning only 15 years (as in the Placerita Canyon Nature Area, Southern California, and Idyllwild,
in Riverside county). For the temporal samples from Riverside County, we only used the two
samples collected in May 1999 in Idyllwild as the first sample, and

:
.
::::
We combined all samples col-

lected in September 2014 (in Idyllwild and Sky Valley) as the second sample
::::::
(Table

:::
1).

:::::::::
Publicly335

::::::::
available

:::::::
whole

:::::::::
genomes

:::::
fastq

:::::
files

::::
for

::::
the

::::::::::::::
contemporary

:::::
and

::::::::
museum

:::::::::
samples

::::
are

:::::::::
available

::::
from

::::
the

::::::::::
Sequence

::::::
Read

::::::::
Archive

:::::::::::::::::
(PRJNA385500)

:::
as

::::::::::
described

:::
by

::::::::::::::::::::::
Cridland et al. (2018);

::::
we

::::::::::
performed

:::
the

:::::
data

::::::::
analysis

::::::
from

:::::
VCF

::::
files

::::::::::::::::::::::::::::::::::::::::::::
(the same files used in Cridland et al., 2018)

::::::
kindly

::::::::
provided

:::
by

:::
J.

:::::::::
Cridland.

Individual VCF files of each site
::::::::::
population

:
were combined with bcftools (Li, 2011)

:
,
:
and a340

custom R script was used to convert the dataset to an
::::
each

::::::::
dataset

::
to

::::
the input format required

to run an EggLib custom implementation (in Pavinato et al., 2021). We tagged samples from
the same time point with the same label

::::
first

::::::::
produce

::::::::::
simulated

:::::
data

:::
to

::::::
train

:::
the

::::
RF

:::
to

::::::
apply

:::
our

:::::::
model

::
to

::::
this

:::::::::
targeted

::::::::
dataset.

:::
A

:::::::::
reference

:::::
table

::::
was

::::::::::
produced

:::
by

::::::::::
simulating

::::::::::::::
whole-genome
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:::::
SNPs

::::
for

:::::::
diploid

:::::::::::
individuals

::
of

:::::
Apis

:::::::::
mellifera

:
,
:::::::::
changing

::::::
three

::::::
model

::::::::::::
parameters

:::::::::::
specifically

:::
for345

::::
this

::::::::
targeted

:::::::::
dataset:

:::::
the

:::::::
sample

:::::
size

:::
for

:::::::::::
population

::::::
time

:::::::
points

::
t1:::::

and
:::
t2,:::::

and
::::
the

::::
size

:::
of

:::
the

::::::::
haploid

:::::::::
genome.

::::
For

:::::
each

::::::::::::
population,

::::
we

:::
set

::::
the

:::::::::::
simulation

:::
to

:::::::
sample

::::
the

::::::
same

::::::::
number

::
of

::::::::::
sequenced

::::::::::::
individuals

:::::
from

::::
the

:::::
pool

::
of

:::::::::::
simulated

:::::::::::
individuals

::::
(as

::::::::
detailed

:::
in

::::::
Table

:::
1). For

the simulations,
:::::::
Avalon

::::::::::::
population,

:::
for

:::::::::
example,

:::
at

:::
t1::::

and
:::
t2:we set the genome size of each

individual to
::::::::::
simulation

::
to

:::::::
sample

::::
two

:::::
and

::::
five

:::::::::::
individuals

:::::
apart

::::::::
τ = 104

::::::::::::
generations

::::::::::
(assuming350

:::
one

::::::::::::::::::
generation/year).

:::::::
Only

:::::::::::::
polymorphic

::::::
SNPs

:::::
were

:::::::::
retained

::::
for

:::::
each

::::::::
sample.

:::::
We

::::
set

::::
the

:::::::
haploid

::::::::
genome

::::
size

:::
to

:
250 Mb (similar to the most recent estimates of A. mellifera genome

size (Elsik et al., 2014). For the analysis of the Apis mellifera temporal genomic data we
::::
Mbp

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(similar to the most recent estimates of A. mellifera genome size; Elsik et al., 2014)

:
.
::::

We
:

mea-
sured the amount of missing data , but we

:::::::
present

:::
in

:::
the

::::::::
original

:::::
VCF

::::
files

:::::::::::::::::::::::
(Cridland et al., 2018)355

:::
for

:::::
each

:::::::::::
population.

::::
We

:
found a negligible amount (< 1%) in most of

:::
the

:
populations (except

populations from Avalon and Placerita that had 10% of the total missing genotypes),
:::::
and

:::
we

:::::::
decided

::::
not

:::
to

::::::::
simulate

::::::::
missing

:::::
data

::::
for

::::
any

:::::::::::
population

:::::::::
analyzed.

The
::::::::::
simulation

:::::::
model

::
to

:::::::::
generate

::::
the

:::::::::
reference

::::::
tables

::::
for

::::
the

:::::
ABC

::::::::
analysis

:::
of

:::
A.

:::::::::
mellifera

:::::::::::
populations

::::
was

:::::::
similar

:::
to

::::
the

::::::
model

::::::::::
described

::::::
above

::::
but

:::::::::
required

:::::
some

:::::::::::::
modification

::
to

:::::::
adjust360

:
it
:::

to
::::
the

::::::::::::
specificities

::
of

::::
the

::::::::
species

::::
and

::::::::
samples

::::::::::
available.

:::::
The

::::::::::
simulated

:
genome was divided

into 5,000 fragments of 50,000 bps. These fragments were randomly set as neutral or non-
neutral according to the parameter PR. Dominance coefficients were set to 0.5 for all beneficial
mutations throughout the simulation. In the sampling period, for each site, the same number
of individuals found in each dataset were sampled in the first (t1) and second time point (t2).365

We used a Normal distribution for µ with a mean
::
of 3.4× 10−9 with a standard deviation of 0.5

, to have a prior distribution center around the estimated mutation rate for Hymenoptera (Liu
et al., 2017). The per base recombination rate was set as Uniform, ranging from 10−8 to 10−4.
The genome was represented with a

:
A

:
single linkage group . For the

:::::::::::
represented

:::
the

:::::::::
genome.

::::
The population sizes N0 and N were taken from a Uniform prior distribution ranging from 1 to370

10,000 individuals. Other prior probability distribution
::::::::::::
distributions

:
of the parameters were set

with the same prior as described above.
:::::::
Sample

:::::
sizes

::::
and

::::::
times

::::::
were

::::::::
adjusted

:::
to

:::::::
match

:::::
each

::::::::::::
population’s

:::::::::::
population

::::
(see

:::::
table

::::
1).

:
We used the same summary statistics as described above,

except this time, we only calculated
:::::::::
described

:::::::
above.

::::::::::
However,

:::
we

::::::::::
calculated

:::::
only

:
one window

size of 10Kbp for summary statistics calculated in windows and one bin size of 10 bins for the375

site-frequency spectrum. The raw reference table containing the vector of parameters, latent
variables, and summary statistics produced by the pipeline was processed to remove missing
data, and a

:
.
:::

A
:

final reference table containing 162 summary statistics for each population
pair , was used to train the ABC-RFs. (see

:::
We

::::::::
visually

:::::::::
assessed

::::
the

::::::
model

:::::::::::::::
goodness-of-fit

:::
by

::::::::::
performing

::
a
:::::::::
principal

:::::::::::
component

::::::::
analysis

:::
on

::::
the

:::::::::
summary

:::::::::
statistics

::
of

:::::
each

:::::::::::
population

::::::::
training380

::::::::
reference

::::::
table

::::
and

::::::::::
projecting

::::
the

::::::::::::::
corresponding

::::
PC

::
of

::::
the

:::::::
target

::::::::::
population

::::::::::
reference

:::::
table

:::
on

:::
the

:::::
PCA

::::::
plot.

::::
We

::::::::
consider

::
a

:::::
good

:::::::
model

::
fit

::::::
when

::::
the

::::::
target

:::::::::::
population

:::::
data

::::::
point

::::
falls

:::::::
within

:::
the

::::::
cloud

::
of

:::::::::::
population

::::::::::
simulated

:::::
data

::::::::
points.

::::
Like

:::
the

::::::
ABC

::::::::
analyses

::::::::::
described

:::::::
above,

::::::::::::
independent

:::::
RFs

:::::
were

::::::::
obtained

::::
for

:::::
each

::::::::::
parameter

::::
and

::::::
latent

::::::::
variable

:::::
using

::
R

::::::::
package

::::::
abcrf

::::::::::::::::::::::::::::::::::::::
(Pudlo et al., 2016; Raynal et al., 2019)

:
.
:::::
Each

::::
RF

::::
was385

::::::::
obtained

:::
by

:::::::::
growing

::::::
1,000

::::::
trees.

:::::
The

:::::
RFs

:::::
were

::::::
grown

::::::
with

::::
the

:::::::
default

::::::::::::
parameters.

:::::::::
Average

:::::::
genetic

:::::
load,

:::
L,

:::::
and

::
P

::::::
were

:::::::::::::::::
logit-transformed

:::::::
before

::::
the

:::::::::
training.

:::::
For

:::::
these

:::::::
latent

:::::::::
variables

::::
and

:::
for

::̄
s,

::::::::::::
simulations

:::::
with

:::::::
L = 0,

::::::
P = 0

:::
or

:::::
s̄ = 0

:::::
were

:::::
also

:::::::::
excluded

:::::
from

::::
the

::::::::
training

::::
set.

::::
We

::::::::::
performed

:::
log

:::::::::::::::
transformation

:::::::
before

::::::::
training

:::
for

::::
the

::::::
other

:::::::::::
parameters

::::
and

:::::::
latent

:::::::::
variables

::::
and

::::
used

::::
the

:::::::::
reference

::::::
table

::::::::::
containing

:::
all

:::::::::::::
simulations.

:::
As

:::::::
before,

:::
we

:::::::::
evaluate

::::
the

::::
RF

::::::::::::
performance390

::
by

:::::::::::
calculating

::::
the

::::::
mean

::::::::
squared

::::::
error

:::::::
(MSE)

::::
and

::::
the

:::::::::::
correlation

:::::::::::
coefficient

:::::
(R2)

::::::::
between

::::
the

::::
true

::::
and

::::
the

::::::
OOB

::::::::::
estimated

:::::::
values

:::::::::
obtained

:::::
with

::::
the

:::::::::
function

:::::::::
regAbcrf

::::::::::::
implemented

:::
in

::::
the

::
R

::::::::
package

::::::
abcrf.

::::
For

::::::::
neutral

::::::::::::
simulations

::
of

::::
the

::::::
latent

:::::::::
variables

:::
L,

:::
P ,

:::::
and

::̄
s,

:::
we

::::::::::
evaluated

::::
the

::::::::::::
performance

:::::
with

::::
the

:::::
MSE

::::
and

::::
the

::::
bias

:::
on

::::
the

:::::::::::
parameters

::::::::::
estimated

:::
in

::::
the

::::::::
original

::::::::::
parameter

:::::
scale.

::::
See

:
Table 1 for the number of simulations of each reference table). The RFs were grown395
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as described above.

Table 1: Populations and number of simulations in the reference table.

Location Date N
:::::::
Sample

:::::
Sizes

:
Simulations

Avalon, Catalina Island, Los Angeles county 1910/2014 2,
:
/5 13,953

Blue Lake and Arcata, Humboldt county 1966/2015 6,
:
/6 14,216

Placerita Canyon Nature Area, Los Angeles county 1999/2014 5,
:
/6 14,125

Idyllwild and Sky Valey, Riverside county 1999/2014 2,
:
/8 13,930

La Grange, Stanislaus county 1976/2014 2,
:
/6 13,956

Stebbins Cold Canyon Reserve, Los Angeles county 1996/2014 5,
:
/5 14,121

UC Davis Campus, Yolo county 1968/2015 2,
:
/6 13,970

Names highlighted in bold letters corresponds
::::::::::
correspond

:
to the population code we used in this work.

:::
For

:::::::
sample

:::::
sizes,

:::
the

::::
first

:::::
value

::::::::
indicates

::::
the

::::
size

::
of

:::
the

::::
first

:::::::
(older)

::::::
sample

::::
and

:::
the

:::::::
second

:::::
value

:::
the

::::
size

::
of

:::
the

:::::::
second

::::::::::::::
(contemporary)

:::::::
sample.

:

Results

ABC-RF framework for joint
::::::
Joint

:
inference of adaptive and demographic

history
The ABC-RF framework jointly estimated

:::::::::
proposed

:::::::::::
framework

::::::::
allowed

:::
us

::
to

:::::::::
estimate

:
pa-400

rameters informative about adaptive and demographic history in temporal population genomics
settings. Independent random forests estimated the population scaled beneficial mutation rate
θb, the population census size N , and the effective population size Ne (Figure 2). Trained RFs
performed well in predicting N and Ne with small MSE and higher R2 (Figure 2 b and c). But,
the trained RF for θb had a lower performance than the trained RFs for demographic parameters,405

with high MSE and low R2 (Figure 2aand b). Still, the estimates were robust for intermediate to
higher values of θb. For the results of other model parameters and latent variables informative
about demography and selection

::::
(see

:::::::
Figure

:::
S2

::::
and

:::::::
section

:::
S2

:::::::::::::::
Supplementary

:::::::::
Results).

::::::::
Similar

::::::
values

::
of

::::::
MSE

::::
and

:::
R2

:::
on

:::::
true

:::
vs.

::::
RF

::::::::::
estimated

::::::
values

::::::::
(Figure

:::
S5

::
a,

:::
b,

::::
and

::
c)

::::::::::
indicated

:::::::
similar

::::::::::::
performance

::::
RF

:::
for

:::
θb, see S3

::
N ,

:::::
and

:::
Ne:::

on
:::::::::::
simulations

:::::
with

:::::::::::::
heterogenous

:::::::::::::::
recombination

:::::
rates410

::::
(see

:::::::
Figure

:::
S4

:::
for

:::
an

:::::::::
example

::
of

:::::
how

:
r
::::::

could
:::::
vary

:::::::
across

:::
the

::::::::::
genome).

::::
For

::::
the

:::::::
results

::
of

::::::
other

::::::
model

:::::::::::
parameters

::::
and

::::::
latent

:::::::::
variables

::::
for

::::::::::
simulation

:::::
with

:::::::::::::
heterogenous

:::::::::::::::
recombination

:::::
rate,

:::
see

::::::
Figure

:::
S5

::::
and

:::::::
Table

:::
S2,

:::::::
section

::::
S2 Supplementary Results.

The automated
:::::::::
automatic

:
selection of informative summary statistics is an important feature

of ABC-RF. For each tree of a random forest, summary statistics were selected given its ability415

to split the data. How many times a summary statistics was
:::::::::
summary

:::::::::
statistics

:::::
were selected in

each RF informs us of their importance for the inference of
:::::::::
predicting

:
a given parameter. For the

prediction of θb values, the RF picked more frequently
::::::::
statistics

:::::
that

:::::::
reflect

:::
the

::::::::::::::
heterogeneity

::
of

::::
the

::::::::
genome,

::::::
such

::
as

:
the 5% quantile of Tajima’s

::
D

:
calculated in the second sample, with

the kurtosis and skewness of FST and Da calculated globally (Figure S4
::
S6

:
e). The population420

size was trained with a combination of within and between sample summary statistics: FST and
Da, with their respective derived statistics were frequently selected (Figure S5

::
S7

:
c). For Ne,

summary statistics that inform about the cumulative divergence between samples as FST and
Da, were frequently selected (Figure S5

:::
S7

:
d).

10



N

NN
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N

F

!

!

MSE = 0.023

MSE = 0.032MSE = 1.479

MSE = 0.299

R  = 0.6592

a b

c d

R  = 0.9662

R  = 0.9722 R  = 0.7082

Figure 2: Out-of-bag estimates of ABC-RF trained for the joint inference of
demography and selection, and N̂e estimates from the temporal FST to com-
pare with the ABC-RF -based N̂e estimates. (a) population census size N

::::::
scaled

:::::::::
mutation

:::::
rate

:::
of

:::::::::::
beneficial

:::::::::::
mutations

:::
θb; (d

:
b) effective population

::::::
census

:
size Ne:::

N ; (c)
::::::::
effective

:
population scaled mutation rate of beneficial mutations θb::::

size
::::
Ne; and (d) Ne

from temporal FST

Comparison with FST method to estimate Ne425

We compared our ABC-RF Ne estimates with estimates obtained with the temporal FST

:::::::::
estimates

:
(Frachon et al., 2017). The FST-Ne :::::::

-based
:::
N̂e:was more affected by the amount of

selection in larger populations . Consequently, the
:::::
when

::::::::
selection

:::
is

:::::
more

:::::::::
efficient.

::::
The

:
FST-Ne

::::::
-based

:::
N̂e:showed higher overall MSE and lower R2 compared to the ABC-RF -based

:::::::::::
ABC-based

estimates (Figure 2c and d). When the beneficial mutations were less frequent (either because of430

the mutation rate of the beneficial mutation, and because of larger population size), the ABC-RF
and the temporal FST ::

N̂e:performed well and similarlyregardless ,
:::::::::::
regardless

::
of

:
the strength of

selection, with the ABC-RF based estimator with less error
:::::
when

::::
the

::::::::::
beneficial

::::::::::
mutations

:::::
were

:::
less

:::::::::
frequent

::::
(low

:::::
θb).

:::::::::
However,

::::
the

:::::::::::
ABC-based

::::::::::
estimator

::::
had

::::
less

:::::
local

:::::
MSE

:
than the temporal

FST-based estimator. However, when
::::::
When the frequency of selection started to increase

::
is

::::
high,435

the Ne estimator based on the temporal FST had dramatically higher error (Figure 3).

Analysis of temporal genomic data of feral populations of Apis mellifera

:::
The

:::::::::::
projection

::
of

:::::
each

:::::::::::
population

::::::
target

:::::
data

::::::
point

:::
(in

:::::::
black)

::::
into

::::
the

::::::
cloud

::
of

::::
the

::::::::
training

::::
data

:::::::
points

::::
(in

::::::
grey)

:::
in

::::
the

::::::
PCA

:::::
plots

:::::::::
revealed

:::::
that

:::::
each

::::::::::::
population

:::::::
model

::::::
could

::::::::
capture

:::::
some

::::::::::
dimension

:::
of

:::
the

:::::::::
observed

::::::::
genetic

:::::::::
diversity

::::::::
(Figures

:::::::::
S8-S14).

:::::::::
However,

::::::
some

:::::
PCs

:::::::
showed440

:::
the

:::::::::
observed

::::::
data

::::::
point

::::::::
outside

::::
the

::::::::::
simulated

:::::
data

::::::
cloud

:::
of

::::::::
points,

::::::::::
indicating

::::::
some

:::::::
model

:::::::::::::
inadequacies,

::::::::
possibly

::::::::
because

:::
we

::::
did

:::
not

::::::::
include

::::
gene

:::::
flow

::
or

:::::::::::
admixture

::
in

::::
our

::::::::::::
simulations.

:
For
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Figure 3: Local MSE of Ne estimates as a function of θb. The lines corre-
sponds to the MSE on Ne estimates from ABC-RF and from temporal FST.

::::::::
Dashed

:::::
lines

:::::::::::
correspond

:::
to

:::::
local

::::::
MSE

::::::::::
estimated

::::::
from

:::::::::::::::::
pseudo-observed

:::::
data

::::::::
(POD)

:::::
with

:::::::::::::::
heterogeneous

:::::::::::::::
recombination

:::::
rates

:::::::
along

::::
the

:::::::::
genome.

the analysis of feral A.
:
mellifera populations, we first grew independent RF for each parameter in

each population. All populations had the same
:::::::
Despite

::::
the

:::::::::::
differences

::
in

:::::
time

:::::::::
intervals

::::::::
between

::::::::
samples,

:::
all

::::::::::::
populations

:::::
had

::
a

:::::::
similar

:
performance of the ABC-RF estimator for Ne, as they445

showed similar values of MSE and R2 (Figure S8
::::
S15). For N , trained RF for Humboldt, Stebbins

and Placerita performed similarly well, and they had
::::
with

:
the lowest MSE and higher R2 (Figure

S7
::::
S16). For θb, Riverside had trained RF with the worst performance (Figure S6

:::
S17). Overall,

both MSE and R2 obtained with OOB estimates from simulated data for Apis
:::
A.

:
mellifera

dataset were comparable to these parameters obtained with OOB estimates for the simulated450

data for
::
in

:
the evaluation of the method.

Trained RF
::::
RFs

:
for N and Ne were able to predict these parameters in all populations,

as the inference of the mean posterior value and the posterior distribution differentiated from
the mean prior value and distribution (Figure 4 b and c). For N , posterior distribution were
wider than for Ne. Trained RF for θb, for all populations had a similar posterior mean, except455

for the Avalon population that had a peak at a lower value (Figure 4 a). But
::::::::
However, the

posterior distributions were wider and they followed the prior distribution, making it difficult to
accurately predict the posterior mean and variance in all populations

::::::::::
accurately. It is possible

to see together with the posterior mean estimates that the ABC-RF estimates for θb were
concentrated in lower values (Table S2

::
S3) in all populations. Ne were also lower, and Ne and N460

were similar. For the results of OOB estimates of other model parameters and latent variables
, and for

:::
and

:
posterior estimates for these parameterssee S3 ,

::::
see

:::::::
section

::::
S2

:
Supplementary

Results.
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Figure 4: Joint inference of demography and selection for feral A. mellifera
populations.

::::::::::
Inference

::::
of

::::::::::::::::
demography

:::::
and

::::::::::::
selection

::::
for

:::::::
feral

::::
A.

::::::::::::
mellifera

::::::::::::::
populations. (a) the

:::::
scale

::::::::::
mutation

:::::
rate

:::
of

:::::::::
selected

:::::::::::
mutations

::::
θb,

::::
(b)

::::
the

:
population

census size N , (b
:
c) the effective population size Ne(c) the scale mutation rate of selected

mutations θb. Dashed and filled lines corresponds
:::::::::::
correspond

:
to the prior and poste-

rior distributions, respectively
:
.
::::
See

:::::::
Table

::::
S3,

::::::::::::::::
Supplementary

::::::::
Results

::::
for

::::::
mean

:::::
and

:::::
95%

::::::::::
credibility

::::::::::
intervals.

Discussion

Separating demography from drift, and the inference of θb465

With temporal population genomics data, we can see the evolution in “action” as opposed
to single time-point population genomics data (Feder et al., 2021). Consequently, temporal data
have more information about the ongoing process, which make them better for the understanding
of

:::::::
making

:::::
them

:::::::::::
interesting

:::
for

:::::::::::::::
understanding the complex

::::::::::
short-term

:::::::
effects

::
of

::::
the

:
interaction

between demography and selection (Buffalo and Coop, 2019; Dehasque et al., 2020; Williams and470

Pennings, 2020). When samples from more than two time points are available, the footprints
:::::::::::
correlations

:::::::
among

::::::
allele

::::::::::
frequency

::::::::
changes

::::::
allow

:::
to

::::::::
separate

::::
the

:::::::
effects

:
of drift and selection

in allele frequencies changes can be separated (e.g., Buffalo and Coop, 2020; Feder et al., 2014)
:::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Buffalo and Coop, 2020; Feder et al., 2014). Our results showed that two samples col-
lected in

::
at

:
different time points were

:::
are

:
sufficient for the inference of the genome-wide foot-475

print of adaptive evolution and to separate the demography (population census size N) from
drift (effective population size Ne).

It is important to stress that Ne, ::::::::::
calculated

:
as a latent variable, captures the feedback

dynamics between drift and linked selection. Selection, either positive or negative, causes a
deviation of Ne from N . The impact of selection on the genome can extend far from the target480

of selection since individuals that carry beneficial mutations have more chance to reproduce,
::::
and

:
their beneficial mutations are more likely to be in the next-generation offspring (Walsh

and Lynch, 2018). In this complex dynamic, with many loci under selection which creates
a dynamic that cannot be easily described

:::::::::::
analytically, latent variables actually summarized

the by product
::::::::
obtained

::::::
from

:::::::::::
simulations

::::
can

:::::::::::
summarize

::::
the

:::::::::::
by-product

:
of drift and selection485

interactions. With our approach, N̂e quantifies the drift due both to demographic and selection
dynamics

:::::::::
processes,

:::::::::::
unaffected

:::
by

::::
the

::::
bias

:::
of

:::::::
outlier

::::
loci.

This genome-wide reduction in Ne is not captured when loci are assumed to evolve indepen-
dently (as in Sheehan and Song, 2016, for example)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(as in Sheehan and Song, 2016; Laval et al., 2019, for example)

. In contrast, the complexity of linked selection and the genome-wide effect of selection are taken490

into account by using individual based simulations with
:::::
using

:::::::::::::::::
individual-based

:::::::::::
simulations

:::::
with
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:::
the

:
whole genome in an ABC approach.
Estimates of genetic load or other genome-wide parameters about selection are obtained

when annotated genomic data is available , (Henn et al., 2015)
::::::::::::::::::
(Henn et al., 2015)

:
,
:
or by con-

ducting experiments on crossing populations (for the genetic load Plough (2016))
::::::::::::::::::::::::::::::::::
(for the genetic load; Plough, 2016)495

. However, we were able to obtain
:::::::::
obtained estimates of selection parameters only with

:::::
using

polymorphism data. A similar approach was used by Laval et al. (2019) to estimate the number
of selective sweeps affecting the human genome in the past 10,000 years. But they did not
consider the feedback dynamics of selection and demography. Differently, Buffalo and Coop
(2020) measured the genome-wide signature of selection by estimating the covariance of allele500

frequencies at consecutive time points. This
::::
The

::::::
allele

::::::::::
frequency

:::::::::::
covariance

:::::::
matrix

:
allowed

the quantification of the genome-wide contribution of selection to the observed allele frequency
changes, even when selection involved many loci of small effect. In this work, we estimated the
population scale mutation rate of beneficial mutations θb, which informs about the diversity
of beneficial mutations that existed in the population between the two time points , and the505

potential speed of adaptation at the genome level (Hermisson and Pennings, 2017). These esti-
mates reflect the potential number of beneficial mutations present between the two time points
regardless

::
of

:
their impact as determined by their selection coefficients.

The variable importance plot of each parameter shows us the global importance of each sum-
mary statistics

:::::::
statistic

:
in the trained Random Forests. For Ne, N , and θb summary statistics510

calculated from the distribution of locus-specific summary statistics -skewness, kurtosis, mean,
variance, 5% and 95% quantiles were more frequently used. Summary statistics derived from the
distribution of locus-specific calculated from all segregating loci in the genome inform about the
heterogeneity that selection and drift produce genome-wide. For example, a de novo a beneficial
mutation entered the simulation and was selected,

:
;
:
it left a signal of lower diversity around515

the region it was located. The genome, after selection, contained spots where diversity was
high and where it was low, and this heterogeneity was captured by the distribution of locus-
specific HE, more specifically,

:
the lower tail of the distribution where the values of diversity

::::::::
diversity

:::::::
values

::
of

::::
the

:::::::::
statistic were lower. The use of the covariance matrix of allele frequen-

cies through Buffalo and Coop (2020) can be considered
::::
time

::::::::::::::::::::::::::
(Buffalo and Coop, 2020)

:::
can

:::
be520

::::
used

:
as a summary statistic for the the genome-wide heterogeneity that

::
to

::::::::
capture

::::::::::
additional

:::::::::::
information

::::::
about

::::
the

:
selection and drift left on the genome. It would be interesting to include

:::::
when

:::::
more

:::::
than

::::
two

:::::::::
temporal

::::::::
samples

::::
are

:::::::::
available.

::::::::::
Including

:
this matrix as summary statistics

for further development of the method
:::::
would

:::
be

:::::::::::
interesting.

Comparison with FST method to estimate Ne525

We compared the Ne obtained with ABC-RF framework to the Ne obtained with FST estima-
tor (Skoglund et al., 2014; Frachon et al., 2017)

::::::::::::::::::::
(Frachon et al., 2017). Overall, the FST-based

Ne estimator performed poorly compared to the ABC-RF -based
::::::::::::::
ABC-RF-based

:
estimator.

The lower performance were
:::
was

:
caused by Ne values that were underestimated when beneficial

mutations were more frequent (higher θb). Consequently, the Ne estimates from the temporal530

FST were strongly affected by selection. When
:::::
Both

:::::::::::
estimators

::::::::::
performed

:::::::::
similarly

::::::
when

::::
the

selection was infrequent or rare, both estimators performed similarly well, but with
:::
but

:
the

ABC-RF estimator with lower MSE
:::
had

::::::
lower

::::::
MSE

:::::
than

::::
the

::::
FST::::

one. Positive selection can
increase the variance of allele frequency between samples taken in

::
at

:
different time points. When

selection is infrequent or rare, drift determines most of allele frequency changes between sam-535

ples; but
:
.
:::::
Still,

:
when selection is pervasive, selection dominates, which cause

::::::
causes

:
dramatic

and rapid changes in allele frequency, increasing the variance between samples. Ne estimator
based on the FST depends on the differences in allele frequencies between samples, consequently

:
;

:::::::::::::
consequently, it is naturally biased by strong and frequent selection. We can assume that the Ne
estimator from ABC-RF was insensitive to the amount of selection since we trained the ABC-RF540
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with Ne values from the simulation. In our simulations, Ne was a latent variable that captured
the deviation that selection imposed on the number of individuals able to reproduce (selected
for); it was not a biased by unaccounted factors

::::::::::::
unaccounted

:::::::
factors

:::
did

::::
not

:::::
bias

::
it.

The amount of selection for θb ∼ O(1)
::::::
θb > 1

:
could be unrealistic in some organisms, but

plausible in virus (Feder et al., 2014) and many arthropod species, with large Ne, which have545

larger population sizes (except in eusocial insects that have vertebrate-like population sizes
Romiguier et al. (2014)). In larger populations sizes selection acts also

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(except in eusocial insects that have vertebrate-like population sizes; Romiguier et al., 2014)

:
.
:::::
The

:::::::::
selection

::::
also

:::::
acts

:
on weaker and milder beneficial mutations

::
in

::::::
larger

::::::::::::
populations. In

those organisms, it might be unreasonable to assume mutation-drift equilibrium given the perva-
sive role of selection. Consequently, any attempt

:::::::::
attempts

:
to estimate demography parameters550

as Ne without properly accounting for the pervasive role of selection could be biased.

Analysis of temporal genomic data of feral populations of Apis mellifera
Overall, the performance of the ABC-RF for selection and demography inference was similar

across populations despite the differences in sample size and age. For θb, Avalon and Hum-
boldt populations had posterior probability distributions very similar to the prior, indicating555

that the analysis provides no additional information on this parameter. These two population
:::::::::::
populations

:
also present low effective population size estimates, which can reduce the signal of

selection
::::::::
reducing

::::
the

:::::::::
selection

::::::
signal. For the rest of the populations, the posterior probability

distribution of θb is tilted toward the higher values but without a clear peak differentiating
the distribution from the prior. Still, lower θb values could be excluded. This favours an560

interpretation in which
::
It

::::::
favors

::::
the

::::::::::::::
interpretation

:::::
that

:
selection was acting during the study

period but without providing a precise estimate of the parameter . The information about the
::::::::::
parameter

:::::::::
estimate.

::::::
The

:
presence of selection in these analyses comes mainly from the het-

erogeneity of the polymorphism along the genome, thus
:
.
::::::

Thus, for a thorough interpretation
of the results, it is important to discuss other processes that have not been modelled but that565

::::::::
modeled

::::
but

:
could affect this signal. The studied bee populations in California show a mixture

of Eastern and Western European ancestry, with some populations presenting African ancestry
in the most modern samples Cridland et al. (2018). Different levels of African admixture along
the genome could create some heterogeneity and affect the inference. However,

::
in Placerita and

Riverside, the populations with higher African ancestry at present, present similar estimates of570

θb that populations with little or no African admixture. Also, Humboldt population changes
from having

::::
The

::::::::::
Humboldt

:::::::::::
population

::::::::
changed

:::::
from

:
predominately Western European ancestry

to having predominately
:
to

:
Eastern European ancestry, which means

::::::::
meaning

:
that there was

substantial gene flow into the population. These results suggest that admixture does not dra-
matically affect the inference of selection but also highlights the importance of incorporating575

admixture in
:::
the

:
future development of the approach.

::::::
Other

::::::::::
processes,

:::::
such

:::
as

::::::::::::::
recombination

::::
and

:::::::::
mutation

::::::
rate,

::::::
might

::::
be

::::::::::::::
heterogeneous

::::::
along

::::
the

:::::::::
genome.

::::::
Our

::::::::
analysis

:::
of

::::::::::::
simulations

::::
with

::::::::::::::
heterogeneous

:::::::::::::::
recombination

::::
rate

::::::::
suggest

:::::
that

::::
the

:::::::::
approach

::
is
:::::::
robust

:::
to

::::::
those.

::::::::::
However,

:::::
more

::::::::
complex

::::::::
models

:::::
also

:::::
seem

::::::::::
necessary

:::
to

:::::
fully

::::::::
capture

::::
the

:::::::::
observed

:::::::
genetic

::::::::::
diversity

::::
(see

:::::::
Figures

::::::::
S7-S13,

::::::::
section

:::
S2

:::::::::::::::
Supplementary

:::::::::
Results).

:::::::::::
Including

:::::::::::
additional

:::::::
factors

::::::::::::
(admixture,580

:::::::::::::
heterogeneity

::
of

::::::::::::::
recombination

:::::
and

:::::::::
mutation

:::::
rate,

::::
and

::::::
other

::::::
forms

::
of

::::::::::
selection)

::::::
could

:::
be

:::
key

:::
to

:::::::::
obtaining

:::::::
models

:::::
that

:::
fit

::::
the

:::::
data

:::::::
better.

:::::::::
Further

::::::::::::::
developments

::
of

:::::
this

:::::::::
approach

:::::::
should

:::::
take

:::::
them

::::
into

:::::::::
account.

:

Our ABC-RF approach estimated Ne with the same order of magnitude of other Ne estimates
obtained for hymenopterans (Zayed, 2004). Lower values of Ne might reflect the presence of585

admixture, either African admixture or admixture that occurred with domesticated lineages
facilitated by changes in beekeeping practices

:::::::::::::::::::::
(Cridland et al., 2018). Northern populations,

especially from Humboldt County, shared similarities with bees from reared colonies (with higher
Eastern European ancestry). Southern populations, as shown by Cridland et al. (2018)

:
, showed
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a higher level of admixture with African lineages. Populations from the southernmost cites590

(from
:::::
cities

:
(Riverside County, Placerita, and Avalon, Los Angeles county

:::::::
County) showed higher

genetic diversity , but they
::::
than

::::
the

:::::::
others

::::
but did not show the highest values of Ne. On the

other hand, the population of Stanislaus County had the highest value of Ne, possibly because
it had lower levels of admixture with domesticated lineages compared to the population from
Riverside, Placerita, Avalon, and Los Angeles county

:::::::
counties.595

We observed that Ne and N had similar estimates. We were aware that our simulation
model did not account for key characteristics of eusocial insect reproductive biology: the mo-
nopolization of reproduction by the queen and the division of labor. In Honey

:::::
honey

:
bees, a

queen mates with more than one male (a process called polyandry)(Estoup et al., 1994), which
leads to a biased breeding sex ratio

::::::::::::::::::::
(Estoup et al., 1994). Assuming that only queens can repro-600

duce in the colony, polyandry increases the variance in the number of parents that contribute
::::::::::::
contributing to the offspring gene pool, which leads to a decrease in the Ne compared respect to
N (Nomura and Takahashi, 2012). In our simulations, we only simulated monogamous mating,
therefore

::::::::::
panmictic

::::::::
random

::::::::
mating.

:::::::::::
Therefore, the difference between estimates of Ne and N

only reflects the action of selection
::::::::
selection

:::::::
action. Therefore N must be interpreted with605

caution as it is probably reflecting more the total number of female breeders per generation
rather than the size of the population. Individual-based forward simulators

::::
such

:
as SLiM allows

setting different mating schemes. It is possible to simulate the haplodiploidy, the cast system,
diocy

:
, and sex ratio found in honey bees. These modifications in the simulation could potentially

::::::::::
simulation

:::::::::::::
modifications

::::::
could

:
allow us to estimate N and other parameters that could reflect610

better the biology of the speciesbut it
:::::
better

:::::::
reflect

::::
the

::::::::
species’

::::::::
biology,

::::
but

:::::
that

:
was not the

focus of this work.
One possible explanation for the similarities between Ne and N estimates, thus, relies on

cast specialization and concentration of reproduction to one of few females in the colony. These
came to a cost of reduced Ne, which reduces the efficacy of selection (either positive or negative).615

Bees are the few insect groups that show very small Ne potentially linked with the evolution
of eusociality (Romiguier et al., 2014). Knowing that lower Ne reduces the effectiveness of
selection, it is plausible to think that lower Ne is restricting the effects of mutation affecting
fitness to stronger beneficial mutations. Since these mutations are less frequent than weak or
mild mutations, their effects on Ne were small, which explains why Ne and N had values in620

the same range. Low Ne and low θb pointed to a biological system limited where adaptation is
limited by the influx of adaptive mutations (Rousselle et al., 2020).

Our ABC-RF framework also estimated the per-site mutation rate per generation µ (Sup-
plementary Results, S18). For all populations, the

:::
The

:
mean posterior µ

:::
for

:::
all

::::::::::::
populations

exceeds the mean
::::
prior

:
µof the species. The higher estimated values we obtained might reflect625

the
::
be

::::
due

:::
to

::::
the

:::::::
higher

:::::
true

:::::::::
mutation

:::::
rate

::::
but

:::::
also

::::::
reflect

:
recent admixture events between

these populations. We did not model gene flow and admixture. Modeling admixture could help
us correctly separate the effects of selection and drift since the introgression of African genes
might have biased some estimates of selection parameters.

Perspectives and Limitations630

Our model is very simplistic
:::::::::
relatively

::::::
simple, as it only considered the impact of beneficial

mutations, neglecting the effect of background selection and standing variation. Background se-
lection can mimic directional selection because they cause a similar pattern of diversity reduction
around the target of selection . However, it was recently shown that background selection only
mimics the classical sweepin simplistic models, where the deleterious mutation is localized in a635

specific region
::::::::::::::::
(Stephan, 2010)

:::
has

:::::
been

::::::::::
discussed

:::
for

:
a
:::::
long

::::::
time.

::::::
Much

::::
less

::::
has

:::::
been

:::::::::
discussed

::::::
about

:::
the

:::::::::
patterns

::
of

::::::::::::
background

:::::::::
selection

:::
on

:::::::::
temporal

:::::
data

::::
and

:::::
their

:::::::::::
differences

::::
with

:::::::::
selective

:::::::
sweeps.

::::::::::::::::::::::
Cvijović et al. (2018)

:::::::
showed

::::
that

::::::::
neutral

::::::
alleles

:::::::
linked

::
to

::::
less

:::::::::::
deleterious

:::::::::::::
backgrounds
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:::::
could

::::::::
quickly

:::
rise

:::
to

:::::
high

:::::::::::
frequencies

::::
due

::
to

::::::::::
purifying

:::::::::
selection,

::::::
which

::::::
could

::::::
mimic

::::
the

:::::::::
temporal

:::::
signal

:::
of

::
a

::::::::
selective

:::::::
sweep.

:::::::::
However,

::
if
::::::::::::
background

:::::::::
selection

::
is

::::
not

::::::::
localized

:::
to

:::::::
specific

::::::::
regions of640

the genome(Schrider, 2020). For more realistic scenarios, where the concentration of deleterious
mutations varies across the genome, background selection does not behave as a classical hard
sweep,

::::
the

:::::::
signal

::
of

:::::::::
selective

:::::::
sweeps

:::::
will

:::
be

::::::::
distinct

:::::
from

::::
the

:::::::
effects

:::
of

::::::::::::
background

:::::::::
selection

:::::::::::::::
(Schrider, 2020). In an attempt to jointly accommodate the effect of demography and selection
on the inference of Ne, Johri et al. (2020) modeled the effect of background selection and de-645

veloped an ABC-based approach that jointly estimated the distribution of fitness effects and
Ne. In their simulations, they modeled deleterious mutations and the classical hard sweep with
the inclusion of beneficial mutations. They showed an unbiased estimate of Ne regardless of
the presence of positive and negative selection

::::::::
presence. Future developments should include

a more realistic genomic architecture where both
::::
were

:
negative and positive mutations can co-650

occur and explore different concentrations of deleterious mutations. In additionto that, further
developments should explore not only scenarios of de novo mutations , but

::::
and selection acting

on standing variation. This can be easily
::
It

::::
can

:::
be

:
achieved with our pipeline and allows for a

more general treatment of the selection of soft sweeps. The model can also be expanded to more
complex demographic scenarios, including changes in population size and genetic exchange with655

external sources (migration). Including such admixtures will be key in the future development of
this approach since it is also a source of heterogeneity in the genome and, thus, might influence
the performance of the method

:::::::::
method’s

::::::::::::
performance.

Conclusion
We show that an ABC-RF -based approach is able to

:::
can

:
jointly infer adaptive and demo-660

graphic history from temporal population genomics data. This approach allows the quantification
of

:::::::::
quantifies

:
the genome-wide footprint of selection expressed in the scaled mutation rate of

beneficial mutations. The ABC-RF Ne is robust to varying degrees of strength of selection and
frequency of beneficial mutations. Our ABC-RF -based approach can be applied to temporal
population genomics datasets to gain insight about the

::::
into

:::::::
natural

:::::::::::::
populations’

:
adaptive and665

demographic historyof natural populations.
.
:
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