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Abstract6

When divergent populations interbreed, the outcome will be affected by the genomic and phenotypic7

differences that they have accumulated. In this way, the mode of evolutionary divergence between8

populations may have predictable consequences for the fitness of their hybrids, and so for the progress of9

speciation. To investigate these connections, we present a new analysis of hybridization under Fisher’s10

geometric model. Unlike previous such analyses, we allow for variable parental populations, and make11

few
:
,
:::::::
making

:::::
fewer assumptions about the additive and dominance

::::
allelic

:
effects that differentiate the12

hybridizing populations. Results show that the strength and form of postzygotic reproductive isolation13

(RI) depend on just two properties of the genetic differences
::::::::::
evolutionary

::::::
changes, which we call the “total14

amount” and “net effect” of evolutionary change
::::::
change,

::::
and

:::::
whose

::::::::
difference

:::::::::
quantifies

:::
the

::::::::
similarity

::
of15

:::
the

::::::
changes

:::
at

:::::::
different

::::
loci,

::
or

:::::
their

::::::::
tendency

::
to

:::
act

::
in
::::

the
::::
same

::::::::::
phenotypic

::::::::
direction. It follows

::::
from16

:::
our

::::::
results that identical patterns of RI can arise in different ways,

:::::
since

:::::::
different

:::::::::::
evolutionary

:::::::
histories17

:::
can

::::
lead

::
to

:::
the

::::
same

:::::
total

::::::
amount

::::
and

:::
net

:::::
effect

::
of

::::::
change. Nevertheless,

::
we

::::
show

::::
how

:
the key quantities18

do contain
::::
some

:
information about the history of divergence, and

::::
that

:
–
::::::
thanks

:::
to

::::::::
Haldane’s

:::::
Sieve

::
–19

the dominance and additive effects contain complementary information. Our results also clarify the roles20

of large- and small-effect substitutions in generating RI. For example, when hybridizing populations are21

locally adapted, populations that adapted with a few large-effect mutations will show more intrinsic RI22

than populations that followed the same phenotypic trajectory, but with many small mutations.23

Impact Summary24

When populations of animals or plants evolve differences in their genomes or traits, the nature of the25

differences will help to determine whether they can continue to interbreed. For example, the hybrid offspring26

may be infertile, or unlikely to survive to reproductive age, meaning that the two populations remain distinct27

from one another even after mating. However, in some cases the hybrids may be more fertile than their28

parents or have some other reproductive advantage. In this study, we use a mathematical model to relate29

hybrid fitness to the evolved differences separating the parents. We find that the outcome depends on just30

two properties of these differences, which capture the “total amount” and the “net effect” of evolutionary31

change. We then show that different evolutionary divergence scenarios or modes can lead to the exact same32

hybrid fitness. On the other hand, we can still make some inferences about the history of divergence by33

observing certain properties of hybrid fitness. Finally, we clarify the role of large- and small-effect changes34

in influencing the fitness of hybrids. Determining the relationship between hybrid fitness and the mode of35

evolutionary divergence will help to understand how new species form, to plan conservation interventions such36

as moving individuals between isolated populations to increase their adaptive potential, and to understand37

how existing species might interact when their habitats overlap, for example by
:::
due

:::
to climate change or38

other human impacts.39
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† Corresponding author: jjw23@cam.ac.uk.
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Introduction40

Genomic and phenotypic differentiation between populations is
:::
are

:
a major cause of reproductive isolation41

(RI), preventing hybrids from forming, or reducing their fitness when they do form. However, differentiation42

can also be a source of adaptive variation, if hybrids contain new fit combinations of traits or alleles, or43

act as conduits passing existing combinations from one population to another (Arnold and Hodges, 1995;44

Edmands, 1999, 2002; Coyne and Orr, 2004; Bierne et al., 2013; Schluter and Conte, 2009; Bernardes et al.,45

2017; Coughlan and Matute, 2020).46

Which of these outcomes actually takes place must depend on the types of phenotypic and genomic dif-47

ferences that have accumulated. A fundamental challenge in evolutionary biology is to understand the con-48

nections between the mode of evolutionary divergence, the type of differences that accrue, and the outcomes49

of subsequent hybridization.
::::
This

::::
can

:::
be

::::::
framed

:::
in

::::
two

:::::
ways:

::::::
what

:::
can

:::
we

:::::
learn

::::::
about

::::
the

::::::::::::
(unobserved)50

::::::
history

::
of
::::::::

parental
::::::::::

divergence
:::
by

:::::::::
observing

:::::
their

::::::::
hybrids?

::
(Lande, 1981; Welch, 2004; Schneemann et al.,51

2020; Fraser, 2020)
:
;
::::
and

::::::::::
conversely,

:::::
which

::::::::::
divergence

:::::::::
scenarios

:::
will

:::::::::::
predictably

::::
lead

::
to

::::
RI?

:
(Coyne and Orr,52

2004).
:

What, for example, are the respective roles of large- versus small-effect mutations in causing RI, and53

what are the roles of natural selection versus genetic drift (Lynch, 1991; Coyne and Orr, 2004; Jezkova et al.,54

2013; Satokangas et al., 2020; Moran et al., 2021; Clo et al., 2021)?
::
All

::
of
::::::

these
::::::::
questions

::::
are

::::::::
essential

:::
for55

::::::::::::
understanding

::::
the

:::::::::
opposing

::::::::
processes

:::
of

:::::::::
speciation

:::::
and

::::::::
adaptive

::::::::::::
introgression

:
(Abbott et al., 2013)

:
,
::::
and56

:::::::::
predicting

:::
the

:::::::::
outcomes

::
of

:::::
novel

::::::::::::::
hybridizations,

:::::::::
including

:::::
those

::::
that

:::
are

::::::::::::::::
human-mediated (Genovart, 2008;57

Chan et al., 2019).
:

58

One tool to address these questions is Fisher’s geometric model. This is a mathematical model of selection59

acting on quantitative traits (Fisher, 1930, Ch. 2), and has been used to understand both phenotypic data,60

e.g., QTL for traits involved in adaptive divergence (Orr, 1998), and fitness data. In the latter case, the61

phenotypic model need not be treated literally, but is a simple way of generating a fitness landscape (Martin62

and Lenormand, 2006; Martin, 2014). Both uses of the model have been applied to hybrids (Lande, 1981;63

Mani and Clarke, 1990; Barton, 2001; Chevin et al., 2014; Fräısse et al., 2016; Simon et al., 2018; Yamaguchi64

and Otto, 2020; Schneemann et al., 2020; Thompson et al., 2021; Schneemann et al., 2022).65

Most importantly here, the model allows us to consider the effects in hybrids of evolutionary changes of66

different sizes, and which were driven by different evolutionary processes (Hartl and Taubes, 1996; Orr, 1998;67

Chevin et al., 2014; Simon et al., 2018; Schneemann et al., 2020). However, previous analytical results have68

::
for

::::::::
diploids (Schneemann et al., 2020) depended on strong assumptions about the genomic differences

::::::
genetic69

::::::::::::
differentiation, such as no within-population variation

::::::::
variation

::::::
within

::::
the

::::::::
parental

:::::
lines, normality and70

universal pleiotropy among the fixed effects, and statistical independence among traits. Furthermore, the71

:::::
earlier

:
results describe the overall strength of RI in terms of a single fitted parameter, whose relationship to72

the process of evolutionary divergence is
::::::::
remained

:
obscure.73

In this paper, we generalise
:::::
extend

:
previous work on Fisher’s geometric model in two ways.74

First, we show how some previously published results concerning hybrid fitness apply exactly, without75

making any assumptions about the distribution of fixed effects. We do this by deriving the results with76

combinatorics, instead of making parametric assumptions about the distribution of fixed differences.77

:::::
First,

::
by

::::::::::
combining

::::
and

:::::::::::
generalizing

::::::::
previous

:::::
work

::
by

:::::::
several

:::::::
authors

:
(Lande, 1981; Chevin et al., 2014;78

Simon et al., 2018; Schneemann et al., 2020, 2022)
:
,
:::
we

::::
give

::::::
results

:::
for

:::
the

::::::::
expected

::::::
fitness

::
of

:::::::
hybrids

::::::::
between79

::::::
diploid

::::::::::::
populations,

::::::::
applying

:::
to

:::
all

:::::::
classes

::
of

:::::::
hybrid,

:::::
and

::::::::
allowing

:::
for

:::::::::
variation

::::::
within

::::
the

:::::::::::
hybridizing80

:::::::::::
populations,

::::
and

:::::
alleles

:::::
with

::::::::
arbitrary

::::::::
additive

:::
and

::::::::::
dominance

:::::::
effects.

:
Second, we show how some key quan-81

tities which
:::
that

:
appear in the results relate transparently to the history of divergence between the parental82

populations. Finally, we use the results to clarify the different contributions of large- versus small-effect83

substitutions to overall RI.84
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1 Results85

::::::::::
Results86

0.1 The model87

:::::
The

:::::::::::::
phenotypic

::::::::
model

::::::
and

::::::::
fitness

::::::::::::
landscape88

Under Fisher’s geometric model, the fitness of any individual depends solely on its values of n quantitative89

traits. The trait values for an individual can be collected in an n-dimensional vector z = (z1, ..., zn); and90

its fitness, w, depends on the Euclidean distance of this phenotype from an optimum o = (o1, ..., on), whose91

value is determined by the current environment. We will assume the simplest form of the model, where the92

log fitness declines with the square of the distance:93

lnw (z,o) = −‖z− o‖2 = −
n∑
j=1

(zi − oi)2 (1)

This model can be derived either exactly, or approximately, from a wide class of more complicated fitness94

functions (Martin, 2014; Schneemann et al., 2020), and in these latter cases, only a few, if any of the n traits,95

need to be identified with real quantitative traits that might be measured in the field.
::::::
Results

::::
can

::::
also

:::
be96

::::::
applied

::
if
::::::
fitness

::::::::
declines

:::::
more

:::::::
rapidly

::::
with

::::::::
distance

:::::
from

::::
the

:::::::::
optimum.

::::
For

::::::::
example,

::
if

::::::::::::::::
lnw = −‖z− o‖k97

(Fräısse et al., 2016; Simon et al., 2018; Fräısse and Welch, 2019)
::::
then

:::::::
results

:::::
below

:::::
could

:::
be

:::::::
applied

:::::::
directly98

::
to

:::
the

::::::
scaled

:::
log

::::::
fitness

:::::::::::::::::::::
(−lnw)2/k = ‖z− o‖2.

:
99

0.0.1 Characterizing parental divergence100

:::::::::::::::::
Characterizing

:::::::::::
parental

::::::::::::::
divergence,

:::::
and

:::::::::::::
describing

::::::::::
hybrids101

Given this model, both mutations and fixed differences can be represented by n-dimensional vectors of change102

in the phenotypic space. We will consider hybrids between two diploid parental lines
::::::::::
populations, denoted103

P1 and P2, which have accumulated .
:::::

We
::::
will

:::::::
assume

:::::
that

::::::::::
individuals

:::
in

:::::
these

:::::::::::
populations

:::::
vary

::
at

:
D104

fixed genomic differences. Our major assumption about these differences is a lack of phenotypic epistasis,105

i.e. that effects on the phenotype are additive between loci (further confirming that the n traits might not106

be identifiable with standard quantitative traits) . Given this assumption, each allele can be completely107

described via its additive and dominance effects on each trait. The additive and dominance effects can108

be collected in D × n - dimensional matrices, denoted a = (aij) and d = (dij), and we treat these as fixed109

observations, rather than random variables. For convenience, these effects are all defined relative to the110

:::::::
biallelic

::::
loci,

::::
and

::::
that

::::
the

:::::
allele

::::::::::
frequencies

::::::
might

::::
vary

::::::::
between

:::::::::::
populations.

:::
If

:::
we

:::::::::::
(arbitrarily)

::::::
choose

::::
one111

::::
allele

:::
at

::::
each

:::::
locus

:::
to

::
be

::::
the

::::
focal

::::::
allele,

::::
then

::::
the

:::::::::
frequency

::
of

:::
the

:::::
focal

:::::
allele

::
at

:::::
locus

:::::::::::
i = 1, ..., D

:
is
::::::::
denoted112

::
as

:::::
qP1,i ::::::

(qP2,i)::
in

::::::::::
population

:
P1 allele, whether ancestral or derived. This means that , for a single trait113

j and locus i, the homozygous state for the (P2allele is represented as 2aij , the heterozygote as aij + dij ,114

and homozygote for the
:
).

::::
We

::::
now

::::::
make

:::
the

::::
key

::::::::::
simplifying

::::::::::::
assumptions

::::
that

:::
(1)

:::::
there

::::
are

:::
no

:::::::::
statistical115

::::::::::
associations

::::::::
between

::::::
alleles

::::::
within

:::
the

::::::::
parental

:::::::::::
populations,

:::
so

::::
that

:::::
both

:::
P1

:::
and

:::
P2

::::
are

::
at

:::::::::::::::
Hardy-Weinberg116

:::
and

:::::::
linkage

:::::::::::
equilibrium

::
at

:::
all

::
D

::::
loci,

::::
and

::::
(2)

:::::
there

::
is

::
no

:::::::::::
phenotypic

::::::::
epistasis

:::::::
between

::::
the

:::::
allelic

:::::::
effects.

:
117

:::::
With

:::::
these

::::::::::::
assumptions,

::::
the

::::::::::
differences

::
in

::::
the

:::::
trait

::::::
means

::::::::
between

:
P1 allele as 0. The trait vector118

or phenotype of
:::
and

:
P2 can therefore be written as P1 plus the sum of twice the additive effects. For119

::::::::::::
contributions

::::
from

:::::
each

:::
of

:::
the

:::
D

::::
loci.

::::
As

:::::
such,

:::
for

:
any trait j = 1, ..., n, we have

:::
the

:::::::::
difference

::
in

:::::
trait120

:::::
means

::::
can

:::
be

:::::::
written

:
121

z̄P2,j − z̄P1,j = 2

D∑
i=1

Aij (2)
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Figure ??a
:::::
where

:::
the

::::::
factor

::
2

::::::
follows

:::::
from

::::::::
diploidy.

::
A

::::::
simple

:::::::::::
consequence

::
of
::::
eq.

:
2
::
is
:::::
that

:::
the

::::::::::
phenotypic122

::::::::::::
differentiation

::::::::
between

::::
the

::::::::
parental

:::::::::::
populations

::::
can

:::
be

:::::::::
described

:::
as

::
a
:::::
chain

:::
of

::::::
effects

:::
in

:::::::::::::
n-dimensional123

::::::::::
phenotypic

::::::
space.

::::::
Figure

::::
1A

:
shows an illustrative example with n = 2 traits, and

:::::::
affected

:::
by

:::::::
changes

:::
at124

D = 5 substitutions
:::
loci. Here, the black arrows represent the path of homozygous substitutions, 2a, leading125

from
::::
2Aij ,::::::::::

connecting
::::
the

::::
trait

::::::
means

:::
of P1 to

:::
and

:
P2via their most recent common ancestor (MRCA).126

h!The key quantities for determining hybrid fitness under Fisher’s geometric model. (A):127

The fitness of any given phenotype is determined by its distance from some optimum phenotype, as determined128

by the current environment. This optimum and fitness landscape is illustrated, for n = 2 traits, by the cross129

and contour lines. The diploid parental lines, P1 and P2, are each associated with a phenotypic value, and130

are connected by a chain of D = 5 homozygous fixed differences, shown as black arrows. The model allows for131

phenotypic dominance, so that each homozygous substitution is composed of a pair of heterozygous effects,132

defined either from the P1 state (red arrows) or the P2 state (blue arrows), combining the additive effects133

(black) with the dominance effects (purple). (B): the initial F1 hybrid is heterozygous at all divergent sites,134

and so its phenotype is found by combining the complete set of heterozygous effects. (C) The F1 can also135

be represented as the sum of the dominance effects (purple arrows), starting at the midparent (MP). Inset136

panels: The fitness of an arbitrary hybrid is affected by the total amount of evolutionary change (the sum137

of squared lengths of the arrows), and by the net effect of the evolutionary change (the squared lengths of138

the dotted lines). See Section ?? for full details.139

Each homozygous substitution is composed of two heterozygous effects (see Figure ??A inset). The effect140

of inserting the ,
:::
or

:::
the

:::::::::
centroids

::
of

:::
the

:::::::
clouds

::
of

::::::
points

::::
that

::::::
would

:::::::::
represent

:::
the

::::
two

::::::::
parental

:::::::::::
populations.141

::::
Each

:::::
2Aij ::::::::

describes
::::
the

::::::
diploid

:::::
effect

:::
on

:::::
trait

:
j
::
of
:::::::::
changing

:::
the

:::::
allele

:::::::::
frequency

:::
at

:::::
locus i th P2 allele into a142

P1 background is ai + di, and is shown as a red arrow in Figure ??. The effect of inserting the ith P1 allele143

into a P2 background is −(ai − di), and is shown as a blue arrow. In the initial F1 hybrid, all D of the144

divergent alleles are present in heterozygous state. As such, the F1 phenotype can be written in two ways.145

::::
from

:::::
qP1,i ::

to
:::::
qP2,i.:146

This is illustrated in Figure ??B, where
:::
We

:::
can

:::::
also

:::::
relate

::::
the

::::
Aij :::

to
:::
the

::::::::
parental

::::::
allele

::::::::::
frequencies147

:::
and

::::
the

:::
size

:::
of the path from either of

::::::::::
phenotypic

::::::
effect,

::
as

:::::::::::
represented

::
by

::::
the

:::::::::
Fisherian

:::::::
average

:::::
effect

::
of

::
a148

::::::::::
substitution

::
(e.g. Lynch and Walsh, 1998, Ch. 4

::
).

::
In

::::::::::
particular,

:::
we

:::::
show

::
in

:
the parental phenotypes to the149

F1 is found by combining the heterozygous effects (i.e. either the red or blue arrows) . If we take the mean150

of eqs. 4-5, we can also think of the F1 in a third way – as the point which connects the chain of dominance151

effects, d, to the midparental phenotype.
:::::::
Methods

:::::
that152

Aij = ᾱij (qP2,i − qP1,i) (3)

This is illustrated in Figure ??C. Together, Figure ??A-C show that, under Fisher’s geometric model,153

the fitness of
:::::
where

::::
ᾱij ::

is
:::
the

::::::::
average

:::::
effect

::
of

::
a
:::::::::::
substitution

:::
at

:::::
locus

:
i
:::

on
:::::
trait

::
j

:
(e.g. Lynch and Walsh,154

1998, eq. 4.10b
::
),

::::::::
averaged

::::::
across

:::
the

::::
two

::::::::
parental

:::::::::::
populations.

:
155

:::::
When

:::::
there

::
is
:::::::::::
phenotypic

::::::::::
dominance

:
(Lynch and Walsh, 1998, Ch. 4,

:
Schneemann et al., 2022

:
)
:::
we

::::
also156

::::
need

:::
to

:::::::
account

:::
for

::::
the

::::::::::
dominance

:::::::::
deviations

::::::::::
associated

::::
with

::::::
allele

:::::::::
frequency

::::::::
changes.

::::
We

:::
can

:::
do

::::
this

:::
by157

::::::::::
considering

:::
the

::::::
mean

::::::::::
phenotype

::
in

:
the

:::::
initial

:
F1 cross will depend on properties of

::::
cross

::::::::
between

:::
P1

::::
and158

:::
P2,

::
in

::::::
which

:::
all

:::
loci

:::
in

::
all

:::::::::::
individuals

:::::
carry

:::
one

::::::::::
P1-derived

:::::
allele

::::
and

::::
one

::::::::::
P2-derived

::::::
allele.

:::
We

:::::
show

:::
in

:::
the159

::::::::
Methods

::::
that the

::::::::
difference

::
in

:::::
trait

::::::
means

::::::::
between

:::
the

:::
F1,

::::
and

::::
the two parental lines, and properties of the160

chain of fixed effects that differentiate the lines. To determine the relevant properties, and their connections161

to the mode of divergence, we will sometimes consider the chains of homozygous and heterozygous effects,162

2a and a± d (Figure ??B), and sometimes consider the chains of
::::::::::
populations

::::
can

:::
be

:::::::
written

::
as

:
163

z̄F1,j − z̄P1,j =

D∑
i=1

Aij + ∆ij (4)

z̄P2,j − z̄F1,j =

D∑
i=1

Aij −∆ij (5)

4



:::::
where

:
164

∆ij = δ̄ij (qP2,i − qP1,i)
2

(6)

:::
and

:::
δ̄ij::

is
::::
the

::::::::::
dominance

:::::::::
deviation

::
of

::
a
:::::::::::
substitution

:::
at

:::::
locus

:
i
:::
on

:::::
trait

:
j
:::::::::
averaged

::::::
across

:::
the

::::
two

::::::::
parental165

:::::::::::
populations.

::::
The

::::::::::
differences

::::::::
between

:::
the

::::::::
parental

::::
and

:::
F1

:::::
trait

::::::
means

::::
can

::::
also

::
be

:::::::::::
represented

:::
as

::::::
chains

::
of166

::::::
effects,

::::
and

::::
this

::
is

::::::::::
illustrated

::
by

::::
the

:::
red

::::
and

:::::
blue

::::::
arrows

:::
in

::::::
Figure

::::
1A.

:::::::::
Moreover,

:::
we

::::
can

::::::::
separate

:::
out

::::
the167

additive and dominance effects , a and d (Figure ??C)
::
by

:::::::::::
considering

:::
the

::::::::::
differences

:::::::
between

::::
the

:::
F1

::::
and

:::
the168

:::::::::::
midparental

:::::
mean

:::::::::::
phenotypes,

:::::::
defined

::
as

::::::::::::::::::::::
z̄mp,j ≡ (z̄P1,j + z̄P1,j)/2.169

0.0.1 Characterizing an arbitrary hybrid170

z̄mp,j − z̄P1,j = z̄P2,j − z̄mp,j = 1
2 (z̄P2,j − z̄P1,j) =

D∑
i=1

Aij (7)

z̄F1,j − z̄mp,j =

D∑
i=1

∆ij (8)

The
:::
two

::::::::
resulting

:::::::
chains

:::
are

:::::::::
illustrated

:::
in

::::::
Figure

::::
1B.171

:::
The

:
arguments above for the F1 cross generalize to an arbitrary hybrid (say, an F2 or a backcross). All172

possible hybrids will contain some subset of arrows shown in Figure ??. For this purpose, let J1 be the subset173

of the
::::::
Hybrid

::::::::
genomes

:::
can

:::
be

::::::::::::
characterized

::
in

::
a

:::::::
number

::
of

::::::::
different

:::::
ways.

:::
In

:::
the

:::::
main

:::::
text,

:::
we

:::
will

::::::::
consider174

::::::
results

:::
for

:::::::
crosses,

::::::::
assuming

::::
free

:::::::::::::
recombination

::::::
among

::::
the D lociin the hybrid that are homozygous for the

:
,175

:::
and

:::::
that

::
no

:::::::
linkage

:::::::::::::
disequilibrium

::::
has

:::::::::::
accumulated

::::
due

::
to

::::::::
selection

:::
on

:::::
early

::::::::::
generation

:::::::
hybrids

::::
(see

:
Lynch176

and Walsh, 1998
:::
Ch.

::
9,
::::
and

:
Schneemann et al., 2020

:::
for

:::::
some

:::::::::::::::
generalizations).

::
In

::::
this

:::::
case,

::::::
hybrid

::::::::
genomes177

:::
can

:::
be

:::::::::
described

:::::
solely

::
in

::::::
terms

::
of

:::::
their

::::::
hybrid

::::::
index,

::
h
::::::::
(defined

::
as

:::
the

:::::::::::
probability

::::
that

::
a

:::::::::
randomly

::::::
chosen178

::::
allele

:::
in

:::
the

:::::::
hybrid

:::::::
derives

::::
from

::::::::
parental

::::
line

:::::
P2),

::::
and

::::
their

::::::::::
inter-class

::::::::::::::
heterozygosity,

:::
p12::::::::

(defined
::
as

::::
the179

::::::::::
probability

::::
that

::
a

::::::::
randomly

:::::::
chosen

:::::
locus

::::::
carries

::::
one

:::::
allele

::
of

:
P1 allele, J2 be the subset of the loci that are180

homozygous for the
:::::
origin

:::
and

::::
one

:::::
allele

::
of

:
P2 allele, and J12 the subset of loci that are heterozygous. Since181

all divergent loci must be in one of these three states, any two of these sets can completely characterize the182

hybrid. This implies that the j-th trait value of any hybrid can be written in several equivalent ways, for183

example:184

The size of these sets depends on the proportion of the divergent loci in the hybrid that are in each state185

(the two homozygotes and the heterozygote). Let us define these proportionsvia:186

Because all divergent loci must be one of these three states, we have:187

Our aim in this paper
::::::
origin).

::::::::
Results

:::
in

:::
the

::::::
main

::::
text

:::::
treat

::
h
::::
and

::::
p12:::

as
:::::::::::
probabilities

:::::::::::
determined188

::
by

::::
the

:::::::
crossing

::::::::
scheme,

::::
and

::::::
which

:::::
apply

:::
to

:::
all

::::
loci

:::::::::::
independent

::
of
:::::

their
::::::
allelic

:::::::
effects.

:::
In

:::::::::
Appendix

::
1
:::
we189

:::::
report

::::::::::
equivalent

::::::
results

::::
for

:::::::::
sequenced

::::::::
genomes

:::::
with

::::::
known

::::::::
patterns

:::
of

::::::::
ancestry,

:::::
such

::::
that

::
h
::::
and

::::
p12 :::

are190

::::::
known

:::::::::::
proportions.

:::
In

:::::
either

:::::
case,

:::
our

::::
aim

:
is to calculate the expected fitness of a hybrid, conditional on its191

genome composition, i.e. conditional on p1, p1 :
h
:
and p12. When we take expectations, they will be over the192

particular loci that are in any given state, e. g., over the particular Dp12 loci that are heterozygous.
:::::::
ancestry193

:::::
state.

:
We then determine how this result depends on properties of a and d (the additive and dominance194

effects). Unlike previous work, we will derive these results exactly without making any assumptions about195

the distributions of these effects.
:::::
These

::::
will

::
be

::::::::
collected

:::
in

::::::
D × n

:
-
:::::::::::
dimensional

::::::::
matrices,

::::::::
denoted

:::::::::
A = (Aij)196

:::
and

:::::::::::
∆ = (∆ij), ::::

and
::::::
treated

:::
as

:::::
fixed

::::::::::::
observations,

::::::
rather

::::
than

::::::::
random

:::::::::
variables.197

0.1 Expected log fitness of a hybrid198

:::::::::::
Expected

::::
log

:::::::::
fitness

:::
of

::
a

:::::::::
hybrid199
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Figure 1:
::::
The

::::
key

::::::::::
quantities

::::
that

::::::::::
determine

:::::::
hybrid

::::::
mean

:::
log

:::::::
fitness

::::::
under

::::::::
Fisher’s

::::::::::
geometric

::::::
model.

::::
The

::::::
fitness

::
of

:::
any

:::::
given

:::::::::
phenotype

::
is
::::::::::
determined

::
by

:::
its

:::::::
distance

:::::
from

::::
some

::::::::
optimum

:::::::::
phenotype,

::
as

::::::::::
determined

::
by

::::
the

::::::
current

:::::::::::
environment.

:::::
This

:::::::
optimum

::::
and

::::::
fitness

::::::::
landscape

::
is

:::::::::
illustrated,

:::
for

:::::
n = 2

:::::
traits,

:::
by

:::
the

::::
cross

::::
and

:::::::
contour

:::::
lines.

::::
(A):

::::
The

::::::
diploid

::::::::
parental

::::::::::
populations,

:::
P1

:::
and

:::
P2,

:::
are

:::::
each

:::::::::::
characterized

::
by

:::::
mean

::::::::::
phenotypic

::::::
values,

:::
zP1::::

and
::::
zP2,

:::
and

:::
the

:::::::::
difference

:::::::
between

::::
these

::::::
points

:::
are

:::
due

:::
to

::::
allele

::::::::::
frequencies

:::::::
changes

::
at

:::::
D = 5

::::
loci,

:::::
each

:::::::
affecting

:::
one

:::
or

::::
more

::
of
::::
the

:::::
traits.

:::
The

::::::
diploid

:::::::
changes

:::::::::
associated

::::
with

::::
each

:::::
locus

:::
are

::::::::::
represented

:::
by

:::
the

:::::
black

::::::
arrows,

:::::
whose

:::::::::::
components

::
are

:::::::
denoted

:::::
2Aij :::

for
:::
the

::::::
diploid

::::::
change

::
to

:::
the

:::
jth

:::::
trait

:::
due

::
to

::::
the

::
ith

::::::
locus.

::::
The

:::::
model

::::::
allows

::
for

:::::::::
phenotypic

::::::::::
dominance,

::
so

::::
that

:::
the

:::::::::
differences

:::::::
between

:::
the

:::::
trait

:::::
means

::
of
::::
the

:::::::
parents,

:::
and

:::
the

::::::
initial

:::
F1

::::
cross,

::::
also

::::::
involve

::::::::::
dominance

::::::
effects,

:::::::
denoted

::
as

:::
∆ij:::

for
::::
the

::::::
change

::
to

:::
the

:::
jth

::::
trait

::::
due

::
to

:::
the

:::
ith

:::::
locus.

:::
(B)

:
:
:::
the

:::::::
additive

::::::
(black)

::::
and

:::::::::
dominance

:::::::
(purple)

::::::
effects

:::
can

::::
also

:::::::::::
decomposed

:::
into

::::::
chains

::
of

:::::::::
differences

:::::
linking

::::
the

::
P1

:::
or

:::
F1

::::
trait

:::::
means

:::
to

:::
the

:::::::::::
mid-parental

::::
trait

:::::
mean

::::::::::::::::::
(zmp ≡ 1

2
(zP1 + zP2)).

::::::
Inset

::::::
panels

:
:

:::
The

:::::
mean

:::
log

::::::
fitness

::
of

::
an

::::::::
arbitrary

::::::
hybrid

::
is
:::::::
affected

::
by

::::
the

::::
total

:::::::
amount

::
of

::::::::::
evolutionary

::::::
change

:::
(the

:::
sum

::
of
:::::::
squared

:::::::
lengths

::
of

:::
the

::::::
arrows

::
in

::
a

::::::
chain),

:::
and

:::
by

:::
the

:::
net

:::::
effect

::
of

:::
the

:::::::::::
evolutionary

::::::
change

:::
(the

::::::
squared

:::::::
lengths

::
of

:::
the

::::::
dotted

:::::
lines).

::::
See

::::
text

::
for

::::
full

::::::
details.

:

:::::
Given

::::
the

:::::
model

:::::::::
described

:::::::
above,

:::
the

::::::::
expected

:::
log

:::::::
fitness

::
of

:::
an

::::::::
arbitrary

:::::
cross

::::
can

::
be

:::::::::::
determined

:::::
from

:::
the200

::::::::
expected

::::::
means

::::
and

::::::::
variances

:::
of

::
its

::
n
::::::
traits.

:
201

E (lnwH) = −
n∑
j=1

E
(

(zH,j − oj)2
)

= −
n∑
j=1

E2 (zH,j − oj)−
n∑
j=1

Var (zH,j) (9)

In the Methods, we show that the expected log fitness of the hybrid described
:::
each

:::
of

:::
the

::::
two

::::::
terms in202

eq. 53 is:
:
9

:::
can

:::
be

:::::::
written

::
as

::::
the

::::
sum

::
of

:::
six

::::::
terms,

:::::::::
weighted

::
by

::::
the

:::::
same

:::
six

::::::::::::
combinations

::
of

::
h

::::
and

:::
p12.

::::
All203
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::
12

::
of

:::::
these

::::::
terms

:::
are

::::::
shown

:::
in

:::::
Table

::
1,
::::::
where

:::
we

:::::::::
introduce

::::
the

::::::::
notation204

VP1 ≡
n∑
j=1

Var (zP1,j) VP2 ≡
n∑
j=1

Var (zP2,j) VF1 ≡
n∑
j=1

Var (zF1,j) (10)

where the function f(·) is defined as
::
to

:::::::
denote

:::
the

::::
sum

:::
of

:::
the

:::::
trait

::::::::
variances

:::
in

:
a
::::::
given

::::::::::
population.

::::
We205

:::
also

:::::::::
introduce

::::
two

::::
new

:::::::::
functions

::
of

::::::
D × n

:
-
:::::::::::
dimensional

::::::::
matrices

:
206

m(x,y) =

n∑
j=1

(
D∑
i=1

xij

)(
D∑
i=1

yij

)
(11)

M(x,y) =

n∑
j=1

D∑
i=1

xijyij (12)

Equation 56 contains six terms, each with a natural interpretation. The first three terms are simply a207

weighted
::::::
whose

::::::::
meanings

:::
we

:::::::
discuss

::::::
below.

:::::
The

::::::::
expected

:::
log

:::::::
fitness

::
of

::::
any

::::::
hybrid

:::::
with

:
a
::::::
given

:::::
value

::
of

::
h208

:::
and

::::
p12 ::::

(eq.
:::
9)

::
is

:::::
equal

:::
to

:::
the

:
sum of the log fitnesses of the three fixed genotypes: the two parents and209

the globally heterozygous
::::::
twelve

::::::
terms

::
in

::::
the

::::::
second

::::
and

:::::
third

::::::::
columns

:::
of

::::::
Table

::
1,

:::
as

::::::::
weighted

:::
by

:::::
their210

:::::::::
coefficients

:::
in

:::
the

:::::
first

:::::::
column.

:::::::::::
Examining

:::::
these

::::::
terms,

::
it

:::::::
follows

::::
that

:::
the

:::::::::
expected

:::
log

::::::
fitness

::::::::
depends

:::
on211

::::
both

::::::::::
properties

::
of

:::
the

::::::::
parental

:::::::::::
populations

::::
(see

::::
top

::::
two

:::::
rows

::
of

::::::
Table

:::
1),

::::
and

:::::::::
properties

:::
of

:::
the

::::::
initial

:
F1212

::::
cross

::::
(see

:::::
third

::::
row

:::
of

:::::
Table

:::
1),

:::::
plus

:::::::::
properties

:::
of

:::
the

::::::::
additive

::::
and

::::::::::
dominance

:::::::
effects,

::
as

:::::::::
captured

::
by

::::
the213

::::::::
functions

::::::
m(·, ·)

::::
and

::::::
M(·, ·)

::::
(see

::::
the

:::::::
bottom

:::::
three

::::
rows

:::
of

:::::
Table

:::
1).

:
214

Table 1:
::::::::::
Components

:::
of

:::::::
expected

:::
log

::::::
hybrid

::::::
fitness

::::::::::
Coefficient

::::::::::::::::::
−
∑n
j=1E

2 (zH − oj): ::::::::::::::::
−
∑n
j=1 Var (zH,j)

:::::
1− h

:::::::::::
lnw (z̄P1,o)

:::::
−VP1

::
h

:::::::::::
lnw (z̄P2,o)

:::::
−VP2

:::
p12 :::::::::::::::::::::::::::::::::::::::

lnw (z̄F1,o)− 1
2 (lnw (z̄P1,o) + lnw (z̄P2,o))

: :::::::::::::::::::
−VF1 + 1

2 (VP1 + VP2)

::::::::::::::
4h(1− h)− p12 ::::::::

m(A,A)
: ::::::::::

−M(A,A)

:::::::::::
p12(1− p12)

::::::::
m(∆,∆)

: ::::::::::
−M(∆,∆)

:::::::::::
2p12(1− 2h)

::::::::
m(A,∆)

: ::::::::::
−M(A,∆)

::::
Now,

:::
let

:::
us

:::::
note

:::::
that,

:::::
given

::::
the

:::::::::
quadratic

::::::
fitness

::::::::
function

::
of

::::
eq.

::
1,
::::

the
::::::
mean

::::::
fitness

::
of

::::::::::
individuals

:::
in215

:::::::
parental

::::::::::
population

:::
P1

::
is
::::::

given
:::
by

::::::::::::::::::::::::
lnwP1 = lnw (z̄P1,o)− VP1. Because these terms contain fitnessvalues,216

they can all vary with the position of the environmental optimum. As such, these three terms describe the217

::
we

::::
can

::::::::
combine

:::
the

::::::
terms

::
in

:::::
each

:::
row

:::
of

:::::
Table

::
1,
:::

to
:::::
yield:

:
218

E (lnwH) = lnwP

+
(

1
2 − h

) (
lnwP1 − lnwP2

)
+ p12

(
lnwF1 − lnwP

)
+ (4h(1− h)− p12) (m (A,A)−M (A,A))

+ p12(1− p12) (m (∆,∆)−M (∆,∆))

+ 4p12

(
1
2 − h

)
(m (A,∆)−M (A,∆)) (13)
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::::
Here

::::
the

::::::::
overbars

:::::::
denote

::::
the

::::::::
expected

:::::::
fitness

:::
of

:::::::::
randomly

:::::::
chosen

:::::::::::
individuals,

::::::
either

:::::
from

::
a
::::::
single219

:::::::::
population

:::::::::::
(subscripts

:::
P1,

::::
P2

::
or

::::
F1)

:::
or

:::::
from

:::
the

::::
two

::::::::
parental

:::::::::::
populations

:::
at

:::::::
random

::::::::::
(subscript

::
P,

:::::
such220

::::
that

::::::::::::::::::::::::::
lnwP ≡

(
lnwP1 + lnwP2

)
/2).

:
221

::::
Note

:::::
that

:::
the

::::
first

:::::
three

::::::
terms

::
of
:::::::::

Equation
:::
13

:::
all

:::::::
depend

:::
on

:::
the

:::::::
current

::::::::
position

::
of

::::
the

:::::::::::::
environmental222

::::::::
optimum,

::::
and

:::
so

::::
they

:::::::
capture

:::
the

:
extrinsic or environment-dependent component of expected hybrid fitness.223

The second three terms do not vary with the position of the optimum, but
:::::
These

:::::
terms

:::::::
depend

::::::
solely224

::
on

::::
the

:::::
mean

:::
log

::::::::
fitnesses

::
of

::::::::
parental

::::
and

:::
F1

:::::::::::
populations.

::::
By

::::::::
contrast,

:::
the

:::::::
second

:::::
three

::::::
terms

:::::::
depend only225

on the additive and dominance effects,
::
A

::::
and

::
∆

::
–
:
i.e. on a and d

::
the

::::::::
genomic

::::::::::
differences

::::::::
accrued

::
by

::::
the226

:::::::
parental

::::::::::::
populations,

:::
but

::::
not

::
on

::::
the

:::::::
current

:::::::
position

::
of

::::
the

:::::::::::::
environmental

::::::::
optimum. As such, they describe227

::::
these

:::::
three

::::::
terms

:::::::
capture

:
the intrinsic, or environment-independent component of hybrid fitness. Each term228

describes interactions between heterospecific alleles in different states, and applies to a different type of229

substitution, corresponding to a different colour of arrow in Figure ??B. For example, the term p1p2f (2a)230

describes interactions between homozygous P1 alleles and homozygous P2 alleles, and so it depends on the231

homozygous effects , 2a (eq. 2; black arrows in Fig. ??B).232

The next sections will explore the interpretation of these intrinsic fitness terms in detail. But first,233

let us note that eq. 56 can be rewritten in terms of the chains of additive and dominance effects and an234

interaction term (
::
We

:::::
note

::::
that

::::
the

::::::::
partition

::
of

::::
the

:::::
term

::::::
shown

::
in

:::
eq.

:::
13

::
is
::::
not

:::::::
unique,

:::::::
because

::
it
::::::::
includes235

:::
the

::::::::::::::::
within-population

:::::
trait

::::::::
variances

::::::
within

::::
the

::::::::
extrinsic

:::::
terms

:::::::
(Table

::
1).

:::::::::
However,

:::
eq.

:::
13

:::::
does

::::::::::
correspond236

::::::
closely

::
to

:::
the

:::::::::
partition

::
of

:
Hill (1982),

::::::::
showing

::::
that

:::
all

::
of

::::
the

::::::
terms,

::::::::
including

::::
the

:::::::::
quantities

::::::::::::::
M(·, ·)−m(·, ·)237

:::
are

:::::::::
estimable

::
as

::::::::::
composite

::::::
effects

:::
by

:::::::::
standard

:::::::::::
quantitative

:::::::
genetic

:::::::::
methods

:
(Lande, 1981; Lynch, 1991;238

Lynch and Walsh, 1998
:
,
::::
Ch.

:::
9;

:
Rundle and Whitlock, 2001; Schneemann et al., 2020; Clo et al., 2021

:
).239

:::::::::
Moreover,

::::
even

::::
the

:::::::
separate

::::::::::::
contributions

:::
of

:::
the

::::
trait

::::::
means

::::
and

:::::::::
variances,

:
i.e. , using the chains illustrated240

in Fig. ??C instead of those in Fig. ??B
:::
the

::::::::
separate

:::::::::
functions

::::::
M(·, ·)

:::::
and

::::::
m(·, ·),

::::
are

:::::::::
estimable

::::::
under241

::::
some

:::::::::::
conditions.

:::::
This

::
is

:::::::
clearest

::
if

:::
the

::::::::::
dominance

:::::::
effects

:::
are

:::::::::
negligible

::::
(see

:
Schneemann et al., 2022

::
for

::
a242

:::::::::
discussion). In particular, we show in the Methods that eq. 56 is equivalent to

::::
that

::::
case,

:::
all

:::::
terms

::::::::::
containing243

:::
the

::
∆

:::::::
vanish,

::::
and

:::
the

:::
F1

:::::
trait

::::::
means

::::
and

::::::::
variances

::::
are

:::::
equal

::
to

::::
the

:::::::::::
midparental

::::::
values.

::::
As

:
a
::::::
result,

::::::
Table244

:
1
:::::::::
simplifies

::
to

::::::
Table

::
2,

::::::::
implying

::::
that

:::::::::
M(A,A)

::::
and

::::::::
m(A,A)

::::
can

:::
be

:::::::::
separately

::::::::::
estimated.

:
245

Table 2:
::::::::::
Components

:::
of

:::::::
expected

:::
log

::::::
hybrid

::::::
fitness

::::
with

:::::::
additive

::::::::::
phenotypes

:::::::::
Coefficient

: ::::::::::::::::::
−
∑n
j=1E

2 (zH − o) :::::::::::::::
−
∑n
j=1 Var (zH)

::::
1− h

: ::::::::::
lnw(z̄P1,o)

: :::::
−VP1

:
h
: ::::::::::

lnw(z̄P2,o)
: :::::

−VP2

::
p12: :

0
: ::::::::

M(A,A)

::::::::
4h(1− h)

: ::::::::
m(A,A)

: ::::::::::
−M(A,A)

where the function g(·, ·) is defined as246

such that g(x,x) = 4f(x). Like eq. 56, eq. ?? includes three terms that determine intrinsic hybrid247

fitness. The first term, in f(a), depends solely on the chain of additive effects (black arrows in Fig. ??C).248

This term includes interactions between loci in all possible combinations of the three states. The second249

intrinsic term, in f(d), depends solely on the chain of dominance effects (purple arrows in Fig. ??C). This250

term includes only those interactions that involve loci in heterozygous state. The third term, in g(a,d),251

captures interactions between the additive and dominance effects. As we show below, it represents a form252

of directional dominance.253

Let us also note that eq. ?? can be written in a more familiar form, which corresponds to
:::::
Even

:::::
when254

:::::::::
dominance

:::::::
effects

:::
are

::::::::::::::
non-negligible,

:::::
some

:::
of

::::
the

:::::::::
individual

::::::::
function

::::::
values

::::
can

:::
be

::::::::::
estimated,

:::
if

::::::
fitness255

::::::::::::
measurements

::::
are

:::::
made

:::
in

::::::::::::
environments

:::
to

:::::
which

::::
the

::::::::
parental

:::::::::::
populations

:::
are

::::
well

::::::::
adapted

:
(Rundle and256

Whitlock, 2001).
::::

For
:::::::::
example,

:
if
::::
the

:::::
mean

:::::::::
phenotype

:::
of

:::
P1

::
is

:::::::
optimal

:::::::::
(z̄P1 = o),

:::::
then

::::
from

::::::
Table

:
1
::::
and

::::
eqs.257

::
1,

:
3
::::
and

:::
11,

:
the partition of , showing that the quantities f(a), f(d) and g(a,d) are estimable by standard258

8



quantitative genetic methods (, Ch.9; ). The result follows from defining the hybrid index, 0 ≤ h ≤ 1, as259

the total proportion of divergent sites that carry a
:::
log

::::::
fitness

:::
of

:::
the

:::::
mean

:
P2 allele, such that:

:::::::::
phenotype260

:
is
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

lnw(z̄P2,o) = lnw(z̄P2, z̄P1) = −‖zP2 − z̄P1‖2 = −4m(A,A).
:::

A
:::
set

:::
of

:::::::::
equivalent

:::::::
results

:::
for

::::::::::
population261

:::::
mean

:::
log

::::::
fitness

::
is

::::::
shown

::
in

::::::
Table

::
3262

Table 3:
:::::::::
Population

:::::
mean

:::
log

:::::::
fitnesses

:::
in

:::::::
different

::::::::::::
environmental

:::::::::
conditions

::::
Env.

::::::::::
conditions

: ::::::
lnwP1 ::::::

lnwP2 ::::::
lnwF1

:::::::
z̄P1 = o

:::::
−VP1: ::::::::::::::::

−4m(A,A)− VP2: ::::::::::::::::::::::::
−m(A + ∆,A + ∆)− VF1

:::::::
z̄P2 = o

::::::::::::::::
−4m(A,A)− VP1: :::::

−VP2: ::::::::::::::::::::::::
−m(A−∆,A−∆)− VF1

::::::
z̄F1 = o

: ::::::::::::::::::::::::
−m(A + ∆,A + ∆)− VP1 ::::::::::::::::::::::::

−m(A−∆,A−∆)− VP2 :::::
−VF1

With this definition, eq. ?? is equivalent to263

:
If
:::
we

::::
also

:::::
note

:::
the

:::::::::
following

:::::::::
identities:

:

m (A + ∆,A + ∆) = m (A,A) +m (∆,∆) + 2m (A,∆)

m (A−∆,A−∆) = m (A,A) +m (∆,∆)− 2m (A,∆) (14)

where lnwP = 1
2 (lnwP2 + lnwP1) is the mean parental log fitness . Equation ?? is equivalent to the major264

result of , where it was derived under the assumptions that the
::::
then

::
it

:::::::
follows

::::
that

:::
the

::::::::::
quantities

::::::::
m(A,A)265

:::
and

:::::::::
m(A,∆)

::::
can

:::
be

:::::::::
estimated

:::::
from

:::::::::
reciprocal

::::::::::
transplant

:::::::::::
experiments

:::
in

::::::::
habitats

::
to

::::::
which

::::
the

::::::::
parental266

::::::::::
populations

::::
are

::::
well

:::::::
adapted

::::
(i.e.

::::::::
habitats

::::::
where

::::::::
z̄P1 = o

:::
and

:::::::::
z̄P2 = o).

::::::::::
Moreover,

:::
the

::::::::::
remaining

::::::::
function,267

::::::::
m(∆,∆)

::::
can

::
be

:::::::::
estimated

::::::
either

::::
with

::::::::::
genetically

::::::::::::
homogeneous

::::::::
parental

::::
lines

:::::
(i.e.,

::
if

::::::::::::::::::::
VP1 = VP2 = VF1 = 0),268

::
or

::::
with

:::::
data

::::
from

::
a
:::::
third

::::::::::::
environment

::
in

:::::
which

::::
the

:::
F1

:::::
shows

:::::::::
bounded

::::::
hybrid

:::::::::
advantage

:::::
such

::::
that

::::::::
z̄F1 ≈ o.269

270

::::::::::::::
Interpreting

:::::
the

::::::::::::
functions

:::::::
m(·, ·)

:::::
and

::::::::
M(·, ·)271

::
In

:::
the

::::::::
previous

:::::::
section,

:::
we

::::
saw

:::::
that

:::::::
genomic

::::::::::
differences

::::::::
between

:::::::::::
populations

::::::::
influence

:::
the

::::::
mean

:::
log

::::::
fitness272

::
of

::::
their

:::::::
hybrids

::::::
solely

:::
via

::::
the

::::::::
functions

::::::
m(·, ·)

::::
and

:::::::
M(·, ·),

:::
as

:::::::
applied

::
to

:::
the

:
additive and dominance effects273

were characterized by universal pleiotropy, normality and statistical independence among traits. Here, we274

have shown that the result applies more generally, without any of these assumptions.275

Divergence histories have predictable consequences for hybrid fitness under Fisher’s geometric276

model. Illustrative individual-based simulations of divergence between two allopatric populations, each277

halted afterD = 25 fixations. Simulations used six distinct scenarios of divergence, illustrated in the left-hand278

panels (see Methods for full details). Scenarios I-IV each involve directional selection, as one or both parental279

populations adapt to new optima. Scenarios V-VI each involve stabilizing selection, but in populations of280

different sizes (N = 1000 vs. N = 10). (A)-(I) Boxes represent results for 100 replicate simulations (median,281

quantiles and full range), and show various quantities relevant to hybrid fitness. (A)-(C) show the three282

quantities that appear in eqs. ?? and ??, and capture the intrinsic (environment-independent) effects on283

hybrid fitness. These quantities can also be decomposed into (D)-(F) the total amount of evolutionary284

change; and (G)-(I) the net effect of evolutionary change. These quantities vary predictably between the285

six scenarios, and do so in complementary ways for additive and dominance effects (see text)..286

0.1 Interpretation of the intrinsic fitness terms287

:::
(A

:::
and

::::
∆).

::::
We

::::
also

::::
saw

::::
that

:::
the

:::::
value

::
of
::::::
these

::::::::
functions

::::
can,

:::
in

::::::::
principle,

:::
be

:::::::::
estimated

:::::
from

::::::
hybrid

::::::
fitness288

::::
data.

:
In this section , we

:::
we

::::
show

:::::
that

:::::
these

::::::::
functions

:::::
have

::
a

::::::
simple

:::::::::::::
interpretation,

::::::
which

:::
can

:::
be

:::::::
related

::
to289

:::
the

::::::::::
divergence

::::::
history

:::
of

:::
the

:::::::::::
populations.

:
290

::
It

::::::
follows

:::::
from

::::
eqs.

::
11

::::
and

::::
12,

::::
that

::::::
m(·, ·)

::::
and

::::::
M(·, ·)

::::
can

::
be

::::::::::
interpreted

:::
on

::
a
::::::::::::
trait-by-trait

:::::
basis,

:::
as

:::
the291

::::
sum

::::
over

:::
the

::::::
means

::::
and

:::::::::
variances

::
of

::::
the

:::::::
changes

:::
on

:::::
each

:::::
trait.

:::::::::
However,

::
it

:::
can

::::
also

:::
be

:::::::
helpful

::
to

:
consider292
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the intrinsic fitness terms in eqs. 56, ?? and ??. Our aim is to connect the properties of
::::::
overall

:::
size

:::
of293

:::::::
changes

::
in

::::::::::::::::
multi-dimensional

:::::
trait

::::::
space,

:::
i.e.

::::
the

::::::
arrows

::::::::
depicted

::
in

:::::::
Figure

::
1.

:
294

::
To

:::
see

:::::
this,

:::
let

::
us

:::::
begin

:::
by

::::::
noting

::::
that

::::
the

::::::::
function

:::::
m(·, ·)

::::::::
captures

::::
the

:::
net

:::::
effect

::
of
::::::::::::

evolutionary
::::::
change

:
.295

:::
For

::::::::
example,

:::
for

::::
the

:::::::
additive

:::::::
effects,

:::::
from

::::
eqs.

::
7

::::
and

::
11

:::
we

:::::
find:

:
296

m(A,A) =

∥∥∥∥∥
D∑
i

Ai

∥∥∥∥∥
2

=
1

4
‖z̄P2 − z̄P1‖2 (15)

::
so

::::
that

:::::::::
m(A,A)

::::
will

:::
be

:::::
large

::
if

:
the fixed effects, which result from the evolutionary divergence between297

the parental lines, to the outcomes of hybridization between the lines
:::
P1

::::
and

:::
P2

:::
led

:::
to

:::::
their

:::::::
evolving

:::::
very298

:::::::
different

::::::::::::
phenotypes.

::::
By

::::::::
contrast,

:::::::::
m(A,A)

::::
will

:::
be

::::::
small

::
if,

:::::
due

::
to

:::::::::::::
compensatory

::::::::
changes

:::
at

::::::::
different299

::::
loci,

:::
the

::::::::::::
evolutionary

::::::::::
divergence

:::
led

::
to

:::::
little

::::
net

:::::::
change

::
in

::::::::::
phenotype.

::::::::::
Analogous

::::::::::
arguments

::::::
apply

::
to

::::
the300

:::::::::
dominance

:::::::
effects,

::::::
where,

:::::
from

::::
eqs.

::
8
::::
and

:::
11,

:::
the

::::::::
function

:::::::::
m(∆,∆)

:::::::::
describes

:::
the

::::::::
distance

::::::::
between

:::
the

:::
F1301

:::
and

:::::::::::
midparental

:::::::::::
phenotypes.302

0.0.1 Directionality in the chains of effects303

m(∆,∆) =

∥∥∥∥∥
D∑
i

∆i

∥∥∥∥∥
2

= ‖z̄mp − z̄F1‖2 (16)

Above, we noted that each intrinsic term relates to a chain of fixed effects, as illustrated in Figure ??,304

and does so via the functions f(·) and g(·, ·). One way to understand these functions is to note that they305

capture the exchangeability of
:::::::
Finally,

:::
for

:::
the

::::::::::
interaction

:::::
term,

:::
we

::::
use

:::
eq.

:::
14

:::::
from

:::::
which

::
it
:::::::
follows

::::
that

:
306

m(A,∆) = 1
4m(A + ∆,A + ∆)− 1

4m(A−∆,A−∆) (17)

= 1
4 ‖z̄F1 − z̄P1‖2 − 1

4 ‖z̄F1 − z̄P2‖2 (18)

:::
The

:::::::::::
interaction

::::
term

::::
can

:::::::::
therefore

::
be

::::::::
negative

:::
or

::::::::
positive,

::::
and

::
it

::::
tells

:::
us

::::::::
whether

:::
the

::::
net

:::::
effect

::
of
::::

the307

:::::::::::
evolutionary

:::::::
change

:::
has

::::
led

:::
to the substitutions

:::
F1

:::::
more

:::::::
closely

::::::::::
resembling

::::
one

::
or

::::::
other

::
of

::::
the

::::::::
parental308

:::::::::::
populations.

:
309

:
If
::::
the

::::::::
function

::::::
m(·, ·)

::::::::
describes

::::
the

:::
net

::::::
effect

::
of

:::::::::::
evolutionary

::::::::
change,

:::
the

::::::::
function

:::::::
M(·, ·),

::::::::
describes

::::
the310

::::
total

:::::::
amount

::
of
::::::::::::

evolutionary
:::::::
change.

::::
For

::::::::
example,

:::::
from

:::
eq.

:::
12

:::
we

:::::
have:

:
311

M(A,A) =

D∑
i

‖Ai‖2 (19)

=

(
D∑
i=1

‖Ai‖

)2

× 1 + CV (‖Ai‖)2

D
(20)

:::::
where

:::::
‖Ai‖::

is
::::
the

::::::
length

::
of

:::
an

:::::::::
individual

:::::
black

::::::
arrow

::
in

::::::
Figure

::::
1B,

::::
and

::::::
CV (·)

::
is

:::
the

:::::::::
coefficient

:::
of

::::::::
variation312

::::::
among

:::
the

:::::::::
complete

:::
set

:::
of

::
D

:::::::
lengths, i.e. the extent to which different substitutions have similar effects.313

This can be parameterized in different ways (see, e.g., eq. 23), but one useful way captures the amount of314

“directionality” in the chain(s) of substitutions.
::::
their

::::::::
standard

:::::::::
deviation

:::::::
divided

:::
by

:::::
their

::::::
mean.

::
It
:::::::
follows315

::::
that

::::::::
M(A,A)

::::
will

:::
be

:::::
large

::
if

:::::
there

:::
was

::
a
:::::
large

:::::::
amount

:::
of

:::::::::::
evolutionary

:::::::
change,

:::
i.e.

::
if
::::::
there

::::
were

::::::::
changes

::
at316

:::::
many

::::
loci,

::::
and

:::
the

::::::::
changes

::::
were

:::::::::::
individually

:::::
large.

:::::
This

:::::::
applies

:::::::::
regardless

::
of

::::::::
whether

::
or

::::
not

:::
the

::::::::
changes

::
at317

::::
each

:::::
locus

:::::
were

:::::::::::::
compensatory,

::::
such

:::::
that

:::::
there

::::
was

:::
no

:::
net

:::::::
change

::
in

:::::::::::
phenotype.

:::::::::
Equation

:::
20

::::
also

:::::::
clarifies318

:::
the

::::
roles

:::
of

:::::
large-

::::::
versus

::::::::::
small-effect

::::::::
changes.

:::
It

::::::
implies

:::::
that

::
for

::
a
:::::
given

:::::::
amount

:::
of

::::::::::
phenotypic

::::::
change

::::
(i.e.

::
a319
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:::::
given

:::::
value

::
of

:::
the

::::
first

::::::
factor

::
in
::::

eq.
:::
20,

:::
or

:
a
:::::
given

::::::
length

:::
of

:::
the

:::::
chain

:::
of

:::::
black

::::::
arrows

:::
in

::::
Fig.

::::
1B),

:::::::::
M(A,A)320

:::
will

:::
be

::::::
larger

:
if
::::
the

:::::::
changes

:::::
were

:::::
fewer

::::::
(lower

:::
D)

::::
and

:::::
more

::::::::
variable

::
in

::::
size

:::::::
(higher

:::::::::::
CV (‖Ai‖)).:321

:::
All

::
of

:::
the

::::::::::
arguments

:::::
above

::::
also

::::::
apply

::
to

::::::::::
M(∆,∆),

:::::
which

:::::::::
concerns

:::
the

:::::
chain

::
of

::::::::::
dominance

:::::::
effects;

:::::
while322

::
for

::::
the

::::::::::
interaction

:::::
term,

:::
we

::::
use

::::::
results

:::::::::
analogous

:::
to

:::
eq.

:::
14

::
to

:::::
show

::::
that

:
323

M(A,∆) = 1
4M(A + ∆,A + ∆)− 1

4M(A−∆,A−∆)

= 1
4

D∑
i

‖Ai + ∆i‖2 − 1
4

D∑
i

‖Ai −∆i‖2 (21)

::
So

:::
eq.

:::
21

::::
will

::
be

::::::::
positive

::
if

:::
the

:::
red

:::::::
arrows

::
in

::::::
Figure

:::
1A

:::::
tend

::
to

:::
be

::::::
longer

:::::
than

:::
the

::::
blue

:::::::
arrows,

::::
and

::::
vice324

:::::
versa.

:::::
This

::
is

:::::::::
equivalent

::
to

::::::
asking

::::::::
whether

:::
the

::::::
alleles

::::
that

:::
are

:::::
more

::::::::
common

::
in

:::
P2

:::::
tend

::
to

:::
be

:::::::::::::
phenotypically325

:::::::::
dominant.

:::::::::
M(A,∆)

::::
will

:::
be

:::::::
positive

::
if

:::
P2

::::::
alleles

:::::
tend

::
to

:::
be

:::::::::::::
phenotypically

::::::::::
dominant,

::::
and

::::::::
negative

:
if
:::::

they326

::::
tend

::
to

:::
be

:::::::::::::
phenotypically

:::::::::
recessive.

:
327

:::
The

::::::::::
comments

::::::
above

::::
shed

:::::
light

:::
on

:::
the

:::::::::
functions

::::::
m(·, ·)

::::
and

::::::
M(·, ·)

::::::::::::
individually,

:::
but

:::
eq.

:::
13

::::::::
depends

:::
on328

:::
the

:::::::::
difference

::::::::
between

:::::
them,

::::
and

::::
this

:::::::::
difference

::::
has

::
its

:::::
own

:::::::
natural

:::::::::::::
interpretation.

:
To see this, let us note329

that eqs. ?? and ?? can also be written as (see Methods for details)
::
use

::::
eqs.

:::
15

::::
and

:::
19,

:::
to

:::::
show

::::
that:330

m(A,A)−M(A,A) =

 D∑
i=1

Ai ·Ai +

D∑
i=1

D∑
k=1,k 6=i

Ai ·Ak

− D∑
i=1

Ai ·Ai

=

D∑
i=1

D∑
k=1,k 6=i

Ai ·Ak (22)

= (D − 1) M(A,A)−
D−1∑
i=1

D∑
k=i+1

||Ai −Ak||2 (23)

=

D∑
i=1

D∑
k=1,k 6=i

||Ai||||Ak|| cos(θAi,Ak
) (24)

Here, ||xi|| is the magnitude of a vector
::
So

::::
this

::::::::
quantity

::::
can

::
be

::::::::::
interpreted

:::
in

:::
two

:::::
ways.

:::::::::
Equation

:::
23

::::
uses331

:::
the

::::::::::
relationship

::::::::
between

:::
the

::::
dot

:::::::
product

:::
and

::::
the

:::::::
squared

:::::::::
Euclidean

:::::::
distance

:::
to

::::
show

:::::
that

::::::::::::::::::
m(A,A)−M(A,A)332

:
is
::
a
::::::::
measure

::
of

:::
the

:::::::::
similarity

:::
of

:::
the

:::::::::::
evolutionary

::::::::
changes

::
at

::::::::
different

::::
loci (Schneemann et al., 2020)

:
;
::
it

::::
take333

::
its

:::::::
largest

:::::
value

:::::
when

::::::::
changes

:::
are

::::::::
identical

:::
at

:::
all

::::
loci (i.e.

:::::
when

::::::::::::::
||Ai −Ak|| = 0

:::
for

:::
all

:
i
::::

and
::::
k),

:::
but

::::
the334

:::::::
quantity

::::::::
becomes

:::::::
smaller

::::
and

::::::::
negative

::
as

::::
the

::::::
effects

:::::::
become

:::::
more

:::::::::
different.335

::::::::
Similarly,

:::
eq.

:::
24

::
is

::
a

::::::::::
generalized

::::::
cosine

::::
law,

::::
and

::::
uses

::::::
θAi,Ak ::

to
::::::
denote

:
the length of the arrow in Fig. ??)336

and θxi,xk
is the angle between a pair of vectors (see Fig. ??

:::
the

::::
ith

:::
and

::::
the

::::
kth

::::::
vectors

:::
of

::::::
change

::::
(see

::::
top337

::::
right

::
of

:::::::
Figure

:
1B for an example). That is, we have cos(θ) = −1 when two substitutions

:::::::::::
illustration).

:::::
This338

::::::
implies

:::::
that

:::::::::
cos(θ) = 1

::::::
when

:::
the

::::::::
additive

::::::
effects

:::
at

::::
two

:::
loci

:
point in the same phenotypic direction (such339

that θ = π)
::::::
θ = 0);

::::::::
similarly, cos(θ) = 0 when the vectors are orthogonal (e.g., altering the values of different340

traits)and cos(θ) = 1 for substitutions that point
:
;
::::
and

::::::
finally,

:::::::::::
cos(θ) = −1

:::
for

:::::::
effects

::::
that

:::
act

:
in opposite341

directions.
::
It

:::::::
follows

::::
that

::::
the

:::::::::
difference

::::::::::::::
m(·, ·)−M(·, ·)

:::::::::
quantifies

::::
the

:::::::::
tendency

:::
for

:::::::::::
evolutionary

::::::::
changes342

::
at

::::::::
different

::::
loci

::
to

:::
act

:::
in

:::
the

:::::
same

:::::::::::
phenotypic

:::::::::
direction.

::
It
::
is
:::::::::

therefore
::
a

:::::::
measure

:::
of

:::
the

:::::::::::::
directionality

:::
(or343

:::::::::
conversely

:::::::::::
meandering)

:::
in

:::
the

::::::
chains

:::
of

:::::::::::
evolutionary

::::::::
changes.

:
344

Together, eqs. ??, 24 and 25 allow us to draw strong connections between the mode of divergence, and345

the outcomes of hybridization. This is illustrated in Figure 2. Figure 2 reports individual-based simulations346

of
::::::
Again,

:::
the

:::::
same

:::::::::
argument

:::::::
applies

:::
to

:::
the

:::::
chain

:::
of

::::::::::
dominance

::::::
effects

:::::::::::::::::::::
(m(∆,∆)−M(∆,∆)).

::::::::
Finally,

:::
for347

:::
the

::::::::::::::::::::
additive-by-dominance

:::::::::::
interaction,

:::
by

:::::::
analogy

:::::
with

:::
eq.

:::
24,

:::
we

::::
can

:::::
write

:
348
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m(A,∆)−M(A,∆) =

D∑
i=1

D∑
k=1,k 6=i

||Ai||||∆k|| cos(θAi,∆k
) (25)

::
So

:::::
that

:::
the

::::::::::
interaction

:::::
term

:::::::::
measures

:::
the

:::::::::
tendency

:::
for

::::::::
additive

::::
and

::::::::::
dominance

::::::
effects

::
at

::::::::
different

::::
loci349

::
to

:::::
point

::
in

::::
the

:::::
same

::::::::::
phenotypic

:::::::::
direction.

:
350
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Figure 2:
::::
The

:::::::
history

:::
of

::::::::::
directional

:::::::::
selection

:::::::
affects

:::
the

:::::
total

::::::::
amount

::::
and

::::
net

:::::
effect

:::
of

::::::::::::
evolutionary

::::::
change

:
.
:::::::::
Illustrative

::::::::::::::
individual-based

::::::::::
simulations

::
of

:::::::::
divergence

:::::::
between

:::::::::
allopatric

::::::::::
populations,

::::::
driven

::
by

:::::::::
directional

::::::::
selection.

::::::::::
Simulations

:::::
used

::
six

:::::::
distinct

::::::::
scenarios

::
of

::::::::::
divergence,

::::::::
illustrated

::::
via

::::
their

:::
net

::::::
additive

::::
and

:::::::::
dominance

::::::
effects

::
in

:::
the

::::::::
cartoons

::
in

:::
the

::::::::
left-hand

::::::
panels.

::::::::
Scenarios

:::
are

::
I:

:::::
both

::::::::::
populations

:::::
adapt

::
to

:::
the

:::::
same

::::::
distant

::::::::
optimum;

:::
II:

::::
each

::::::::::
population

::::::
adapts

::
to

::::::
shifted

::::::::
optimum

::
on

::
a
:::::::
different

:::::::::
phenotypic

:::::
trait;

:::
III:

:::::
each

:::::::::
population

::::::
adapts

::
to

::
a

::::::
shifted

::::::::
optimum

::
on

:::
the

:::::
same

:::::
trait,

:::
but

::
in

::::::::
opposite

:::::::::
phenotypic

:::::::::
directions;

:::
IV:

:::
P2

:::::
alone

::::::
adapts

::
to

:::
an

::::::::
optimum

::::
that

:::::
shifts

::
in

:::
one

::::::::::
phenotypic

::::::::
direction,

::::
and

::::
then

::::
shifts

:::::
back

::
to

:::
its

:::::
initial

:::::::
position;

:::
V:

:::
P2

:::::
alone

::::::
adapts

::
to

:::
an

::::::::
optimum

::::
that

::::::
changes

:::
on

:::
one

:::::
trait,

::::
and

::::
then

::
on

:::::::
another;

:::
VI

:
:
:::
P2

:::::
alone

::::::
adapts

::
to

:::
an

:::::::
optimum

::::
that

:::::
shifts

:::::
twice

::
in

:::
the

:::::
same

:::::::::
phenotypic

:::::::::
direction.

:::
(A)

:
-
::
(I)

:
:
:::::
Boxes

::::::::
represent

::::::
results

:::
for

:::
100

::::::::
replicate

::::::::::
simulations

:::::::
(median,

::::::::
quantiles

::::
and

:::
full

::::::
range),

:::::
each

:::::::
including

::::::
n = 20

::::::
traits,

::::
and

:::::
halted

:::::
after

::::::
D = 50

::::::::
fixations.

::::
The

:::::::::
quantities

:::::
shown

::::::
match

:::::
those

::
in

::::::
Tables

:
1
:::
and

:::
3.

::::
The

::::::::
quantities

::::
vary

::::::::::
predictably

:::::::
between

:::
the

:::
six

::::::::
scenarios,

::::
and

::
in

:::::::
different

:::::
ways

::
for

::::
the

:::::::
additive

:::
and

:::::::::
dominance

::::::
effects

::::
(see

:::::
text).

:::::::::
Simulation

::::::::::
parameters

::::
were

:::::::::
N = 1000,

:::::::
n = 20,

:::
and

::::::::::::::
U = s̄mut = 0.01.

:
.
:
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:::::
How

::::::
does

:::::::::::::
directional

:::::::::::
selection

:::::::
affect

::::
the

::::::
total

::::::::::
amount

:::::
and

::::
net

:::::::
effect

:::
of

:::::::::::::::
evolutionary351

:::::::::
change?352

::
In

::::
the

::::::::
previous

:::::::
section

:::
we

:::::::
showed

:::::
that

::::
the

:::::::::
functions

:::::::
m(·, ·),

:::::::
M(·, ·)

::::
and

::::
the

:::::::::
difference

::::::::
between

::::::
them,353

::::::::::::::
m(·, ·)−M(·, ·),

:::::
each

::::
have

::
a

:::::::
natural

:::::::::::::
interpretation.

:::
In

:::
the

:::::
next

::::
two

::::::::
sections,

::
we

:::::
show

:::::
how

:::::
these

:::::::::
quantities354

::::
vary

::::
with

::::
the

:::::::
history

::
of

::::::::::
divergence

:::::::
between

::::
the

::::::::
parental

::::
lines

:::::::::::::
(summarizing

:::
the

:::::::
results

::
in

:::::
Table

:::
4).

:
355

:::
We

::::
will

:::::
begin

:::::
with

::::::::::
divergence

::::::
under

::::::::::
directional

:::::::::
selection.

::::
To

:::::::::::
supplement

::::::
verbal

:::::::::::
arguments,

:::
we

::::
use356

:::::::::
illustrative

:::::::::::
simulations

::
of

::::::::
adaptive

::::::::::
divergence

:::::
under

:
Fisher’s geometric modelunder six illustrative scenarios357

of divergence (all allopatric, and halted after D = 25 substitutions). As shown in the .
:::::

Full
::::::::::
simulation358

::::::
details

:::
are

:::::
given

:::
in

:::
the

:::::::::
Methods,

::::
but

::
in

:::::
brief,

:::
we

:::::
used

:::::::::::::::
individual-based

:::::::::::
simulations,

:::::::
starting

:::::
with

::
a

::::
pair

::
of359

:::::::
identical

::::
and

::::::::::
genetically

:::::::
uniform

::::::::
parental

:::::::::::
populations,

::::::
which

::::
then

:::::::
evolved

::
in

:::::::::
allopatry

::
to

::::::::
different

:::::::::
conditions360

::
of

:::::::::::::
environmental

:::::::
change,

:::
i.e.

::::::::
different

::::::::
positions

:::
of

:::
the

::::::::::
phenotypic

:::::::::
optimum (Chevin et al., 2014; Yamaguchi361

and Otto, 2020; Schneemann et al., 2020).
::::::

While
::::::::
multiple

::::::::
variants

:::::
could

:::::::::
segregate

::::::
during

::::
the

:::::::::::
simulations,362

:::
the

::
A

::::
and

:::
∆

:::::
values

:::::
were

:::::::::
calculated

:::::
only

:::
for

:::::
fixed

:::::::::
differences

::::::::
between

:::
the

::::::::::::
populations.

:::::
This

::::::
means

::::
that

:::
we363

:::::
could

:::::
avoid

:::::::::::::
complications

::::
from

:::::::
linkage

::::::::::::::
disequilibrium,

:::::
which

:::
we

::::
did

:::
not

:::::
treat

:::::::::::
analytically,

::::
but

::::
also

:::::::
implies364

::::
that

:::
the

:::::::::
analytical

:::::::
results

:::::
apply

:::
to

:::::
cases

::::
that

:::
we

:::
did

::::
not

::::::::
simulate.

:
365

:::
The

::::
first

:::
set

::
of
:::::::::::
simulations,

:::::::::::
summarized

:::
in

::::::
Figure

::
2,

:::::::
involved

:::
six

::::::::
different

::::::::::
divergence

:::::::::
scenarios,

:::::::::
illustrated366

::
by

::::
the

::::::::
cartoons

::
in

:::
the

:
left-hand panels, scenarios I-IV each involve bouts of adaptive substitution, as one or367

both parental populations adapt to new optima ; scenarios V-VI involve stabilizing selection , where both368

populations remained in environments with a single fixed optimum
:
.
:::

In
:::::::::
scenarios

:::::
I-III,

:::::
both

:::::::::::
populations369

:::::::
adapted

:::
to

:::::::
distant

::::::
optima

:::
at

::
a
::::::::
distance

::::::::::::::::::
||zanc − o|| =

√
1/2

:::::
from

::::
their

:::::::
shared

:::::::::
ancestral

::::::::::
phenotype

:::::
(such370

::::
that

::::
their

::::::
initial

::::::
fitness

::::
was

::::::::::::::::
exp(−1/2) ≈ 60%

::
of

:::
its

:::::::::
maximum

:::::::
value).

::::
The

::::
sole

:::::::::
difference

::::::::
between

::::::::
scenarios371

::::
I-III

::
is

:::
the

::::::::
relative

::::::::
positions

::
of

::::
the

:::::::
optima

:::::::::::
experienced

:::
by

::::
each

:::::::::::
population.

:::
In

::::::::
scenario

::
I,

:::
the

::::
two

:::::::
optima372

::::::
moved

::
in

::::::::
identical

::::::
ways,

::
so

::::
that

::::
this

::::::::
scenario

:::::::::::
corresponds

:::
to

::::::::::::::
mutation-order

:::::::::
speciation

:
(Mani and Clarke,373

1990).
:::

In
:::::::::
scenarios

:::::
II-III,

::::
the

:::
two

:::::::
optima

::::::::
differed,

::
so

:::::
that

:::::
these

::::::::
scenarios

:::::::::::
correspond

::
to

:::::::::
divergent

::::::::
selection374

:::
and

:::::
local

::::::::::
adaptation (Schluter, 2000)

:
;
::
in

::::::::
scenario

::
II,

::::
the

:::::::
optima

:::::::
differed

::
on

::::::::
different

::::::
traits,

:::::
while

::
in

::::::::
scenario375

:::
III,

:::
the

:::::::
optima

::::::::
differed

::
on

::::
the

:::::
same

:::::
trait,

::::
but

:::
in

::::::::
opposite

::::::::::
phenotypic

::::::::::
directions.

:::::::
Finally,

:::::::::
scenarios

::::::
IV-VI376

::::::::::::
corresponded

::
to

:::::::::
scenarios

:::::
I-III,

::::
but

:::::
with

:::::
both

:::::
bouts

:::
of

::::::::
adaptive

:::::::::::
substitution

:::::::
taking

:::::
place

:::
in

::::::::::
population377

:::
P2,

:::::
while

:::
P1

::::::::
retained

:::::
their

::::::::
common

:::::::::
ancestral

::::::::::
phenotype.

::::::
This

::::::
meant

::::
that

:::
P2

::::::::
adapted

:::
to

::::
two

:::::::::
successive378

:::::::
changes

::
in

:::::::::::::
environmental

::::::::::
conditions

:::
(i.e.

::::
two

::::::::
changes

::
in

:::
the

::::::::
position

::
of

:::
its

::::::::::
optimum).

:::::
After

::::
the

:::::
initial

:::::
bout379

::
of

::::::::::
adaptation

::
in

::::
P2,

:::
its

::::::::
optimum

::::::
either

:::::::
jumped

:::::
back

:::
to

:::
its

:::::
initial

::::::::
position

:::::::::
(scenario

::::
IV),

:::
or

:::::::
changed

:::
on

::
a380

:::::::
different

:::::
trait

::::::::
(scenario

::::
V),

::
or

::::::::
jumped

:::::
again

:::
in

:::
the

:::::
same

::::::::::
phenotypic

:::::::::
direction

::::::::
(scenario

:::::
VI).

::::::
Panels

::::
A-I

::
of381

::::::
Figure

:
2
:::::::::::
summarizes

::::
the

::::::
results

::
of

::::
100

::::::::
replicate

:::::::::::
simulations

:::::
under

:::::
each

::
of

:::::
these

:::
six

:::::::::
scenarios,

:::::
after

:::::::
D = 50382

:::::::::::
substitutions

::::
had

::::::::
occurred. Figure 2383

:::::::::
Additive

:::::::
effects384

::::::
Results

:::
for

::::
the

:::::::::
simulated

::::::::
additive

::::::
effects

:::
are

::::::
shown

::
in

:::::::
Figure

:
2A-Cshow the consequences of these different385

modes of divergence for the intrinsic fitness of hybrids.
:
.
::::::::

Figure
:::
2A

::::::
shows

:::::
that

::::
the

:::::
total

:::::::
amount

:::
of386

:::::::::::
evolutionary

:::::::
change,

:::::::::
M(A,A),

::::
was

::::::::
identical

::::::
under

:::
all

:::
six

:::::::::
scenarios.

:::::
This

::
is
::::::::
because

:::
all

::::::::
scenarios

::::::::
involved387

:::
two

::::::
bouts

::
of

::::::::
adaptive

:::::::::::
substitution

::::::
under

:::::::::
equivalent

:::::::::::
conditions;

::
as

:::::
such,

:::::
they

:::
led

::
to

::::
the

:::::
same

:::::
total

:::::::
amount388

::
of

:::::::
change,

:::::::::
regardless

::
of

::::
how

::::
the

:::::::
changes

:::::
were

::::::::::
distributed

:::::::
among

:::
the

:::::
traits

::::
and

::::
the

::::::::
diverging

::::::::::::
populations.

:
389

Additive effects. Figure 2A reports the values of f(a), which depend on the additive effects, and390

which capture the intrinsic effects of admixture on hybrid fitness
:::::
Figure

::::
2B

::::::
shows

::::
the

:::
net

::::::
effect

::
of

::::
the391

:::::::::::
evolutionary

:::::::
change,

:::::::::
m(A,A).

:::::
This

::::::::
quantity

::
is

::::::::::::
proportional

::
to

::::
the

:::::::
squared

::::::::
distance

::::::::
between

:::
the

::::::::
parental392

:::::
mean

:::::::::::
phenotypes

:
(eq. ??; ).

:::
15).

:::::
So

:::::
when

:::::::::::
populations

::::
are

::::
well

::::::::
adapted

:::
to

:::::
their

::::::::
optima,

:::::::::
m(A,A)393

:::
will

:::
be

::::::::::::
proportional

:::
to

:::
the

::::::::
squared

::::::::
distance

::::::::
between

::::::
these

:::::::
optima.

::::::
This

::::::::
explains

::::
the

::::::::
observed

:::::::
results394

::
of

::::::::::::
m(A,A) ≈ 0

::::
for

::::::::
scenarios

::
I
:::::

and
:::
IV,

:::::::::::::::::::::::::::::::
m(A,A) ≈ 2||zanc − o||2/4 = 0.25

::::
for

:::::::::
scenarios

::
II

:::::
and

:::
V,

::::
and395

::::::::::::::::::::::::::::::
m(A,A) ≈ ||2(zanc − o)||2/4 = 0.5

:::
for

:::::::::
scenarios

:::
III

::::
and

:::
VI.

:
396

::::::
Figure

:::
2C

::::::::
combines

:::::::
results

::::
from

::::
Fig.

::::::
2A-B,

:::
to

::::::::
quantify

:::
the

::::::::::::
directionality

::
in

::::
the

:::::
chain

::
of

::::::::
additive

::::::
effects397

::::
that

:::::::::::
differentiate

:::
P1

::::
and

::::
P2.

::
From eq. 24, f(a) < 0 should hold if the chain of additive

::::
this

:::::
value

::::
will398

::
be

::::::::
positive

::
if

:::
the

:
effects mostly point in the same direction

:
,
:::::
such

::::
that

::::::::::
cos(θ) ≈ 1

:::::
holds

:::
for

:::::
most

::::::
pairs

::
of399
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:::::::
changes. This occurs under scenario I (blue box in Fig. 2A), where population P2 underwent direction400

selection towards a distant optimum, while P1 remained in their ancestral state; it also occurs in scenario II401

(green box in Fig. 2A) where both populations adapted to new optima, but in opposite phenotypic directions.402

Results for scenarios I-II are identical because additive effects are defined with respect to
::::::::
scenarios

:::
III

::::
and403

:::
VI,

::::::
where

:::::
most

::
of

:::
the

::::::::
additive

::::::
effects

:::::
point

:::::
from

:
the P1 genotype, not with respect to the ancestral state.404

If the two parental populations undergo directional selection on different traits (Scenario III: red box in405

Fig. 2A) then f(a) is still negative but smaller, since cos(θ) ≈ −1
:::::::::
phenotype

:::
to

:::
the

:::
P2

:::::::::::
phenotype.

:::::::
Results406

:::
are

::::
also

::::::::
positive,

::::
but

:::::::
around

::::
half

::
as

::::::
large,

:::
in

::::::::
scenarios

::
II
:::::

and
::
V,

:::::
since

::::::::::
cos(θ) ≈ 1

:
for half of the pairs of407

substitutions
:::::::
changes and cos(θ) ≈ 0 for the other half. By contrast, when natural selection tends to return408

the chain of additive effects to its starting point, then cos(θ) > 0
::
as

::
in

:::::::::
scenarios

:
I
::::
and

::::
IV,

::::
then

::::::::::
cos(θ) < 0409

will hold on average, such that f(a) > 0. This holds for scenario IV (where both parental lines adapted to410

a common optimum
::::::
leading

::
to

::
a
::::::::
negative

:::::
value.

:
411

:::
All

::
of

::::
the

:::::::::::
quantitative

:::::::
results

:::::
above

:::::
will,

::
of

:::::::
course,

:::::
vary

::::
over

:::::
time

:::
(as

:::::
more

::::::::::
divergence

::::::::
accrues), and412

scenario V (where the populations are under effective stabilizing selection). Finally, for scenario VI, we413

simulated a very smallpopulation (N = 10), such that stabilizing selection was ineffective. In this case, the414

parental lines wandered erratically in phenotypic space, such that cos(θ) ≈ 0 on average, and f(a) tends to415

vanish.416

From the results above,
::::
with

::::
the

:::::::
various

:::::::::::
parameters

::
of

::::
the

:::::::
model.

::::
For

:::::::::
example,

::::::::
previous

:::::
work

::::
has417

:::::
shown

:::::
that

:::::::::::
populations

:::::
often

::::::::
approach

:::::
their

:::::::
optima

:::::
more

:::::::::
efficiently

:
if
::::
the

:::::::
number

::
of

::::::
traits

:::::
under

:::::::::
selection,418

::
n,

::
is

::::::
small,

:::::::
because

::::::::::
mutations

::::
tend

:::
to

::::
have

::::::
fewer

::::::::::
deleterious

::::::::::
pleiotropic

::::::
effects

:
(e.g. Orr, 1998; Welch and419

Waxman, 2003; Matuszewski et al., 2014; Chevin et al., 2014
:
).
::::::

This
::
is
::::::::::

confirmed
::
in

:::::::
Figure

::::
3A,

::::::
which420

:::::
shows

::::::
results

::::
for

::::::::
scenarios

:::::
II-III

:::
as

:
a
::::::::
function

::
of

::::
the

::::::::::
divergence,

:::
D.

::::::
When

:::
we

::::::::
reduced

:::
the

:::::::
number

:::
of

:::::
traits421

::::
from

:::::::
n = 20

::
to

::::::
n = 2

:::::::::::
populations

:::::::::::
approached

::::
their

:::::::
optima

::::::
much

:::::
more

:::::::
rapidly.

:::::::
Figure

:::
3B

::::::
shows

::::
how

::::
the422

::::::
relative

:::::
sizes

::
of

:::::::::
M(A,A)

:
and eqs. ?? or ??, it is clear that the history of divergence does have predictable423

consequences for the outcome of hybridization. When f(a) < 0 (Scenarios I-III
::::::::
m(A,A)

:::::::
change

::::
with

::::
the424

::::::::::
divergence.

:::
In

::::
the

::::::
initial

::::::
stages

::
of

:::::::::::
divergence,

:::
as

:::
the

:::::::
distant

:::::::
optima

::::
are

::::::::::
approached

:::::
(see

::::
Fig.

:::::
3A),

::::
the425

:::::::
additive

::::::
effects

::::::
point

::
in

::
a
:::::::::
consistent

:::::::::
direction,

::::
and

:::
so

::::
the

::::
ratio

::::::::::
decreases.

::::::
More

:::::::::::::
quantitatively,

::
it
:::::::
follows426

::::
from

:::
eq.

::::
20

::::
that

::
if

:::
the

::::::::
changes

:::
at

::::
each

:::::
locus

::::
act

::
in

::::
the

:::::
same

:::::::::
direction,

:::::
then

:::
the

::::
first

:::::
term

:::
of

:::
eq.

:::
20

::::
will427

:::::
equal

::::::::
m(A,A).

:::
If

:::::
these

:::::::
changes

:::
are

::::
also

::::::::
similarly

:::::
sized

:::::
(such

::::
that

::::::::::::::
CV (‖Ai‖) ≈ 0), then admixture between428

the parental lines will tend to increase hybrid fitness, creating the potential for beneficial heterosis . By429

contrast, when f(a) > 0 (Scenarios IV-V), then admixture will tend to be deleterious, increasing RI between430

the parental lines
:::::::::::::::::::::::
M(A,A)/m(A,A) ≈ 1/D

::::::
should

:::::
hold.

::::::
This

:::::::::
prediction

::
–
:::::::::

indicated
:::
by

::::
the

::::
grey

::::
line

:::
in431

::::::
Figure

:::
3B

::
–

::::
does

:::::
hold

:::::::::::::
approximately

:::
for

::::::::
scenario

:::
III

::::::
when

:::::
n = 2

::::::
(solid

::::
red

::::
line

::
in

::::::
Figure

:::::
3B),

:::::
while

::::
the432

::::::::
optimum

:::::::
remains

:::::::
distant.

:::::
The

::::::
decline

::
is
::::::
slower

:::::
than

::::
1/D

:::::::::
(implying

::
a

:::
less

::::::
direct

::::::::
approach

:::
to

:::
the

::::::::::
optimum),433

:::::
when

:::::::::::
populations

:::::
fixed

::::::::::
deleterious

::::::::::
pleiotropic

::::::
effects

:::::::::
(n = 20;

:::::::
dashed

:::
red

::::::
line),

::
or

::::::
when

::::
the

:::::::
position

:::
of434

:::
the

::::::::
ancestral

::::::::::
phenotype

::::
led

:::
to

::::::
effects

::::::
acting

:::
in

::::::::
different

::::::::::
phenotypic

::::::::::
directions

::::::::
(scenario

:::
II;

::::::
green

::::::
lines).435

:::
The

:::::::
decline

::::
also

::::::
slows

::
as

::::
the

::::::::
optimum

::
is
:::::::::::
approached,

::::
and

:::::::::::
populations

::::::
begin

::
to

:::
fix

::::::
alleles

:::
of

:::::::
smaller

:::::
effect436

:::::::
(thereby

::::::::::
increasing

::::::::::
CV (‖Ai‖);:Orr, 1998

:
).
:::

In
:::
all

:::::
cases,

::::
the

:::::
ratio

:::::::::::::::::
M(A,A)/m(A,A)

:::::
starts

:::
to

:::::::
increase

:::::
after437

:::
the

::::::::
optimum

::
is
::::::::

reached,
::::::

when
:::::::::::
evolutionary

::::::::
changes

::::::::
continue

::
to

:::::::
accrue,

::::
but

::::::::
without

:::::
much

::::
net

::::::::::
phenotypic438

::::::
change

:
(Schiffman and Ralph, 2021). Finally, when f(a) ≈ 0 (Scenario VI), then admixture, per se, should439

have no net effect.440

Dominance effects. Figure 2B shows equivalent results for f(d), which capture the effects of phenotypic441

dominance on hybrid fitness. A442

:::::::::::
Dominance

:::::
and

:::::::::::
interaction

:::::::
terms443

::::::
Results

:::
for

::::
the

:::::::::
simulated

:::::::::
dominance

::::::
effects

::::::
under

:::
the

:::
six

::::::::::
divergence

::::::::
scenarios

::::
are

:::::
shown

:::
in

::::::
Figure

:::::
2D-F.

::::
For444

:::
the

::::
total

::::::::
amount

::
of

:::::::::::
evolutionary

:::::::
change

::::::::::
(M(∆,∆);

::::
Fig.

:::::
2D),

::::::
results

:::
are

::::::::::::::::
indistinguishable,

::::
just

::
as

::::
they

:::::
were445

::
for

::::
the

::::::::
additive

::::::
effects

:::::
(Fig.

:::::
2A).

:::
By

:::::::::
contrast,

::::::
results

:::
for

::::
net

:::::
effect

::::::::::
(m(∆,∆);

:::::
Fig.

::::
2E)

:::
are

::::::::::::
qualitatively446

::::::::
different,

::::
and

::
so

::
–

::
in

:::::::::::
consequence

::
–
:::
are

:::::::
results

::
in

::::
Fig.

::::
2F.

:
447

:::
The

:
key fact here is Haldane’s Sieve – the tendency for directional selection to preferentially fix alleles448

that are dominant in the direction of
:::
past

:
selection (Haldane, 1924, 1927; Frankham, 1990; Crnokrak and449
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Figure 3:
::::
The

::::
net

:::::
effect

::::
and

::::::
total

:::::::
amount

:::
of

:::::::::
evolution

:::::::
change

:::::::::::
predictably

:::::::
during

:::::::::::
directional

::::::::
selection

:
.
::::::
Panels

::::
show

::::
(A)

:
:
:::
the

:::
net

:::::
effect

::
of

:::::::::::
evolutionary

::::::
change

::
in

:::
the

:::::::
additive

::::::
effects,

:::::::::
m(A,A).

:::
and

:::
(B)

:
:
:::
the

:::::
ratio

::
of

:::
the

::::
total

:::::::
amount

::
to

:::
the

::::
net

:::::
effect,

:::::::::::::::::
M(A,A)/m(A,A),

::::
both

::::::
plotted

:::
as

::::::::
functions

::
of

::
D,

:::
the

::::::
number

::
of
:::::::::::

substitutions
::::

that
:::::

have
:::::::::::
accumulated.

:::::::
Results

:::
are

::::::::
compared

:::
for

:::::::
different

::::::::
numbers

::
of

:::::::::
phenotypic

:::::
traits,

:::::::
namely

:::::
n = 2

:::::
(solid

:::::
lines)

:::
and

::::::
n = 20

:::::::
(dashed

::::::
lines),

:::
and

:::
for

::::
two

:::::::
scenarios

:::::::
detailed

:::
in

:::::
Figure

::
2.
::::

All
:::::
curves

::::::::
represent

::::::
means

::::
over

:::
100

::::::::
replicate

::::::::::
simulations,

::::
with

::::::
shaded

:::::
areas

:::::::::::
representing

:::
one

:::::::
standard

:::::::::
deviation.

::::
The

::::
grey

:::::
curve

::
in

::::
(B)

:::::
shows

:::
the

:::::::::
prediction

::
of

:::::::::::::::::::::::
M(A,A)/m(A,A) ≈ 1/D,

:::::
which

::::
holds

:::::
when

:::
the

:::::::
additive

::::::
effects

::
at

::::
each

:::::
locus

:::
are

::::::::
identical

:::
(eq.

::::
20).

::::::
Other

:::::::::
simulation

:::::::::
parameters

:::::::
matched

::::::
Figure

:
2
:::::::::
(N = 1000

::::
and

:::::::::::::::
U = s̄mut = 0.01).

:
.
:

Roff, 1995; Schneemann et al., 2022),
:::::::::
especially

::::::
when

::::::::::
adaptation

:::::
takes

::::::
place

::::
from

:::::
new

::::::::::
mutations,

::::::
rather450

::::
than

::::::::
standing

::::::::
variation

:
(Orr and Betancourt, 2001). This means that directionality in the dominance effects451

– unlike directionality in
:::::::::
dominance

:::::::
effects

::::::
reflect

:::
the

:::::::
history

:::
of

::::
past

:::::::::
selection

::
in

::
a
::::::::

different
:::::

way
::
to

:
the452

additive effects– will depend on the MRCA.
:
.
:

453

The result is that dominance effects and additive effects contain complementary information about the454

divergence history. To see this, note that
::
for

:
scenarios I and II gave identical results for the additive effects455

(
:::
IV,

::
all

::
of

::::
the

:::::::::
dominance

::::::
effects

:::::
point

::
in

::
a
:::::::::
consistent

::::::::
direction

::::::
(from

:::
the

::::::::
ancestral

:::::
state

::
to

:::
the

::::
new

::::::::::
optimum);456

::::::
leading

:::
to

:::::
large

:::
net

:::::::
changes

:::
in

:::::::::
phenotype

::::
(i.e.

:::
to

:::::
large

:::::::::
m(∆,∆);

:
Fig. 2A) , but give qualitatively different457

results for the dominance effects
::
E)

::::
and

:::
to

::::
large

::::::::
positive

::::::
values

::
of

::::::::::::::::::::
m(∆,∆)−M(∆,∆) (Fig. 2B). This is458

because in scenario I, all
:::
F).

:::
By

::::::::
contrast,

:::
for

::::::::
scenarios

:::
III

:::
and

::::
IV,

:::
the dominance effects point from the MRCA459

towards the new optimum(to which P2 alone is adapted), and this directionality leads to strongly negative460

f(d) (eq. 24).
::
in

::::::::
opposite

:::::::::
directions

:::::
(half

::::::::
towards

:::
one

::::
new

:::::::::
optimum,

::::
and

::::
half

::::::::
towards

:::
the

:::::::
other),

:::::::
leading461

::
to

:
a
::::::

small
::::::
values

::
of

:::::::::
m(∆,∆)

:::::
(Fig.

::::
2D)

::::
and

:::::::
weakly

::::::::
negative

::::::
values

::
of

:::
the

:::::::::
difference

::::::::::::::::::::
m(∆,∆)−M(∆,∆)462

::::
(Fig.

:::::
2F).463

:::::::
Finally,

::::::
results

:::
for

:::
the

::::::::::::::::::::
additive-by-dominance

:::::::::::
interactions

:::
are

::::::
shown

::
in

::::::
Figure

:::::
2G-I.

::::::
Unlike

:::::
terms

::::::::
involving464

:::::::
additive

:::
or

::::::::::
dominance

::::::
effects

::::::
alone,

::::
the

::::::::::
interaction

:::::
terms

::::::::
capture

::::::::::
differences

::
in

::::
the

:::::::::::
evolutionary

::::::::
changes465
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:::::::
between

:::
the

::::
two

:::::::::::
populations

::::
(eqs.

::::
18,

::
21

::::
and

::::
25).

:::
As

:::::
such,

::
it
::
is

:::::::::::
unsurprising

:::::
that

::
all

:::
of

:::::
these

:::::
terms

:::
are

:::::
close466

::
to

::::
zero

:::
for

:::::::::
scenarios

:::::
I-III,

::::::
where

:::::
both

:::::::::::
populations

::::::::::
underwent

:::::::
similar

::::::::
amounts

::::
and

::::::::
patterns

:::
of

:::::::::
evolution.467

By contrast, in scenario II, adaptation took place in different directions with respect to the MRCA, and468

so the dominance effects also point in different directions, such that f(d) ≈ 0. Conversely, scenarios I and469

IV give very different results for their additive effects (
::
for

:::::::::
scenarios

::::::
IV-VI,

::::
P2

:::::
alone

::::::::
adapted

::
to

::
a
:::::::
distant470

:::::::
optima,

::::
and

:::
did

:::
so

:::
via

:::::::::
dominant

::::::::::::
substitutions.

:::
It

::::::
follows

:::::
that,

:::
for

:::::
these

:::::::::
scenarios,

::::
the

:::
P2

::::::
alleles

::::::
tended

:::
to471

::
be

::::::::::::::
phenotypically

:::::::::
dominant,

:::::::
leading

:::
to

:::::::::::::
M(A,∆) > 0;

:::
eq.

::::
21;

:
Fig. 2A), but are identical with respect to472

their dominance effects (
:::
G).

::
If

:::
the

::::::::
parental

:::::::::::
populations

:::::
differ

:::::::::::::
phenotypically

::::::::::
(scenarios

::::::
V-VI),

:::::
then

:::
the

:::
F1473

:::
will

:::::
more

:::::::
closely

::::::::
resemble

::::
the

::::::::::
population

::::::::
carrying

::::
the

:::::::::
dominant

::::::
alleles

:::::::::::::
(m(A,∆) > 0;

::::
eq.

::::
18; Fig. 2B);474

this is because in scenario IV, both populations adapted independently,
:::
H).

::::
The

::::::
result,

::::::
shown

:::
in

::::::
Figure

:::
2I,475

:
is
:::::
that

:::
the

::::::::
additive

::::
and

::::::::::
dominance

::::::
effects

:::
at

:::::::
different

::::
loci

:::::
tend

::
to

::::::
point

::
in

::::::::
opposite

:::::::::
directions

:::
for

::::::::
scenario476

::
IV

::::
(for

::::::
which

:::::::::::::::::::
m(A,∆)−M(A,∆)

::
is

:::::::
weakly

:::::::::
negative),

:
but in the same direction . Contrasting results for477

the additive and dominance effects are also observed under stabilizing selection (
:::::::::
phenotypic

:::::::::
direction

:::
for478

scenarios V-VI ), although in this case, the explanation has nothing to do with Haldane’s Sieve. The key479

fact here
:::
(for

::::::
which

:::::::::::::::::::
m(A,∆)−M(A,∆)

::
is
:::::::::
positive).

:
480

:::::
How

::::::
does

:::::::::::::
stabilizing

::::::::::
selection

:::::::
affect

:::::
the

::::::
total

:::::::::
amount

:::::
and

:::::
net

:::::::
effect

::
of

::::::::::::::::
evolutionary481

:::::::::
change?482

::::
Now

:::
let

:::
us

:::::
turn

::
to

:::::::::
evolution

::::::
under

::::::::::
stabilizing

:::::::::
selection.

::::::
The

::::::::::
arguments

::
in

::::
this

:::::::
section

::::
are

::::::::::
illustrated483

::
by

::::::::::
simulation

::::::
results

:::::::
shown

::
in

:::::::
Figure

::
4.

:::
In

:::::
these

::::::::::::
simulations,

:::
the

:::::::
optima

:::
for

:::::
both

:::::::::::
populations

:::::::::
remained484

:::::::::
stationary

::::
and

:::::::::
identical,

:::::::::
matching

:::::
their

::::::::
common

::::::::
ancestral

:::::::::::
phenotype.

:::
As

::::::
such,

::::
any

:::::::::::
evolutionary

:::::::
change485

:::
was

::::
due

::
to

::::
the

::::::::::
drift-driven

::::::::
fixation

::
of

::::::
mildly

::::::::::
deleterious

::::::::::
mutations,

:::::::::
combined

::::
with

:::::::::::::
compensatory

::::::::
changes.

:
486

:::::::::
Additive

:::::::
effects487

:::
The

:::::
first

::::
key

:::::
point

::::::
about

::::::::::
stabilizing

:::::::::
selection

:
is that the additive effects are expressed together in the488

parental genotypes during the divergence process, but
:::
net

::::::::::
phenotypic

:::::::
change,

:::::::::
m(A,A),

:::
will

:::::
reach

::
a
:::::::::
stochastic489

:::::::::::
equilibrium,

::::::::
reflecting

:::
the

::::::::::
deviations

::
of

:::
the

:::::::::::
populations

::::
from

::::
the

::::::::
optimum

::::
due

::
to

::::::::
mutation

::::
and

:::::
drift.

:
Barton490

(2016)
::::::
showed

:::::
that,

:::::
with

:::::::::::
independent

::::
loci

::::
but

:::::::::
otherwise

::::
very

:::::::
general

::::::::::::
assumptions,

:::
the

:::::::::
expected

:::
log

::::::
fitness491

:::::
under

::::::::::
stabilizing

::::::::
selection

:::
on

::
n

:::::
traits

::
is

::::::::::::
∼ −n/(4Ne) ::::

(see
::::
also Lande, 1976; Hartl and Taubes, 1996; Poon492

and Otto, 2000; Zhang and Hill, 2003; Tenaillon et al., 2007; Lourenço et al., 2011; Chevin et al., 2014; Roze493

and Blanckaert, 2014
::
).

:::::
Now,

::
if
::::
the

:::
two

:::::::::::
populations

::::
are

:::::::::::
maladapted

::
in

:::::::
random

::::::::::
phenotypic

::::::::::
directions

:::::
(such494

::::
that

:::::
their

:::::::::::::
displacements

::::
from

::::
the

:::::::::
optimum

:::
are

::::::::::
orthogonal

:::
on

::::::::
average;

:
Schneemann et al., 2022

:
),

:::::
then

::
it495

::::::
follows

:::::
from

::::
eqs.

:
1
::::

and
::::
15,

::::
that

:
496

E (m(A,A)) = − 1
4 (E (lnwP1) + E (lnwP2))

≈ n/(8Ñe) (26)

:::::
where

:::
Ñe::

is
:::
the

:::::::::
harmonic

:::::
mean

:::
of

:::
the

::::
two

:::::::
effective

::::::::::
population

:::::
sizes.

:::::
This

::::::
result

::
is

:::::::::
confirmed

:::
by

::::::::::
simulations497

:::::::
reported

:::
in

:::::::::
Appendix

::
2

::
as

::::::
shown

::
in

::::::::::::::
Supplementary

:::::::
Figure

:::
S1.

:
498

:::::
While

::::
the

:::
net

::::::
effect

::
of
:::::::

change
::

is
:::::::::::

determined
:::::::
largely

:::
by

::
n

::::
and

::::
Ne,:the dominance effects are not. It499

follows that selection cannot act to keep the dominance effects close to any optimum ; so while the additive500

effects may be coadapted, the dominance effects will not be . This implies that the dominance effects may501

wander erratically in phenotypic space, such that f(d) ≈ 0
::::
total

:::::::
amount

:::
of

::::::
change

::::
will

:::::::
depend

:::
on

:::
the

::::
size

::
of502

:::::::::
mutations

::::
that

:::
fix

:::
(as

::::::::::
determined

:::
by

:::
the

:::::::::::
distribution

:::
of

:::::
scaled

::::::::
selective

:::::::
effects:

:::::
Nes).:::::::::::::

Evolutionary
:::::::
changes503

:::
will

::::::::
continue

:::
to

::::::
accrue

::::
even

:::::
after

::::::::
m(A,A)

::::
has

:::::::::::
equilibrated

:
(Schiffman and Ralph, 2021),

:::
so

::::
that

:::::::::
M(A,A)504

:::
will

::::::::
increase

::::
over

:::::
time

::
at

::
a
::::::::
constant

:::::
rate.

:::::
The

:::::
result

::
is
::::::::::
illustrated

:::
by

:::
the

:::::
solid

::::
blue

:::::
lines

:::
in

::::::
Figure

::::::
4A-D,505

:::::
which

:::::
show

::::
that

:::::::::::::::::::
m(A,A)−M(A,A)

::::::::
declines

:::::::
steadily

::::::
under

:::::::::
stabilizing

:::::::::
selection.

:
506

Overall, then, the intrinsic effects of dominance will often be negligible, since f(d) ≈ 0 will often hold.507

Nevertheless, under certain forms of directional selection , when there has been net adaptation in a consistent508
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Figure 4:
::::
The

::::
net

:::::
effect

::::
and

::::::
total

:::::::
amount

:::
of

:::::::::
evolution

:::::::
change

:::::::::::
predictably

::::::
under

:::::::::::
stabilizing

::::::::
selection

:
.
::::
Each

::::
plot

::::::::
compares

:::
the

:::::::
amount

::
of

::::::::::::
directionality

::
in

:::
the

:::::::
additive

::::::
effects

::::::::::::::::::
(m(A,A) −M(A,A);

::::
solid

::::
blue

::::::
lines),

:::::::::
dominance

::::::
effects

:::::::::::::::::::
(m(∆,∆) −M(∆,∆);

::::::
dashed

:::
red

::::::
lines),

:::
and

:::
the

:::::::::
interaction

::::
term

:::::::::::::::::::
(m(A,∆) −M(A,∆);

::::::
dotted

::::::
purple

:::::
lines),

:::::::
plotted

::::::
against

:::
the

:::::
level

::
of

::::::
genetic

::::::::
divergence

::::
(D)

:::::
under

:::::::::
stabilizing

::::::::
selection

::
to

:
a
:::::::::

stationary
:::::::::
optimum.

::
A

:
-
:
B

:
:
::::::
results

::::
with

:::
the

::::::::
standard

:::::
model

::
of

::::::::
mutation

:::
(as

::
in

::::::
Figure

:::
2),

::::
with

::
all

:::::::::
mutations

:::::::
equally

::::
likely

:::
to

::
be

:::::::::::::
phenotypically

:::::::
recessive

::
or

::::::::
dominant.

:::
C-

::
D:

::::::
results

:::::
with

:::::
biased

:::::::::
mutation,

::
in

:::::
which

:::::::::
mutations

::
of

:::::
larger

::::::::::
phenotypic

:::::
effect

::::
were

::::
more

::::
likely

:::
to

::
be

::::::::
recessive

:::
(see

:::::::::
Appendix

:::
2).

::
A

:::
and

::
C:

:::::
Both

::::::::::
populations

::::
had

:::::::
identical

:::::::::
population

:::::
sizes

::
of

:::::::
N = 100,

:::
so

::::
that

::::
they

:::::::
accrued

:::::::::::
substitutions

::
at

:
a
:::::::

similar
::::
rate;

::
B

:::
and

::
D:

::::
We

:::::::
assumed

::::
that

:::
P2

::::::::
remained

::
in

:::
the

:::::::
optimal

:::::::
ancestral

:::::
state,

:::::
while

:::
P1

:::::
(with

::::::::
N = 100)

:::::::::
underwent

:::
all

::
of

:::
the

:::::::::::
evolutionary

::::::
change.

:::::
Lines

:::
and

::::::
shaded

:::::
areas

::::::::
represent

:::
the

:::::
mean

:::
and

::::
one

::::::::
standard

::::::::
deviation

:::::
across

:::
200

::::::::
replicate

::::::::::
simulations.

::::::
Other

::::::::
simulation

::::::::::
parameters

:::::::
matched

::::::
Figure

::
2
:::::::
(n = 20

:::
and

:::::::::::::::
U = s̄mut = 0.01).

.

phenotypic direction with respect to the MRCA, and where Haldane’s Sieve has acted , then f(d) < 0 can509

hold.510
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:::::::::::
Dominance

:::::
and

:::::::::::
interaction

:::::::
terms511

:::
The

:::::::::
evolution

::
of

::::::::::
dominance

::::::
effects

:::::
under

:::::::::
stabilizing

::::::::
selection

::
is
:::::
more

::::::::
complex,

::::
and

::::::::
sensitive

::
to

:::
the

::::::::::
underlying512

:::::
model

:::
of

:::::::::
mutation.

:::
For

::::
this

:::::::
reason,

:::::
some

::
of

::::
the

:::::::::
discussion

::
is
:::::::::
relegated

::
to

:::::::::
Appendix

::
2,
::::::
while

::::
here

:::
we

::::::
report513

:::
the

:::::::
clearest

::::::::
patterns.

:
514

::::::
Figure

:::::
4A-B

::::::
show

::::::
results

:::::
with

::::
the

:::::::::
mutation

::::::
model

:::::
used

:::
in

::::::
Figure

:::
2,

:::
in

::::::
which

:::::
each

::::
new

:::::::::
mutation515

:::
was

:::::::
equally

::::::
likely

::
to

:::
be

::::::::::::::
phenotypically

::::::::
recessive

:::
or

::::::::::::::
phenotypically

:::::::::
dominant.

::
In this case, hybrids with516

intermediate levels of heterozygosity can gain a fitness advantage (eq. ??)
::
we

:::::
found

::::
that

::::::::::::::::::::
m(∆,∆) ≈M(∆,∆)517

::
at

:::
all

:::::
levels

::
of

::::::::::
divergence

:::::::
(dashed

::::
red

:::::
lines),

::::::::
because

::::::::
m(∆,∆)

::::
and

:::::::::
M(∆,∆)

:::::
both

:::::::::
increased

::::
with

:::
D,

::::
but

::
at518

:::::::
identical

::::::
rates.

::::
The

::::::
reason

::
is

::::
that,

::::::
unlike

:::
the

::::::::
additive

::::::
effects,

:::
the

::::::::::
dominance

::::::
effects

:::
are

::::
not

::::::::
expressed

::::::::
together519

::
in

:::
the

::::::::
parental

:::::::::
genotypes

:::::::
during

:::
the

::::::::::
divergence

::::::::
process,

::::
and

::
so

::::::
unlike

::::
the

::::::::
additive

::::::
effects,

::::
the

::::::::::
dominance520

:::::
effects

:::::
show

:::::
little

:::::::::
tendency

::
to

:::
be

::::::::::
coadapted

::
to

:::::
their

:::::::::
optimum,

::::
but

:::
are

::::
free

:::
to

:::::::
wander

::
in

:::::::::::
phenotypic

:::::
space521

(Schneemann et al., 2020, 2022).522

Additive-by-dominance interaction. Finally, let us consider the interaction term, shown in Figure523

2C. From eq. 25, g(a,d) < 0 will hold if the chains of additive effectsand dominance effects tend to point in524

the same consistent direction, while g(a,d) > 0 will hold if these chains point in opposite directions. Of our525

six scenarios, such directionality arises only in scenario I, where both additive and dominance effects tend526

to point away from P1 (=MRCA) towards P2, such that g(a,d) < 0
::::::
Figure

:::::
4C-D

::::::
shows

:::::::::::
comparable

::::::
results527

:::::
when

:::
we

:::::::
adopted

::::
the

::::::::::
mutational

::::::
model

::
of

:
Schneemann et al. (2022)

:
,
::
in

::::::
which

::::::
larger

:::::
effect

:::::::::
mutations

:::::
were528

::::
more

::::::
likely

::
to

:::
be

::::::::::::::
phenotypically

::::::::
recessive

::
(Billiard et al., 2021;

::::
see

:::::::::
Appendix

::
2
:::
for

::::
full

::::::::
details).

:::::
Now,

:::
as529

:::::
shown

:::
by

::::
the

:::::::
dashed

:::
red

:::::
lines,

::::::::::::::::::::
m(∆,∆)−M(∆,∆)

:::::::::
decreases

::::
over

:::::
time.

:::::
This

::
is
::::::::

because
:::::
both

:::::::::
M(∆,∆)530

:::
and

:::::::::
m(∆,∆)

:::::::
increase

:::::
with

:::
D,

::::
but

::
at

::::::::
different

:::::
rates. This implies that , on average,

::
the

::::::::::
dominance

:::::::
effects,531

:::
too,

:::::
have

::
a

::::::::
tendency

:::
to

::
be

::::::::::
coadapted

:::
to

:::
the

:::::::::
optimum.

::::
The

:::::::::::
explanation

::
is
:::::
clear

::
if
:::
we

::::::::
consider

:::
the

::::::::
extreme532

::::
case

::
of

::::::::
complete

::::::::::
phenotypic

::::::::::
recessivity.

:::
In

::::
that

:::::
case,

:::
the

::::::::
additive

::::
and

::::::::::
dominance

::::::
effects

::
of

:::::::::
mutations

::::::
would533

::
be

:::::
equal

::::
and

::::::::
opposite

:::::
(such

:::::
that

:::
the

::::::::::::
heterozygous

::::::
effects

:::::
were

:::::
zero).

:::
As

:::::
such,

::::
the

::::::::
apparent

::::::::::::::
“coadaptation”534

::
of

:::
the

::::::::::
dominance

::::::
effects

::::::
would

::::::
follow

::::::::
trivially

::::
from

::::
the

::::::::::::
coadaptation

::
of

::::
the

::::::::
additive

::::::
effects

::::
(see

:::::::::
Appendix535

:
2
:::
for

:::::
more

::::::::
details).

:::::
The

::::::::::
dominance

::::::
curves

:::
in

::::::
Figure

::::::
4C-D

:::::
show

::::
this

:::::
effect

:::
in

::::
less

:::::::
extreme

::::::
form,

::
so

:::::
that536

:::::::::::::::::::
m(∆,∆)−M(∆,∆)

:::::::::
decreases

::::
with

:::
D,

::::
but

:::::::
slightly

:::
less

:::::::
rapidly

:::::
than

:::::::::::::::::::
m(A,A)−M(A,A).

:
537

::::::::
Consider

::::::
finally

:::
the

::::::::::
interaction

::::::
terms,

::::::
shown

:::
by

:::
the

:::::::
dotted

::::::
purple

::::
lines

:::
in

::::::
Figure

::
4.

:::
As

::::::
shown

:::
in

::::::
Figure538

:::
4A

:::
and

:::
C,

::::
the

::::::::::
interaction

::::::
terms

:::
are

:::::::
always

:::::
close

::
to

::::
zero

::::::
when

:::::
both

::::::::::
populations

::::::::
undergo

:::::::
similar

::::::::
patterns539

::
of

::::::::
evolution

:::
(in

::::
this

:::::
case

:::
due

:::
to

:::::
their

::::::::
identical

::::::::::
population

::::::
sizes).

:::::
More

:::::::::::
surprisingly,

:::
as

::::::
shown

::
in

::::::
Figure

::::
4B,540

::::
with

:::
the

:::::::::
standard

::::::
model

::
of

:::::::::
mutation,

::::::
results

:::::::
remain

::::::::::::
qualitatively

::::::::::
unchanged

:::::
when P2 alleles are dominant541

over P1 alleles. Again, the consequences for hybrids are clear from eqs. ?? and ??. The dominance of the P2542

alleles yields a net fitness benefit only if the homozygous loci also tend to carry P2 alleles (i. e. , if p2 > p1, or,543

equivalently, if h > 1/2). Conversely, had P1 alleles
::::::::
remained

::
in
:::
its

:::::::::
ancestral

:::::
state,

:::::
while

:::
all

::
of

:::
the

:::::::::
evolution544

::::
took

:::::
place

:::
in

:::
P1.

:::::
The

:::::::::::
explanation

::
is

:::::
that,

:::::
with

::::
this

:::::::::
mutation

::::::
model,

::::
the

::::::::
evolving

::::::::::
population

:::::::
showed

:::
no545

::::::::
tendency

::
to

:::
fix

:::::::::::::
phenotypically

:::::::::
recessive

:::::::::
mutations

::
–

:::
and

::::::::
recalling

:::::
that,

::::::
under

::::
this

::::::
model,

::::::::::
mutations

:::
can

:::
be546

:::::::
recessive

:::
for

:::::::
fitness,

:::::
even

:
if
:::::
they

:::
are

::::::::
additive,

:::
or

::::
even

::::::::::
dominant,

:::
for

:::
the

::::::::::
phenotype (Manna et al., 2011)

:
.
:::
By547

::::::::
contrast,

:::::
when

:::::::::
mutations

:
tended to be dominant, then we would have g(a,d) > 0, and hybrids would gain548

an advantage if p2 < p1 or h < 1/2. In both cases, the explanation is that the dominance acts to preserve549

coadaptation between alleles from a single parent.
:::::::::::::
phenotypically

::::::::
recessive

:::::::
(Figure

::::::
4C-D)

:::::
then

:::::::::
M(A,∆)550

:::::::
becomes

:::::::::
non-zero,

::::
and

:::
the

::::::::::
interaction

:::::
term

:::::::
becomes

::
a
:::::::
reliable

:::::
guide

::
to

::::::::
whether

:::
the

::::::::
recessive

:::::::::
mutations

:::::
were551

::::
fixed

:::::::::::
more-or-less

:::::::
equally

::
in

:::::
both

:::::::::::
populations

:::::
(such

::::
that

:::::::::::::::::::::::
m(A,∆) ≈M(A,∆) ≈ 0;

:::::::
Figure

::::
4C),

::
or

:::::::
mostly

::
in552

::
P1

:::::::::::::::::::::::::
(m(A,∆)−M(A,∆) < 0;

::::::
Figure

::::
4D)

:::
or

::
in

:::
P2

::::::::::::::::::::::::
(m(A,∆)−M(A,∆) > 0;

::::
not

:::::::
shown).

::::::
Note

::::
that

::::
this553

:::::
signal

::::::
would

::::::
remain

:::::
even

::::
after

::
a
::::::::
transient

:::::::::
reduction

::
in

::::
Ne,::

as
::::
long

:::
as

:
a
::::::::::
substantial

::::::::
number

::
of

:::::::::::::
phenotypically554

:::::::
recessive

::::::::::
mutations

::::
were

:::::
fixed

:::::::
during

:::
the

::::::::::
bottleneck.

:
555

0.0.1 The total amount and net effect of evolutionary change556

In the previous section, we described the key functions f(·) and g(·, ·) in terms of the directionality in the557

chains of substitutions (eqs. 24-25). We can gain further insight by writing eq. ?? as follows:558

where559
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Here, we have defined two functions: M(·) is the sum of the squared magnitudes of the set of vectors, and560

m(·) is the squared magnitude of the sum of vectors.For substitution effects (Figure ??) these two functions561

have a natural interpretation, and capture different properties of the evolutionary divergence.562

In particular, M(·) captures the total amount of evolutionary change. For additive effects, we have563

so any factor leading to more substitutions, or to larger substitutions, will increase the total amount of564

evolutionary change. As shown by previous authors, the relevant factors are legion, and include the pattern565

of environmental change , and all of the standard566

19



:::::::::::::::
Discussion567

::::
This

:::::
work

::::
has

::::::::
explored

::::
how

::::
the

::::::
mode

::
of

::::::::::
divergence

::::::::
between

::::::::
parental

:::::::::::
populations

::::::::
impacts

:::
the

::::::
fitness

:::
of568

::::
their

::::::::
hybrids.

::::
We

:::::
have

:::::::
focused

:::
on

::::::::
expected

:::::::
hybrid

:::::::
fitness,

::::
and

:::
not

::::
the

::::::::
variance

::
or

:::::::
higher

:::::::::
moments,

::::
and569

::
on

:::::::
results

::::
that

::::::
apply

:::
to

:::::::::
controlled

::::::::
crosses,

::::::
where

::::
the

::::::::
measures

:::
of

:::::::
genome

::::::::::::
composition

:::
(h

::::
and

::::
p12)

::::
are570

:::::::::::
probabilities

::::::::::
determined

:::
by

::::
the

:::::::
crossing

::::::::
scheme.

:::::::::
However,

::
as

:::
we

:::::
show

:::
in

:::::::::
Appendix

::
1,

::::
the

::::::
results

::::
can

::::
also571

::
be

:::::::
applied

:::
to

::::
data

:::
of

:::::
other

::::::
kinds,

::::
e.g.

::::::
when

::
h

::::
and

:::
p12::::

are
:::::::::
estimates

::
of

::::::::
ancestry

:::::
from

::::::::::
individual

:::::::
genome572

:::::::::
sequences.

:::
To

::::::::
generate

:::::::
simple,

:::::::
testable

:::::::::::
predictions,

:::
we

::::
have

:::::
used

:
a
::::::
simple

::::::
model

::
of

::::::::
selection

:::
on

:::::::::::
quantitative573

:::::
traits

::::::::::
introduced

:::
by Fisher (1930)

:
,
::::
but

::::
have

:::::::::
extended

::::
and

::::::::::
generalized

:::::::::
previous

:::::
work

::
on

::::
this

:::::::
model,

:::::
both574

::
by

::::::::
allowing

:::
for

:::::::::
arbitrary

::::::::
additive

::::
and

::::::::::
dominance

::::::
effects

:::
at

::::
each

::::::
locus,

::::
and

:::
by

::::::::::
accounting

:::
for

:::::::::::
segregating575

::::::::
variation

::::::
within

:::
the

::::::::
parental

::::::::::::
populations.

:
576

::::::
Results

::::::
show

::::
how

::::
the

::::::::
expected

:::::::
fitness

::
of
::::::::

hybrids
::::::::
depends

:::
on

:::::
only

::
a

:::::::
handful

:::
of

:::::::::
summary

:::::::::
statistics,577

:::::
which

::::::::
describe

:::
the

::::::::::::
evolutionary

:::::::
changes

:::::
that

:::::::::::
differentiate

:::
the

::::::::::::
populations,

::::
and

:::::
which

::::
are

:::::::::
described

::
by

::::
the578

::::::::
functions

::::::
m(·, ·)

::::
and

:::::::
M(·, ·)

:::::
(eqs.

:::::::
11-12).

:::
If

::::
the

:
population genetic parameters(see, e.g., Supplementary579

Figure S1). As shown in Figure 2D, the values of M(a) were identical for our scenarios I-IV. This is because580

all of these scenarios involved two comparable bouts of directional selection, and so the typical sizes of the581

substitutions (‖ai‖), as well as their number (D = 25) were the same in all cases. The total amount of582

change was smaller when substitutions were driven by drift (Scenario VI), and especially when stabilizing583

selection was effective (Scenario V), because mutations of smaller size tended to fix. As shown in Figure 2E,584

the same pattern was evident in M(d), the
:
,
::
or

:::
the

:::::::
history

::
of

:::::::::::::
environmental

::::::::
change,

::::::::
influence

:::
the

:::::::::
outcomes585

::
of

::::::::::::
hybridization

:
(Chevin et al., 2014; Yamaguchi and Otto, 2020; Schneemann et al., 2020)

:
,
::::
then

:::::
they

:::
do586

::
so

:::
via

:::::
these

::::::::::
quantities.

::::
The

:::::::::
statistics,

:::::::::
moreover,

::::
are

:::::::::
estimable

::
by

::::::::::::
quantitative

::::::
genetic

:::::::::
methods (Hill, 1982;587

Lynch, 1991; Rundle and Whitlock, 2001; Schneemann et al., 2020; Clo et al., 2021),
::::
and

:::::
have

::
a

:::::::
natural588

:::::::::::::
interpretation.

::
In

::::::::::
particular,

::::::
m(·, ·)

:::::::::
represents

::::
the

::::
“net

:::::
effect

::
of
::::::::::::
evolutionary

::::::::
change”,

::::::
M(·, ·)

::::::::::
represents

:::
the589

:
“total amount of evolutionary changein the dominance effects.

::
”,

::::
and

:::
the

:::::::::
difference

::::::::::::::
m(·, ·)−M(·, ·)

:::::::
(which590

:::::::
appears

:::::::
directly

:::
in

:::
eq.

::::
13)

:::::::::
represents

::::
the

:::::::::
similarity

::
of

::::::::
changes

::
at

::::::::
different

::::
loci

:::::
(eqs.

::::::
24-25;

:
Martin et al.,591

2007; Chevin et al., 2014; Fräısse and Welch, 2019
:
).
::::::::

Applied
::
to

::::::::
additive

::::::
effects,

::::::::::::::::::::
m(A,A)−M(A,A),

::::::
closely592

::::::::
resembles

:::
an

:::::::::
QST -FST ::::::::::

comparison
:

(Whitlock, 2008).
:

593

By contrast, m(·) captures the net effect of the evolutionary change, and depends on the differences594

between phenotypes after the divergence has taken place. For additive effects
:
It

:::::::
follows

:::::::::::
immediately

:::::
from

:::
the595

::::::
results

:::::
above

:::::
that

::::
very

::::::::
different

::::::::
histories

:::
of

:::::::::::
evolutionary

::::::::::
divergence

::::
can

:::::
yield

::::::::
identical

::::::::
patterns

:::
of

::::::
hybrid596

::::::
fitness,

:::
as

::::
long

::
as

:::::
they

::::
lead

:::
to

:::
the

:::::
same

::::::
values

:::
of

::::::::::::::
m(·, ·)−M(·, ·).

::::::::::::
Nevertheless, we have

::::::
shown

::::
that

:::::
some597

::::::::::
information

::::::
about

::::
the

::::::::::
divergence

:::::::
history

::
is

:::::::
present

:::
in

::::::
hybrid

:::::::
fitness

:::::
data

:::::::
(Figure

:::
2).

:::::::
These

::::::
results

::::
are598

::::::::::
summarized

:::
in

::::::
Table

::
4,

::::::
which

::::::::
contains

:::
the

:::::::::
predicted

:::::
signs

:::
of

:::
the

::::
key

:::::::::
quantities

:::::
that

:::::::
appear

::
in

::::
the

:::::
three599

::::
final

:::::
terms

:::
in

:::
eq.

:::
13.

:
600

which depends on the difference in the parental phenotypes (see the black dotted line in Figure ??C). It601

follows that m(a) will be largest in cases of divergent selection, and will correspond to the differences between602

the new parental optima. This is confirmed by results in Figure 2G (Scenarios I-IV). When environmental603

conditions are shared, m(a)
::
As

:::
is

::::
clear

:::::
from

::::::
Table

::
4,

::::
the

:::::::
simplest

:::::::
results

:::::::
concern

::::::::::
directional

:::::::::
selection.

:::
In604

:::::::::
particular,

:::::::::::::::::::
m(A,A)−M(A,A)

::::
will

:::::
tend

:::
to

:::
be

:::::::
positive

:::::
only

::::::
when

:::
the

::::::::::
divergence

::::::::
between

::::
the

::::::::
parental605

::::
lines

::::
was

::::::
driven

:::
by

::::::::
positive

::::::::
selection

::::::::
towards

::::::::
distinct

:::::::::::::
environmental

::::::::
optima.

:::::
The

::::
size

::
of

::::
the

:::::
term

:
will606

depend on the ability of populations to track their optima – i.e. on the efficacy of phenotypic selection.607

With stabilizing selection (Figure 2G, scenarios V-VI)this is closely related to the mutation-drift load. As608

shown by previous authors, this load also varies in predictable ways with the full suite of population-genetic609

parameters
::::::
further

::::::
details

:::
of

:::
the

::::::::
adaptive

::::::::::
divergence

::::::::
(Figure

:::
3).

:::
It

::
is

:::::::::::
maximized,

:::
for

:::::::::
example,

:::::
when

:::
all610

:::::
allelic

:::::::
changes

:::::::::
produced

::::::::
identical

:::::::
effects

::::
(eq.

::::
23),

::::
and

:::::::::
decreases

::
in

::::
size

::
if
::::
the

::::::::
adaptive

:::::::
change

::
is

::::::::
achieved611

:::
via

::
a

:::::::::
circuitous

:::::
route

:
(e.g. , ; see also Supplementary Figure S1). For the dominance effects, the net612

effect of evolutionary change is
::::::
because

:::
of

::::::::::
deleterious

::::::::::
pleiotropy,

::::::::::
overshoots

:::
of

:::
the

::::::::::
optimum,

::::::::::
fluctuating613

::::::::::::
environmental

:::::::::::
conditions,

::
or

:::::::::::
maladapted

:::::::::
ancestral

:::::::
states);

::::
and

:
–
:::
for

::
a
:::::
given

::::::::
amount

::
of

::::::::::
phenotypic

:::::::
change614

:
–
:::
the

:::::
term

:::::::::
decreases

::
if

:::
the

:::::::
number

:::
of

:::
loci

::
is
::::::::

smaller,
::::
and

:::::
their

::::::
effects

:::::
more

:::::::
variable

:::
in

:::
size

::::
(eq.

::::
20;

:::
see

::::
also615

Chevin et al., 2014
:
).

::::::::::
Additional

::::
and

::::::::::::::
complementary

:::::::::::
information

::::::
about

:::
the

::::::::::
divergence

:::::::
history

::
is

:::::::
present

::
in616

:::
the

::::::::::
dominance

::::
and

::::::::::
interaction

::::::
terms

::::::::::::::::::::
(m(∆,∆)−M(∆,∆)

::::
and

:::::::::::::::::::::
m(A,∆)−M(A,∆)).

::::
Due

:::
to

:::::::::
Haldane’s617

20



::::
Sieve

:
(Haldane, 1924)

:
,
::::::::::
dominance

::::::
effects

::::
will

:::::
often

::::::
point

::
in

::::
the

::::::::
direction

:::
of

::::
past

:::::::::
selection.

::::
For

:::::::::
example,618

:
if
::::
one

::::::::::
population

::::::::
adapted

:::
to

::::
new

::::::::::
conditions

::::
via

:::::::::
dominant

::::::::::
mutations,

:::::
while

::::
the

:::::
other

:::::::::
remained

:::
in

:::::
their619

::::::
shared

::::::::
ancestral

::::::::
habitat,

::::
then

:::
we

::::::
would

:::::::::
expected

:::::
both

:::::::::::::::::::
m(∆,∆)−M(∆,∆)

::::
and

:::::::::::::::::::
m(A,∆)−M(A,∆)

:::
to620

::
be

::::::::
positive,

::
as

::::
well

::
as

::::::::::::::::::::
m(A,A)−M(A,A).

::
It

:::::::
follows,

:::::::::
therefore,

::::
that

:::
the

::::::::
analysis

::
of

::::::
hybrid

::::::
fitness

::::::
might

:::
tell621

::
us

:::
not

:::::
only

::::::
about

:::
the

::::::::
presence

::
of

:::::
past

::::::::::
directional

::::::::
selection (e.g. Fraser, 2020)

:
,
:::
but

::::
also

::::::
about

::::
the

::::::::
direction622

::
of

::::
that

:::::::::
selection,

::::
and

:::
the

:::::::
lineage

::
in

::::::
which

:::
the

::::::::::
adaptation

::::::::
occurred

::::
(see

:::::::
Figure

::
2;

:::::
Table

:::
4).

:
623

which is the distance between the midparent and
::
If

:::::::::::::::::::
m(A,A)−M(A,A)

::
is

:::::::::
negative,

:::::
then

:::::::::
inferences624

:::::
about

::::
the

::::::::::::
evolutionary

::::::::::
divergence

:::
are

::::::
more

:::::::::::
challenging,

:::::
since

::::::::
negative

::::::
values

::::
can

:::::
arise

:::
in

::
a
:::::::
number

:::
of625

:::::::
different

:::::
ways

::::
(see

::::::::
Figures

:
2
::::

and
::

4
::::
and

::::::
Table

:::
4).

:::::::::::::
Nevertheless,

:::::
even

::
in

::::
this

:::::
case,

:
the F1 (see the purple626

dotted line in Figure ??C). Because the F1 is not under selection during the divergence, its phenotype can627

evolve erratically, but the net effect of change will also be influenced by directional dominance, resulting628

from past selection. This is all confirmed in Figure 2H.629

Finally, the additive-by-dominance interaction can be written as the difference between the total amounts630

and net effects of evolutionary change, for the two sets of heterozygous effects. In other words, it depends631

on the differences between the red and blue paths illustrated in Figure ??B. In particular, we can write632

As shown in
:::::::::
dominance

::::
and

::::::::::
interaction

::::::
terms

::::::
might

:::::
yield

::::::
useful

::::::::::::
information.

:::::::::
Consider,

:::
for

:::::::::
example,633

:
a
::::
pair

:::
of

:::::::::::
populations

:::::
with

:::::::
similar

:::::::
current

:::::::::::
phenotypes

::::
and

:::::::
fitness,

::::
but

::::::
which

:::::::::::
nonetheless

::::::::
produce

:::::
unfit634

:::::::
hybrids,

::::
due

::
to

::::::::::::::::::::::::
m(A,A)−M(A,A)� 0.

:::
In

:::
this

:::::
case,

:::
an

::::::::
estimate

::
of

::::::::::::::::::::::::
m(∆,∆)−M(∆,∆) ≈ 0

:::::
would

::::
not635

::
be

:::::
very

:::::::::::
informative,

:::
as

::
it
::::

can
:::::
arise

::::::
under

::::::::::
stabilizing

:::::::::
selection,

::::::::::
fluctuating

:::::::::
selection,

:::
or

:::::
even

::::::::::
directional636

:::::::
selection

:::
if

:::::::::
Haldane’s

:::::
Sieve

:::
is

:::::
weak

:
(Orr and Betancourt, 2001).

::::::::::
However,

::
a
::::::::
strongly

::::::::
positive

::::::::
estimate637

::
of

:::::::::::::::::::
m(∆,∆)−M(∆,∆)

::::::
would

:::
be

::::::::::
consistent

:::::
with

:::
the

:::::::::::
populations

:::::::
having

::::::::
diverged

::::
via

::::::::
different

::::::::
genomic638

::::::::
responses

:::
to

::::::::
identical

::::::::::
directional

::::::::
selection

:
(Figure 2 F and 2I, for scenarios II-VI, there was no systematic639

difference between the two chains of effects. This applied to both the total amounts of change (Fig. 2F);640

and the net effects of change (Fig. 2I). For scenario I, by contrast, P2 alleles were more dominant, because641

only the P2 lineage underwent directional selection . This meant that the heterozygous effects of
:::::::
scenario

:::
I).642

::
By

:::::::::
contrast,

::
if

::::
this

::::::::::
dominance

:::::
term

::::
were

:::::::::
negative,

::::
and

:
the P2 alleles were larger (M(a + d) > M(a− d);643

Fig. 2 F), and that their combined effect on the phenotype was also larger (m(a + d) > m(a− d); Fig.644

2I).
:::::::::
interaction

:::::
term

::::
was

::::
also

:::::::::
non-zero,

:::::
then

::::
this

::::::
would

:::
be

:::::::::
consistent

:::::
with

:::
one

:::
of

:::
the

:::::::::::
populations

:::::::
having645

:::::::::
undergone

:::::::::
prolonged

:::::::
periods

:::
of

:::
low

::::
Ne,::::

and
:::::
fixing

::::::::::
deleterious

::::::::
recessive

::::::::::
mutations

:::::::
(Figure

::::
4D).

:::::
The

::::
sign

::
of646

:::
the

::::::::::
interaction

:::::
term,

::::::::::::::::::::
m(A,∆)−M(A,∆),

:::::
would

:::::
then

:::
tell

:::
us

:::::
which

:::
of

:::
the

::::
two

::::::::::
populations

::::
had

:::::::::::
experienced647

:::
the

:::
low

::::
Ne.:::::

Note
:::::
that,

:::::
from

:::
eq.

:::
13

:::
the

::::::
result

:::::
would

:::
be

::::::
alleles

:::::
from

:::
one

::::::::
parental

::::
line

:::::
being

::::::::
selected

:::::::
against,648

::::::
despite

::::
the

::::
lines

:::::::
having

:::::
equal

::::::
fitness

:
(Barton, 1992).

:
649

0.0.1 Definition in terms of fitness effects650

The quantities M(·) and m(·), which describe the total amount, and net effect of evolutionary change, can651

also be represented in
::
A

::::::
major

::::::
caveat

::
of

:::
all

:::
of

:::
the

:::::::
results

:::::::::
presented

::::
here

::
is
::::

the
::::::::
extreme

:::::::::
simplicity

::
of

::::
the652

::::::::::
phenotypic

:::::
model

::::::
(with

:::
its

::::
lack,

:::
for

:::::::::
example,

::
of

::::::::::
phenotypic

:::::::::
epistasis,

::::
and

:::::::::
directional

::::::::::
plasticity; Stamp and653

Hadfield, 2020
:
).

:::::::::
However,

::::
this

::::::
model

::::
can

:::
be

::::::::
defended

:::
as

:::
an

:::::::::::::
approximation

::
of

:::::
more

::::::::
complex

::::
and

::::::::
realistic654

::::::
models

:
(Martin, 2014),

:::
or

:::::::
simply

::
as

::
a
::::
way

:::
of

::::::::::
generating

:
a
:::::::

fitness
:::::::::
landscape

:::::
with

:::
few

:::::::::::
parameters

:
(Simon655

et al., 2018)
:
.
::
In

::::
this

:::::
case,

::
as

::::::
shown

::
in

:::::::::
Appendix

::
1,

:::
we

::::
can

:::::
follow

:
Chevin et al. (2014),

::::
and

:::::::
reframe

::::
our

::::::
results656

::
in terms of fitness

::::::
effects, rather than phenotypes. This implies that they are measurable in principle, even657

when the phenotypic model is not taken literally . To see this, let us consider the homozygous fitness effects658

(equivalent results can be simply derived for the heterozygous effects). Now, let si denote the deleterious659

fitness effect of inserting a single homozygous substitution i into an otherwise optimal background, so that660

If s̄ denotes the mean of these effects for all D substitutions, then we have:
:::::::::
phenotypic

::::::::
changes.

:::
Of

:::::::
course,661

::::
even

::
as

::
a
::::::
fitness

::::::::::
landscape,

::::
the

:::::::::
quadratic

::::::
model

::
of

:::
eq.

::
1
::::::::
remains

::::
very

:::::::
simple,

::::
and

:::::::::
precludes

::::::
strong

::::::
fitness662

:::::::
epistasis

::::
and

:::::::::::
multi-locus

::::::
fitness

:::::::::::
interactions (Barton, 2001; Martin et al., 2007; Fräısse and Welch, 2019)

:
–663

::::
both

::
of

::::::
which

::::
are

:::::
often

::::::::
observed

::
in

:::::
cross

:::::
data

:
(Coyne and Orr, 2004; Fräısse et al., 2014, 2016).

::::
Yet

:::::
even664

::
in

:::
the

::::::::
presence

::
of
:::::
such

:::::::
effects,

::::::
results

::::::
might

::::
still

:::::
apply

:::
to

:::::::::::
transformed

::::::
fitness

:::::::::::::
measurements

:
(Fräısse et al.,665

2016; Simon et al., 2018; Schneemann et al., 2020)
:
.
:

666

::
A

::::::
second

::::::
major

::::::
caveat

::
is
::::
our

:::::::
neglect

::
of

:::::::
linkage

:::::::::::::
disequilibrium

:
(Lande, 1981; Schneemann et al., 2020)

:
,667
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:::::
which

::
is
:::::::::

essential
::
to

:::::::::
studying

:::
the

::::
full

:::::::::
dynamics

:::
of

::::::::::::
introgression.

::::::::::::::
Nevertheless,

::::
even

::::
the

:::::::
current

:::::::
results668

::::
have

:::::::::
suggestive

::::::::::::
implications

:::
for

:::
the

::::::::
stability

::
of

:::::
local

:::::::::::
adaptation,

::::
and

:::
the

:::::::::
evolution

::
of

:::::::
genetic

::::::::::::
architectures669

(Dekens et al., 2021; Yeaman, 2022).
::::
For

::::::::
example,

:::
the

::::::::::
dominance

::
of

::::::
alleles

::::
may

::
be

::
a
::::::
major

:::::::::::
determinant

::
of

:::
the670

:::::::
effective

:::::
rates

::
of

:::::::::
migration

::::::::
between

::::::
demes,

::::
and

:::
the

:::::::::
possibility

:::
of

:::::
allele

:::::::::
swamping (Barton, 1992).

:::::::::::
Directional671

::::::::::
dominance,

::::::::
resulting

:::::
from

:::::
local

::::::::::
adaptation,

:::::
may

::::::::
therefore

:::
act

:::
as

:
a
:::::::
source

::
of

:::::::::::
asymmetric

::::
gene

::::
flow

::::::::
between672

::::::
derived

::::
and

:::::::::
ancestral

::::::::::::
populations.

::::::::::
Similarly,

::
a

:::::
body

::
of
:::::::::

previous
:::::
work

::::::::
suggests

::::
that

::::
the

:::::::::::
architecture

:::
of673

:::::::::
adaptation

::::
will

:::
be

::::::::
affected

:::
by

::::
the

::::::::
presence

:::
or

:::::::
absence

:::
of

:::::
gene

::::
flow

:
(as reviewed in Yeaman, 2022).

::::
In674

:::::::::
particular,

::::::::::
adaptation

::
in

::::
the

::::
face

::
of

::::
gene

:::::
flow

::::::
should

::::::
create

:::::::::::
architectures

:::::
that

:::
are

:::::
more

::::::::::::::
“concentrated”,

::::
i.e.,675

::::::::
involving

::::::
fewer,

::::::
larger

::::::
effects,

::::
and

:::::::
tighter

:::::::
linkage.

::::::::::
Combined

:::::
with

:::::::
results

::::
here

::::
(eq.

:::::
20),

::::
this

:::::::
implies

::::
that676

:::::::
ongoing

::::
gene

:::::
flow

::::::
during

:::::
local

::::::::::
adaptation

:::::
might

::::::::::
sometimes

::::::::
increase

:::
the

::::::::
strength

::
of

:::::::::
resulting

:::::::
intrinsic

::::
RI.677

So M(2a) will be large if the parental lines have fixed many mutations with large fitness effects. By678

contrast, m(2a) describes the fitness effect of adding all of the divergent alleles at once into an otherwise679

optimal genotype. This is equal to the sum of the individual fitness effects, plus their pairwise epistatic680

interactions (noting that all interactions are pairwise with the model of eq. 1; ). If we define sik as the681

fitness effect of inserting a given pair of substitutions into an optimal background, then the pairwise epistatic682

effect is683

Table 4: Inference of divergence scenario from the signs of terms in eq. 13

Scenario Figure Additive Dominance Interaction

Neutrality, or erratically wandering optimum Fig. S1 0 0 0

Divergent selection, acting only in P1 – + +1 -1

Divergent selection, acting only in P2 Fig. 2-V&VI + +1 +1

Divergent selection where both populations evolve
in similar phenotypic directions

Fig. 2-II + +1 0

Divergent selection where both populations evolve
in dissimilar phenotypic directions

Fig. 2-III + 0/-1 0

Stabilizing selection; most evolution in P1 Fig. 4B&D, and S2-S3 - 0/-2 0/-2

Stabilizing selection; most evolution in P2 – - 0/-2 0/+2

Stabilizing selection; evolution in both populations Fig. 4A&C, and S1-S3 - 0 0

Cyclically moving optima Fig. 2-IV - 0/-1 0

Independent genetic responses to identical direc-
tional selection in both populations

Fig. 2-I - +1 0

Note: Additive: m(A,A) −M(A,A), Dominance: m(∆,∆) −M(∆,∆), Interaction: m(A,∆) −M(A,∆);
1. Only if Haldane’s Sieve acts.; 2. Weak without mutational bias towards phenotypically recessive mutations.
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::::::::::::
Methods684

::::::::::::
Derivation

:::
of

:::::::
main

::::::::
result685

:::
We

:::::::
assume

::::
that

::::::::::
individuals

:::::
from

::::
our

::::
two

::::::
diploid

::::::::
parental

::::::::::::
populations,

:::
P1

:
and m(2a) can also govern the686

strengths of intrinsic versus extrinsic RI. To see this, let us consider the case of divergent selection and local687

adaptation , where the parental lines have adapted to different environments, A and B, characterized by688

different phenotypic optima. For simplicity and brevity, we will assume that
:::
P2,

::::
vary

:::
at

::
D

:::::::
biallelic

::::
loci.

::::
We689

:::
can

::::::::::
arbitrarily

::::::
choose

::::
one

:::::
allele

:::
at

::::
each

::::::
locus

::
to

:::
be

::::
the

::::
focal

::::::
allele,

::::::::
denoted

:::
B,

::::
such

:::::
that

:::
the

::::::
other

:::::
allele690

:::
can

:::
be

::::::::
denoted

::
b.

::::::
Since

::::
loci

:::
are

:::::::::
assumed

::
to

:::
be

::::::::::::
independent,

:::
let

:::
us

::::
first

:::::::
specify

::::
the

:::::::
genetic

::::::
model

:::
for

::
a691

:::::
single

::::::
locus,

::::::::
following

::::
the

::::::::
standard

:::::::::::
conventions

::
of
::::::::::::

quantitative
:::::::
genetics

::
(e.g. Lynch and Walsh, 1998, Ch.692

4
:
).
::::::::::::

Accordingly,
:::
we

:::::
define

::::
the

:::::::::::
contribution

::
of

::::
the

::
bb

:::::::::
genotype

::
to

:::
the

:::::
trait

:
j
::
as

:::
0,

::
so

::::
that

:::
the

::::::
point

:::::::::
(0, 0, ..., 0)693

::
in

::::::::::::
n-dimensional

:::::
trait

:::::
space

:::::::::::
corresponds

::
to

::::
the

:::::::::
individual

:::::
with

::::
only

:::
bb

:::::::::
genotypes

::
at

:::::
each

::
of the

:
D

:::::
loci.

::::
The694

:::::::::::
contribution

::
of

:::
the

::::
Bb

::::::::
genotype

:::
on

:::::
locus

:
i
:::
to

:::
the

:::::
trait

:
j
:::

is
::::::
defined

:::
as

::::::::
aij + dij ,::::

and
::::
the

:::::::::::
contribution

::
of
::::

the695

:::
BB

::::::::
genotype

:::
on

:::::
locus

::
i
::
to

:::::
trait

:
j
::
is
:::::
2aij .:::::

This
::
is

:::::::::::
summarized

::
in

::::::
Table

::
5.

:
696

Table 5:
:::
The

::::::::
genotypic

::::::
values

::
for

:::::
locus

:
i
::::

and
::::
trait

::
j

:::::
Locus

::
i
::::::::
genotype

: :::::::::::
Contribution

:::
to

::::
trait

::
j
:

::
bb

:
0

:::
Bb

: ::::::::
aij + dij

:::
BB

: ::::
2aij

:::::::::::
Properties

::
of

::::
the

::::::
three

::::::
focal

::::::::::::
populations697

::::
Here

:::
we

:::::
will

::::::
specify

::::::::::
properties

:::
of

:::::
three

::::
key

::::::::::::
populations,

::::::::
namely

:::
the

:
two parental populationsare well698

adapted to their respective optima, and assume that phenotypes are additive, such that d = 0. With these699

assumptions, the net effect of the evolutionary divergence is the same as the squared difference between the700

optima (,
:::
P1

::::
and

::::
P2,

:::
and

::::
the

::::::
initial

:::
F1

:::::
cross.

:::::::::
Crucially,

:::::
these

:::::::::::
populations

::::::::::
correspond

:::
to

:::
the

:::::
three

::::::::
possible701

:::::::
ancestry

::::::
states

::
of
::::

any
::::::

given
:::::
locus

::
in

::::
the

:::::::
hybrid,

:
i.e. m(2a) = ||oA − oB ||2), and the fitnesses of the three702

fixed genotypes are:
:::::
either

:::::
both

::::::
alleles

:::
are

:::::::
derived

:::::
from

::::
P1,

::
or

:::::
both

:::::
from

::::
P2,

::
or

::::::
there

::
is

::::::
mixed

::::::::
ancestry703

::::
with

::::
one

:::::
allele

:::::::
derived

:::::
from

::::
each

:::::::::::
population.

::::::
Table

:
6
:::::

gives
::

a
::::
list

::
of

::::::::::::
fundamental

::::::::::
parameters

::
in

::::
our

::::::
model704

::
in

::::
each

::
of
::::::

these
:::::
three

:::::::::::
populations.

:
705
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:::::
Table

::
6

::::::
begins

:::
by

:::::::
defining

::::
the

::::::::
marginal

:::::::::
frequency

::
of
::::

the
:::::
focal

:::
(B)

::::::
allele

::
at

:::::
locus

::
i
::
as

:::::
qP1,i::::

and
:::::
qP2,i ::

in706

::::::::::
populations

:::
P1

::::
and

:::
P2

::::::::::::
respectively.

::::
The

:::::::::
marginal

:::::::::
frequency

::
of

::::
the

::
B

:::::
allele

:::
in

:::
the

:
F1 is

:::::::::
population

::
is
::::

the707

:::::
mean

::
of

:::
the

:::::::::
marginal

::::::::::
frequencies

::
in

:::
P1

::::
and

::::
P2,

:::::::
denoted

:::
q̄i.:::

By
:::::::::::
assumption,

:
the same in both environments708

because, with our assumptions, its phenotype will be exactly intermediate between the two optima (at a709

distance
√
m(2a)/2 from either). Now we can write the expected hybrid fitness in the two environments710

solely in terms of M(2a)
::::
two

:::::::
parental

:::::::::::
populations

:::
are

::
at

:::::::::::::::
Hardy-Weinberg

:::::::::::
equilibrium,

::::
but

:::
the

:::
F1

::::::::::
population711

:::
will

:::::
have

::
an

::::::
excess

:::
of

:::::::::::::
heterozygotes,

::::::
which

:::
can

:::
be

:::::::::::::
parameterized

:::
by

:
a
::::::::
negative

::::::::::
coefficient

::
of

::::::::::
inbreeding,

:::
fi.712

:::
The

:::::::::::
frequencies

::
of

::::
the

:::::
three

::::::::
possible

:::::::::
genotypes

:::
at

::::
the

:::::
locus,

::::
bb,

::::
Bb

::::
and

::::
BB,

:::::
then

::::::
follow

::::
from

:::::::::
standard713

::::::
results

:
(e.g., Lynch and Walsh, 1998, eqs. 4.21

:
).
:::::

The
:::
F1

::::::::
genotype

::::::::::
frequencies

::::
can

::::
also

::
be

:::::::
written

::
in

::::::
terms

::
of714

:::
the

::::::::
parental

:::::
allele

::::::::::
frequencies

::::
(for

::::::::
example,

::::
the

:::
F1

:::
bb

:::::::::
frequency

::
is

:::
the

::::::::
product

::
of

:::
the

:::::::::
marginal

::::::::::
frequencies715

::
of

:::
the

::
b

:::::
allele

::
in

:::
P1 and m(2a). Results are simplest if we assume that genomic divergence is high, such that716

D/(D − 1) ≈ 1. In this case, from eq. ?? we find:
:::
P2),

::::::
which

::::::
allows

::
us

:::
to

::::
solve

:::
for

::::
the

:::::::::
inbreeding

::::::::::
coefficient,717

::
as

::::::
shown

::
in

::::
the

::::::
Table.

::::
The

:::::
next

::::
lines

:::
of

:::
the

::::::
Table

:::::
follow

:::::::::
standard

:::::::::::
quantitative

::::::::
genetics

:
(e.g. Fisher, 1930;718

Cockerham, 1954; Lynch and Walsh, 1998, Ch. 4
:
)
::::
and

::::::
define

:::
the

:::::::
average

::::::
effects

::::
and

::::::::::
dominance

::::::::::
deviations719

::
of

::
an

::::::
allelic

:::::::::::
substitution

:::
at

:::
the

:::::
locus

::
in

:::::
each

::
of

::::
the

::::::::::
populations

:::::
(see,

::::
e.g.,

::::
eqs.

::::::
4.10b

::::
and

::::
4.22

::
in

:
Lynch and720

Walsh, 1998
:
).

:
721

This result shows clearly that M(2a) and m(2a) cause RI of different kinds. The term weighted by722

M(2a) is identical in environment A and environment B. Therefore, the total amount of evolutionary change723

determines the strength of intrinsic RI, where hybrids are disfavoured in either environment. By contrast,724

:::::
These

::::
are

:::
all

::
of

:
the term weighted by m(2a) determines the strength of extrinsic RI. The net effect of725

evolutionary change determines how far P1-like hybrids (with low h) are favoured in environment A,
::::::
results726

::::::
needed

:::
to

::::::
derive

::::
eqs.

:::::
3-6.

:::::
Let

:::
us

:::::
begin

:::::
with

::::
the

::::::::::::
contribution

:::
to

:::
the

::::::
mean

::
of
:::::

trait
::
j
:::::

from
::::::

locus
:
i
:::

in727

::::::::::
populations

:::
P1

:
and disfavoured in environment B. The relative importance of these two terms is therefore728

determined by the ratio M(2a)/m(2a). This is illustrated in Figure ??. Figure ??A-B shows the expected729

log fitness of various hybrids (namely the F2 and reciprocal backcrosses) in each environment. When the730

ratio M(2a)/m(2a) is small (orange curves in Fig. ??A-B) then the maladapted parental type is the least731

fit genotype , and hybrids are intermediate. Hybrid fitness is determined largely by the hybrid index (i. e.732

the extent to which hybrids resemble
:::
P2.

:::::
This

::
is

:::::
given

:::
by

:::
the

:::::
sum

::
of

:::
the

:::::
three

:::::::::
genotype

::::::::::
frequencies

::
in
::::

the733

::::::::::
population,

::::::::
weighted

:::
by

:::::
their

::::
trait

:::::::::::::
contributions,

:::
as

:::::
given

::
in

::::::
Table

::
5.

:
734

z̄P1,ij = 2aijq
2
P1,i + (aij + dij) · 2qP1,i(1− qP1,i) (27)

z̄P2,ij = 2aijq
2
P2,i + (aij + dij) · 2qP2,i(1− qP2,i) (28)

::
in

:::::::::::
populations P1 or

:::
and

:
P2 ), and heterozygosity has little impact on the results. As a result, the F2 (in735

the centre of each plot) has similar fitness to the
:::::::::::
respectively.

:::::::::
Equation

:
3
:::::
then

:::::::
follows

:::::::::::
immediately

::
as

:
736

Aij ≡ 1
2 (z̄P2,ij − z̄P1,ij) = 1

22aij (qP2,i − qP1,i) + 1
2dij (2qP2,i(1− qP2,i)− 2qP1,i(1− qP1,i)) (29)

= aij (qP2,i − qP1,i) + dij (qP2,i − qP1,i) (1− qP1,i − qP2,i)

= αij (qP2,i − qP1,i)

:::::
where

::::
the

:::::
mean

:::::::
average

:::::
effect

::
is
:::::::
defined

:::
as737

αij ≡ 1
2 (αP1,ij + αP2,ij) = aij + dij(1− qP1,i − qP2,i) (30)

::::::::
Similarly,

:::
to

::::::
derive

:::
eq.

::
6,
::::

we
:::
use

::::
the

::::::::
genotype

::::::::::
frequencies

:::
for

::::
the

:
F1 (shown by the black crosses). By738

contrast, when the ratio M(2a)/m(2a) is large (green curves in Fig. ??A-B), the position of the optimum739

has much less effect on the results. Hybrids of all kinds are selected against in both environments. When740

the ratio takes an intermediate value (blue curves in Fig. ??A-B), there is a mix of intrinsic and extrinsic741

effects.
::
as

::::::
shown

::
in

::::::
Table

::
6,

::
to

:::::
yield

:::
the

::::::::::::
contribution

::
of

:::::
locus

::
i
::
to

:::
the

::::::
mean

::
of

:::::
trait

:
j
:::
in

:::
the

:::
F1

:
742

25



The results above capture one major way in which the history of environmental change affects the
evolution of RI . They also show that results depend not only on the environmental change, but also on the
nature of the populations’ genetic response to this change. To see this, let us note that the total amount of
evolutionary change can be written as :

z̄F1,ij = 2aijqP1,iqP2,i + (aij + dij)(qP1,i(1− qP2,i) + qP2,i(1− qP1,i)) (31)

:::
and

:::
so

::
it

::::::
follows

:::::
that743

4ij ≡ z̄F1,ij − 1
2 (z̄P2,ij + z̄P1,ij) = 2aij

(
1
2 (qP2,i + qP1,i)− 1

2 (qP2,i + qP1,i)
)

(32)

+ dij
(
qP2,i(1− qP1,i) + qP1,i(1− qP2,i)− 1

2 (2qP2,i(1− qP2,i) + 2qP1,i(1− qP1,i))
)

= dij (qP2,i − qP1,i)
2

= δij (qP2,i − qP1,i)
2

where
:::::
which

::
is

::::::::
equation

::
6,

::::
and

::::::
where

:::
the

::::::
mean

::::::::::
dominance

::::::::
deviation

::
is
:::::::
simply744

δ̄ij = 1
2 (δP1,ij + δP2,ij) = dij (33)

::::::
Having

:::::::
defined

::::
the

::::::
mean

:::::
trait

::::::
values

:::
of

::::
each

:::::::::::
population,

::::
let

::
us

:::::
now

::::::::
consider

:::::
their

::::::::::
variances.

:::::
The745

:::::::::::
contribution

::
of

:::::
locus

:
i
:::
to

:::
the

::::::::
variance

::
in
:::::

trait
::
j

::
in

::::::::::
population

:::
P1

::
is

:
746

Var (zP1,ij) = E(z2
P1,ij)− z̄2

P1,ij (34)

= (2aij)
2
q2
P1,i + (aij + dij)

2 · 2qP1,i(1− qP1,i)

− (2aijq
2
P1,i + (aij + dij) · 2qP1,i(1− qP1,i))

2

= α2
P1,ijqP1,i(1− qP1,i) + (2qP1,i(1− qP1,i)δij)

2

= σ2
α,ij(P1) + σ2

δ,ij(P1)

:::::
where

:::
we

:::::
have

::::::::::
partitioned

:::
the

::::::
result

::::
into

:::
an

::::::::
additive

:::::::
variance

::::
and

::
a
::::::::::
dominance

::::::::
variance

:::::
term,

:::
as

:::::
listed747

::
in

:::::
Table

::
6,
::::
and

:::::::::
following

::::
eqs.

::::
4.12

::
of

:
Lynch and Walsh (1998).

:::::::::
Similarly

:::
for

:::
P2,

:
748

Var (zP2,ij) = α2
P2,ijqP2,i(1− qP2,i) + (2qP2,i(1− qP2,i)δij)

2 (35)

= σ2
α,ij(P2) + σ2

δ,ij(P2)

:::
and

:::
for

::::
the

:::
F1749

Var(zF1,ij) = (2aij)
2qP1,iqP2,i + (aij + dij)

2(qP1,i(1− qP2,i) + qP2,i(1− qP1,i)) (36)

= σ2
α,ij(F1) + σ2

δ,ij(F1)

:::::
which

:::
all

:::::
agree

:::::
with

::::::
results

:::
in Cockerham (1954)

:
.
:::
So

::::
far,

:::
we

::::
have

::::::
given

:::
the

::::::::::::
contributions

:::
of

:
a
::::::
single

:::::
locus750

::
to

:
a
::::::
single

:::::
trait.

::::
The

:::::::
general

:::::::
results,

::::::
found

::
in

:::::
Table

:::
1,

::::::
simply

:::::::
require

::::::::
summing

:::::
over

::
all

::::
loci

::::::::::
i = 1, ..., D

::::
and751

::
all

:::::
traits

:::::::::::
j = 1, ..., n.

:::::
That

:::
is,

:::
we

:::
can

:::::
write

::::
the

:::::
sums

::
of

:::::
trait

::::::::
variances

:::
for

::::
P1,

:::
P2

::::
and

:::
F1

::
as

:
752
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VP1 ≡
n∑
j=1

D∑
i=1

Var(zP1,ij) =

n∑
j=1

D∑
i=1

(
σ2
α,ij(P1) + σ2

δ,ij(P1)
)

(37)

VP2 ≡
n∑
j=1

D∑
i=1

Var(zP2,ij) =

n∑
j=1

D∑
i=1

(
σ2
α,ij(P2) + σ2

δ,ij(P2)
)

(38)

VF1 ≡
n∑
j=1

D∑
i=1

Var(zF1,ij) =

n∑
j=1

D∑
i=1

(
σ2
α,ij(F1) + σ2

δ,ij(F1)
)

(39)

::::::::::
Extension

:::
to

:::
an

::::::::::
arbitrary

:::::::
hybrid753

::::
Now,

:::
to

::::::
derive

:::
the

:::::::
results

:::::
found

::
in

::::::
Table

::
1

:::
and

::::
eq.

:::
13,

:::
let

:::
us

:::::::
consider

:::
an

:::::::::
arbitrary

::::::
hybrid.

::::
Let

:::
us

:::::
begin

:::
by754

:::::::::::::
parameterizing

:::
the

::::::::
hybrid’s

:::::::
genome

:::::
using

::::
the

:::::::::::
probabilities

:::
p1,

:::
p2 ::::

and
:::
p12,

::::::
which

:::
are

::::
the

:::::::::::
probabilities

::::
that

::
a755

::::::::
randomly

:::::::
chosen

:::::
locus

::
in

::::
the

::::::
hybrid

::
is

::
in

:::::
each

::
of

:::
the

::::::
three

:::::::
possible

::::::::
ancestry

::::::
states.

::::::
That

::
is,

:::
p1 is the total756

length of the phenotypic trajectory covered by the evolving populations (i. e.
::::::::::
probability

::::
that

::
a
:::::::::
randomly757

::::::
chosen

:::::
locus

::
in

::::
the

::::::
hybrid

:::::::
inherits

:::::
both

::::::
alleles

::::
from

::::
the

:::
P1

:::::::::::
population,

::
p2::::

that
::
it
::::::::
inherits

::::
both

::::::
alleles

:::::
from758

:::
the

:::
P2

:::::::::::
population,

::::
and

:::
p12::::

that
:::

it
:::::::
inherits

::::
one

:::::
allele

:::::
from

::::
each

::::::::::
population

::::
(as

::::
with

:::
all

::::
loci

::
in

::::
the

::::
F1).

:::
It759

::::::::
therefore

::::::
follows

:::::
that760

p1 + p2 + p12 = 1 (40)

:::
We

::::
also

::::::
define

:::
the

::::::
hybrid

::::::
index761

h = p2 + 1
2p12 (41)

::
as

:::
the

::::::::::
probability

:::::
that

:
a
:::::::::

randomly
:::::::
chosen

:::::
single

:::::
allele

:::
in

:::
the

:::::::
hybrid

:::
has

:::
P2

:::::::::
ancestry.762

:::::
Using

::::::
results

:::
in

:::::
Table

:::
6,

::
it

::::
then

:::::::
follows

::::
that

::::
the

:::::::::::
probabilities

:::
of

:::
the

::::
BB

::::
and

:::
Bb

:::::::::
genotypes

:::
at

:
a
::::::

locus
:
i763

::
in

:::
the

::::::
hybrid

::::
are764

PBB,i
::::

= p1q
2
P1,i + p2q

2
P2,i + p12qP1,iqP1,2

:::::::::::::::::::::::::::::

(42)

= (1− h)q2
P1,i + hq2

P2,i−
:::::::::::::::::::::

1
2p12(qP2,i − qP2,i)

2

:::::::::::::::

PBb,i
::::

= p12qP1,i(1− qP1,i) + p22qP2,i(1− qP2,i) + p12
:::::::::::::::::::::::::::::::::::::::::

(
qP1,i(1− qP2,i) + qP2,i(1− qP1,i)
::::::::::::::::::::::::::::

)
(43)

= 2(1− h)qP1,i(1− qP1,i) + 2hqP2,i(1− qP2,i) + p12(qP2,i − qP1,i)
2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
so

:::
the

:::::::
overall

::::::::
marginal

::::::::::
probability

::
of
::::

the
::
B

:::::
allele

::
is

:
765

PB,i
:::
≡ PBB,i+
::::::::

1
2PBb,i

::::
(44)

= (1− h)qP1,i + hqP2,i
:::::::::::::::::::

:::
We

:::
can

::::
now

::::::
derive

:::::::::
Equation

:::
13.

:::::
First,

::::
the

:::::::::::
contribution

::
to

::::
the

:::::
mean

::::
trait

:::::
value

:::
for

:
the sum of the lengths766

of all of the black arrows shown in Fig. ??A-B) and CV is the coefficient of variation in the magnitudes767

of the substitutions (i. e. the standard deviation of the arrow lengths, divided by their mean). showed768
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that when populations adapt to a distant optimum, then the distribution of magnitudes is often close to769

exponential, such that CV ≈ 1.
::::::
hybrid

:::
at

:::::
locus

:
i
::::
and

::::
trait

::
j
::
is

:
770

This all implies that M(2a) will be large if populations adapted to their new optima via a relatively
long phenotypic trajectory (large T ). This might occur, for example, if the ancestral environment was
characterized by a very different phenotypic optimum. M(2a) would be especially large if the populations
followed this trajectory by fixing a few very large-effect mutations (small

z̄H,ij = E(zH,ij)
:::::::::::::

= p1
::::

z̄P1,ij + p2
::::::::

z̄P2,ij + p12
::::::::

z̄F1,ij
:::

(45)

=
:
z̄P1,ij + 2hAij + p12∆ij

:::::::::::::::::::

:::::
which

::::
can

::
be

:::::
seen

:::
by

:::::::::::
substituting

::
in

:::::::::
equations

:::
29

::::
and

:::
32.

::::::::
Summed

::::
over

::::
the

:
D

::::
loci,

:::
we

::::
have

:
771

E(zH,j) =

D∑
i=1

E(zH,ij

:::::::::::::::::::

)=
:
z̄P1,j + 2h

D∑
i=1

Aij + p12

D∑
i=1

∆ij

::::::::::::::::::::::::::

(46)

. Such a case is illustrated by the green arrows in Figure ??C, which leads to the pattern of intrinsic772

isolation shown in Fig. ??A-B. By contrast, M(2a) will be small if populations adapted to their new optima773

via a relatively short phenotypic trajectory (small T ). This might occur,for example,if environment A was774

also the shared ancestral environment of the two populations. M(2a) would be especially small if the775

populations followed this trajectory by fixing a large number of small-effect substitutions (large D). Such776

a case is illustrated by the orange arrows in Figure ??C, which result in the pattern of extrinsic isolation777

shown in Fig. ??A-B. Finally, it is also clear that identical patterns of RI can arise in different ways.778

For example, the blue lines in Fig. ??A-B (like all other outcomes) might have been achieved by ashort779

phenotypic trajectory, tracked by afew large-effect mutations (blue arrows in Fig. ??C), or by a longer780

phenotypic trajectory,tracked by many small-effect mutations (blue arrows in Fig. ??D).781

The divergence history can affect the relative strengths of intrinsic and extrinsic reproductive782

isolation. Assuming the parental populations are well adapted to their respective optima, eq. ?? shows783

that hybrid fitness is dependent on the ratio of M(2a) (the total amount of evolutionary change) to m(2a)784

(the net effect of evolutionary change). (A)-(B): the scaled expected log fitness of various hybrids in the785

two parental environments. Illustrated are the parental types (P1: h = p12 = 0; P2: h = 1, p12 = 0), the786

reciprocal backcrosses (BC(P1): h = 1/4, p12 = 1/2; BC(P2): h = 3/4, p12 = 1/2) and the second-generation787

hybrid (F2: h = p12 = 1/2). The black cross shows the initial F1 hybrid (h = 1/2, p12 = 1). (C)-(D)788

Different divergence histories can lead to predictably different outcomes. Intrinsic isolation is most likely to789

result from large phenotypic trajectories, covered in a few large substitutions (green arrows), whereas purely790

extrinsic isolation is most likely to result from short phenotypic trajectories, covered in many small-effect791

substitutions (orange arrows). But the same patterns of RI can also result from different divergence histories792

(blue arrows), as long as they yield the same ratio M(2a)/m(2a).
:::
Let

::
us

::::
now

::::::::
compute

:::::::::::::
E(zH,j − oj)2,

::::::
which793

:::::::
appears

::
in

::::
the

::::
first

::::
term

:::
of

:::
eq.

::
9.

:::
It

:::
will

:::::
first

::
be

::::::
useful

:::
to

:::::
define

::::
the

:::::::::::
intermediate

::::::::
variable

:
794
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Kj
::
≡ (1− h)
::::::::

(
zP1,j − oj

:::::::

)
2 + h
::::

(
zP2,j − oj

:::::::

)
2 + p12
::::::

((
zF1,j − oj

:::::::

)
2−
::

1
2

((
zP1,j − oj

:::::::

)
2+
::

(
zP2,j − oj

:::::::

)
2

))
(47)

=
:

(
zP1,j − oj

:::::::

)
2 + 4h(
::::::

zP1,j − oj)
D∑
i=1

Aij + 2p12

::::::::::::::::::::

(
zP1,j − oj

:::::::

) D∑
i=1

∆ij

::::::

+4h
:::

 D∑
i=1

Aij

::::::

 2

+p12
:::::


 D∑
i=1

∆ij

::::::

 2−
::

 D∑
i=1

Aij

::::::

 2 + 2
::::

 D∑
i=1

Aij

::::::


 D∑
i=1

∆ij

::::::




1 Discussion795

::::
such

::::
that

:
796

This work has explored how the mode of divergence between parental populations impacts the fitness of
their hybrids, and thus the extent of reproductive isolation.This can be framed in two ways: what can we
learn about the (unobserved) history of parental divergence by observing their hybrids? ; and conversely,
which divergence scenarios will predictably lead to RI? . The latter question is essential for understanding
the opposing processes of speciation and adaptive introgression , and predicting the outcomes of novel
hybridizations, including those that are human-mediated .

−
n∑
j=1

Kj

:::::::

= (1− h) lnw
::::::::::::

(
z̄P1,o
::::

)
+h lnw
::::::

(
z̄P2,o
::::

)
+p12(lnw
::::::::

(
z̄F1,o

:::

)
−
:

1
2

(
lnw
:::

(
z̄P1,o
::::

)
+ lnw
:::::

(
z̄P2,o
::::

))
)

(48)

:::::
which

:::::::::::
corresponds

::
to

::::
the

::::
sum

::
of
::::
the

:::
top

::::::
three

::::
rows

:::
for

::::
the

:::::::
squared

:::::
mean

:::::
term

:::
in

:::::
Table

::
1.

:
797

We have examined the connections between divergence and hybrid fitness using a simple fitness landscape798

model, which is also relatable to phenotypic data ; and have focused on results most likely to yield simple,799

testable predictions. As a result, we have considered only the expected hybrid fitness (eqs. 56, ?? and ??),800

:::::
Then

:::
we

::::
find

::
by

:::::::::
Equation

:::
46,

:
801

E2
::

(
zH,j − oj
:::::::

)
=
:

zP1,j − oj + 2h

D∑
i=1

Aij + p12

D∑
i=1

∆ij

::::::::::::::::::::::::::::::

 2 (49)

=
:

(
zP1,j − oj

:::::::

)
2 + 4h
:::::

(
zP1,j − oj

:::::::

) D∑
i=1

Aij + 2p12

::::::::::::

(
zP1,j − oj

:::::::

)
2
D∑
i=1

∆ij

:::::::

+4h2
::::

 D∑
i=1

Aij

::::::

 2 + p2
12

::::::

 D∑
i=1

∆ij

::::::

 2 + 4hp12
::::::::

 D∑
i=1

Aij

::::::


 D∑
i=1

∆ij

::::::


= Kj−
::::::

(
4h(1− h)− p12
:::::::::::::

) D∑
i=1

Aij

::::::

 2 − p12(1− p12)
:::::::::::::

 D∑
i=1

∆ij

::::::

 2 − 2p12
:::::::

(
1− 2h
:::::

) D∑
i=1

Aij

::::::


 D∑
i=1

∆ij

::::::
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::::::::
Summing

:::::
over

:::::
traits

::::
and

:::::
using

:::
the

:::::::::
definition

:::
of

:::
the

::::::::
function

::::::
m(·, ·)

::
in

:::
eq.

::::
11,

:::
we

:::
can

::::
see

::::
that

:
802

−
n∑
j=1

E2

:::::::

(
zH,j − oj
:::::::

)
= (1− h) lnw
::::::::::::

(
z̄P1,o
::::

)
+h lnw
::::::

(
z̄P2,o
::::

)
+p12(lnw
::::::::

(
z̄F1,o

:::

)
−1

2
:::

(
lnw
:::

(
z̄P1,o
::::

)
+ lnw
:::::

(
z̄P2,o
::::

))
)

+(4h(1− h)− p12)m(A,A) + p12(1− p12)m(∆,∆) + 2p12(1− 2h)m(A,∆)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
as

:::::
given

::
in

::::
the

::::::
second

:::::::
column

:::
of

:::::
Table

::
1.

:
803

:::
The

:::::::::::
calculation

:::
for

:::
the

::::::::
variance

:::::::
follows

::
in

::::
the

:::::
same

::::
way,

::::
but

::
is

:::::
much

:::::
more

::::::::
involved

::::::::::::
algebraically.

:::::
The804

:::::
result,

:::
as

::::::
shown

::
in

::::
the

:::::
third

:::::::
column

::
of

::::::
Table

::
1,

::
is805

n∑
j=1

Var(zH,j)

:::::::::::

=

n∑
j=1

D∑
i=1

(2aij)
2PBB,i + (aij + dij)

2PBb,i − (2aijPBB,i + (aij + dij)PBB,i)
2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(50)

= (1− h)VP1 + hVP2 + p12(VF1 +
1

2
(VP1 + VP2))

::::::::::::::::::::::::::::::::::::::::::

+(4h(1− h)− p12)M(A,A) + p12(1− p12)M(∆,∆) + 2p12(1− 2h)M(A,∆)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

::::::::
VP1, VP2:

and not the variance or higher moments, since the latter will be qualitatively affected by806

the recombination map and environmental variance . We have also neglected factors such as phenotypic807

epistasis, and directional plasticity, which are certain to affect outcomes, but not (yet)in a predictable808

way
:::
VF1::::

are
:::::::
defined

:::
as

::
in

:::::
eqs.

::::::
34-36,

::::
and

::::
the

::::::::
function

:::::::
M(·, ·)

::
is

:::::::
defined

:::
by

::::
eq.

::::
12.

:::::
The

::::
first

::::::::
equality809

::::::
follows

:::::
from

:::
the

::::::::::
definition

::
of

::::::::
variance

::::
and

::::
the

::::::::::::
independence

:::
of

::::
loci.

:::::
The

:::::::
second

:::::::
follows

:::
by

:::::::::::
substituting810

::::::::
variables

::
as

::::
per

:::::
their

:::::::::
definitions

:::::::
above.

::::::::
Because

:::
the

::::
full

:::::
proof

::
is
::::::
rather

::::::::
lengthy,

::::::::
although

:::::::::::::::
straightforward,811

::
we

::::::::
provide

::
a

:::::
proof

:::
in

:::
the

:::::
form

:::
of

::
a
::::::::::::
Mathematica

:::::::::
notebook

::::::::
instead

::
of

:::::::
writing

:::
it

:::
out

::::::
here,

::::::::
available

:::
at812

:::::::::::::::::::::::::::::::::::::::::::::
https://github.com/bdesanctis/mode-of-divergence.813

Finally, we have used a simple quadratic model of fitness (eq. 1) which precludes higher-order fitness814

interactions , even though such interactions are often observed in cross data . Nevertheless, results here815

apply more broadly if fitness values can be suitably transformed .816

::::::::::::::
Simulations817

With these caveats, we have shown that the outcome of hybridization can be predicted from summary818

statistics of the fixed effects that differentiate the populations, as captured by the function f(·) (eq. ??).819

This quantity can be further decomposed into two other quantities which are simpler to understand, and820

which we have called the “
::::
The

::::::::::
illustrative

::::::::::
simulations

::::::
shown

:::
in

:::::::
Figures

::::
2-4,

:::::::::
calculated

::::
new

:::::::::
quantities

:::::
from821

::::
runs

::::::::
reported

:::::::::
previously

:::
by

:
Schneemann et al. (2022)

::::
(and

::::::
which

::::
were

::::::::::
themselves

::::::
based

:::
on

:::
the

::::::::::
simulation822

:::::::
methods

::::::::
reported

::
in

:
Schneemann et al., 2020

::
).

:::::::::::
Simulations

::::
were

:::::::::::::::
individual-based,

::::
and

:::::
used

::::
pairs

::
of

:::::::::
allopatric823

:::
(i.e.

::::::::::::::
independently

::::::::::
simulated)

:::::::::::
populations.

:::::
The

:::::::::::
populations

::::::::
followed

:::
the

:::::::::::::
Wright-Fisher

::::::::::::
assumptions,

::::
and824

::::::::
contained

:::
N

::::::::::::
simultaneous

:::::::::::::::
hermaphrodites,

:::::
with

::::::::
discrete

::::::::::::::
non-overlapping

::::::::::::
generations.

::::::
Every

:::::::::::
generation,825

::::::
parents

:::::
were

:::::::
selected

:::::
with

:
a
:::::::::::
probability

:::::::::::
proportional

:::
to

::::
their

::::::
fitness

::::
(as

:::::::::
calculated

:::::
from

:::
eq.

::
1)

:::::
with

::
n

:::::
traits826

:::::
under

:::::::::
selection.

::::::::
Gametes

::::
were

:::::::::
generated

:::::
from

:::
the

::::::::
parental

::::::::
genomes

::::
with

::::
free

:::::::::::::
recombination

::::::
among

:::
all

:::::
sites,827

:::
and

:::::::::
mutation.

::::
For

::::::::::
mutation,

:
a
::::::::::::::::::
Poisson-distributed

::::::::
number,

::::
with

::::::
mean

:::::
2NU ,

:::
of

:::::::::
mutations

:::::
were

:::::::::
randomly828

:::::::
assigned

:::
to

::::::
unique

:::::
sites,

::::
and

:::
we

:::
set

:::::::::
U = 0.01.

::::
The

::
n
:::::::::::
homozygous

::::::
effects

:::
for

:::::
each

::::
new

::::::::
mutation

:::::
were

::::::
drawn829

::::
from

::
a

:::::::::::
multivariate

::::::
normal

:::::::::::
distribution

:::::
with

::::
zero

:::::
mean

::::
and

:::
no

::::::::::
covariances,

::::
and

::
a
::::::::
common

::::::::
variance

:::
set

::::
such830

::::
that

:::
the

:::::
mean

::::::::::
deleterious

::::::
effects

::
of

::
a

::::::::
mutation

::
in

:::
an

:::::::
optimal

:::::::::::
background

::::
was

:::::::::::
s̄mut = 0.01.

::::
The

::::::::::::
heterozygous831

:::::
effect

::
of

::::
each

:::::::::
mutation

::
on

::::
each

:::::
trait

::::
was

:::
set

::
at

::
its

::::::::::::
homozygous

:::::
effect

:::::::::
multiplied

:::
by

:
a
:::::::::::::::
beta-distributed

:::::::
random832

:::::::
number,

:::::
with

:::::::
bounds

:::
at

:
0
::::

and
::

1
::::::::::::::
(corresponding

:::
to

::::::::
complete

::::::::::
recessivity

:::
or

::::::::
complete

::::::::::::
dominance),

:
a
::::::

mean833

:::::::
µ = 1/2

:::::::::
(implying

:::::::::
additivity

:::
on

:::::::::
average),

::::
and

::
a

::::::::
variance

::
of

:::::::::
ν = 1/24

:
(Schneemann et al., 2022).

::::::
After

::
a834
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::::
total

::
of
:::
D

::::::::::::
substitutions

::::
had

:::::
fixed

::::::
across

:::::
both

:::::::::::
populations,

::::
the

:::
two

::::::::
parental

::::::::::
genotypes

::::
were

:::::::
chosen

::
as

::::
the835

:::::::::
genotypes

::::::::::
containing

::::
only

::::
the

:::::
fixed

::::::
effects

:::
in

::::
each

:::::::::::
population.

:::::
For

:::::::
Figures

:::
2-3

::::
one

:::
or

:::::
both

:::::::::::
populations836

:::::::
adapted

::
to

::
a
::::::::
optimum

:::
at

:
a
::::::::
distance

::::::

√
1/2

::::
from

:::
its

::::::::
ancestral

:::::::::::
phenotype.

::
In

:::::::::
scenarios

:::::
I-III,

::::
both

:::::::::::
populations837

::
in

::::
this

::::
way,

:::::
while

:::
for

:::::::::
scenarios

::::::
IV-VI,

:::
we

::::::::::
re-analysed

::::
the

:::::
same

:::::::::::
simulations,

::::
but

::
we

:::::::
treated

:::
all

::::::::::::
substitutions838

::
as

::
if

::::
they

::::
had

:::::::::
occurred

::
in

:::
P2

::::::
while

:::
P1

:::::::::
remained

::
in

:::::
their

::::::::
common

:::::::::
ancestral

:::::
state.

::::::
This

::::
was

::::
done

:::
by

::::
the839

::::::::::
contrivance

::
of

::::::::::
combining

:::
the

::::
first

::
25

::::::::::::
substitutions

:::::::
accrued

:::
in

:::
two

:::::::::
simulated

::::::::::::
populations,

::::::::
ensuring,

:::::::::
therefore,840

::::
that

:::
the

:
total amount of evolutionary change ”, M(·), and “net effect of evolutionary change”, m(·) (eq. ??)841

. If the history of environmental change, or the population genetic parameters, have predictable effectson842

hybridization outcomes , then they do so via these two quantities.
:::
was

::::::::
identical

::::::
across

:::
all

:::
six

:::::::::
scenarios.

:
843

Because results depend solely on these quantities, it follows directly that very different histories of844

evolutionary divergence can yield identical patterns of hybrid fitness. Nevertheless, we have shown that845

some information about the divergence history is present (Figure 2), and that846

::::::::::::::
Appendix

:::
1:

::::::::::::
Results

::::::::
with

::::::::::::::::::::
homogeneous

::::::::::::
parental

::::::::::::::::::
populations847

::
In

::::
this

:::::::::
Appendix,

:::
we

:::::
show

:::
(1)

:::::
how

:::
our

::::::
results

::::::
apply

::
to

:::::
data

::::::
where

:::
the

::::::::
ancestry

:::::::::::
proportions

::
of

:
the additive848

and dominance effects contain complementary information. Under stabilizing selection, the difference arises849

because additive effects will tend to be coadapted, while dominance effects will not . Under directional850

selection, the difference comes because additive effects trace the phenotypic path between the parents,851

while dominance effects point in the direction of past selection (
::::::
hybrid

:::::::
genome

::::
are

:::::::
known,

::::
and

::::
(2)

::::
how852

::::::
results

::::
can

::
be

::::::::::
expressed

::
in

::::::
terms

::
of

::::::::
selective

:::::::
effects,

::::::
rather

:::::
than

:::::::::::
phenotypic

::::::::
changes.

:::
In

:::::
both

::::::
cases,

:::
for853

::::::
reasons

:::::::::
explained

::::::
below,

:::
we

::::
will

::::
rely

:::
on

:::
the

:::::::::
additional

:::::::::::
assumption

::::
that

::::::::
parental

:::::::::::
populations

:::
are

::::::::::
genetically854

::::::::::::
homogeneous.

:::
In

::::::::::
particular,

::
we

::::
will

:::::::
assume

::::
that

::::
the

::::
focal

::
B
::::::
allele

:
is
:::::

fixed
:::
in

:::
P2

:::
but

::::::
absent

:::
in

:::
P1,

:::::
such

::::
that855

::
all

:::::::::::::::::::::
qP2,i = (1− qP1,i) = 1.

::
It

::::::::
therefore

:::::::
follows

:::::
from

::::
eqs.

:::
29

::::
and

::
32

:::::
that

:::
the

::::::::::::::::::
between-population

::::::::::
differences856

::
at

::::
each

:::::
locus

:::::
(eqs.

:::::
7-8)

::::::::::
correspond

:::::::
directly

:::
to

::::
the

:::::::::
genotypic

::::::
effects

::
at

:::::
that

:::::
locus

::::::
(Table

:::
5) i.e. , from the857

MRCA)– the effect known as Haldane’s Sieve . Of course, this additional information about the divergence858

history will only be present if Haldane’s Sieve has acted, which may not be so if adaptation starts from859

standing variation .860

Our results also have implications for the relative contributions of large- and small-effect loci to the
outcomes of hybridization. On one hand, our results imply that identical patterns of RI can arise from a
few large-effect substitutions or many small-effect substitutions. This means that the presence or absence of
large-effects, without further information, tells us little about the overall amount or pattern of RI. On the
other hand, the total amount of evolutionary change is defined as the sum of squared effect sizes (eq. ??) .
It follows, therefore, that the same amount of phenotypic change will result in a larger M(2a) if the change
took place with fewer but larger substitutions (eqs. 20

Aij = aij ,
::::::::

and
:::

∆ij = dij
::::::::

if
:

qP2,i = (1− qP1,i) = 1
:::::::::::::::::::

(51)

::
It

:::
will

:::::
also

::
be

::::::
useful

:::
to

:::::::::
rearrange

:::
the

:::::::
results

::::::
shown

:::
in

:::::
Table

::
1
:::
so

::::
that

:::::
they

:::
are

:::::::::
expressed

:::
in

::::::
terms

::
of861

:::
the

:::::
three

::::::::::::
probabilities

:::
p1,

:::
p2::::

and
::::
p12 ::::::

rather
:::::
than

::::
the

::::
two

:::::::::::
probabilities

::
h
::::

and
::::
p12::::

(see
:::::

eqs.
:::

40-??; Fig.862

??C-D).
:::
41).

::::::::::::
Accordingly,

:::::
using

::::
eqs.

::::::
11-12

::::
and

:::::
40-41,

::::
and

:::::::::::
substituting

:::
in

:::
eq.

:::
51

::
to

::::::::
account

:::
for

:::
the

:::::::
genetic863

:::::::::::
homogeneity

::
of

::::
the

::::::::
parental

:::::
lines,

:::
we

::::
have

::::
the

:::::
result

::::::
shown

:::
in

:::::
Table

:::
S1.

:
864

Finally,865
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Table S1:
::::::::::
Components

::
of

:::
log

::::::
hybrid

:::::
fitness

:::::
with

:::::::::::
homogeneous

:::::::
parental

::::::::::
populations

:::::::::
Coefficient

: ::::::::::::::::::
−
∑n
j=1E

2 (zH − o) :::::::::::::::
−
∑n
j=1 Var (zH)

:
p1: ::::::::::

lnw(zP1,o)
: :

0

:
p2: ::::::::::

lnw(zP2,o)
: :

0

::
p12: ::::::::::

lnw(zF1,o)
: :

0

::::
p1p12: ::::::::::::::

m(a + d,a + d)
: ::::::::::::::::

−M(a + d,a + d)

::::
p2p12: ::::::::::::::

m(a− d,a− d)
: ::::::::::::::::

−M(a− d,a− d)

:::
p1p2: :::::::::

m(2a, 2a)
:::::::::::
−M(2a, 2a)

::::
Note

::::
that

:::::
with

:::::::::::
homogenous

::::::::::::
populations,

:::
p1,

::
p2::::

and
:::
p12::::

are
::::
now

:::
the

:::::::::::
probabilities

:::
of

:::
the

:::::
three

::::::::::
genotypes,866

:::
bb,

:::
BB

::::
and

::::
Bb,

::
as

::::
well

:::
as

:::
the

::::::::
ancestry

:::::::
states.

:::::::::
Moreover,

::::
the

:::::::::
arguments

:::
of

:::
the

:::::::::
functions

::::::
M(·, ·)

::::
and

::::::
m(·, ·)867

::::
now

::::::::::
correspond

::
to

::::
the

::::::::::
phenotypic

:::::::
effects

::
of

:::::::::
inserting

:::::
single

::::::
alleles

:::
in

::::::
either

::::::::::::
heterozygous

::
or

::::::::::::
homozygous868

::::
state

::::
into

::
a
:::::
fixed

:::::::::::
background.

:
869

:::::::::
Results

::::::
with

::::::::
known

:::::::::::
ancestry

:::::::::::::::
proportions870

::
In

::::
the

:::::
main

:::::
text,

:::
we

:::::::
treated

::::
the

:::::::::
quantities

:::
h

::::
and

:::
p12::::

(or
::::::::::::
equivalently,

:::
p1,

:::
p2::::

and
:::::
p12)

::
as

::::::::::::
probabilities871

::::::::::
determined

:::
by

:::
the

::::::::
crossing

::::::::
scheme.

:::::::::
However,

::::
for

:::::
some

:::::
data,

::::
the

:::::::::
ancestries

:::
of

:::::::
hybrids

::::
can

:::
be

:::::::::
estimated872

:::::::
directly

:::::
from

:::::::
genome

::::::::::
sequences.

::::::::::
Moreover,

::
if
::::

the
::::::::
parental

:::::::::::
populations

::::
are

::::::::::
genetically

::::::::::::
homogeneous

::::
(as873

:::::::
assumed

:::
in

:::::
Table

::::
S1),

:::::
then

:::
the

::::::::
ancestry

:::::::::::
proportions

:::
for

::::::::
divergent

:::::
sites

:::
can

:::
be

::::::
known

:::::
with

::::::::
certainty.

:::
In

::::
this874

:::::::
section,

:::
we

:::::
show

::::
that

:
our results also have implications, which were not explored here, for the stability of875

local adaptation, and the evolution of genetic architectures
::::
hold

:::::::::::::
approximately

:::
for

:::::
such

:::::
data.

:
876

:
If
:::
p1,

:::
p2 :::

and
:::
p12::::

are
::::::
known

:::::::::::
proportions,

::::::
instead

:::
of

:::::::::::
probabilities,

::::
loci

::
in

:::
the

::::::
hybrid

:::::::
become

::::::::::::::::
non-independent,877

:::
but

::
in

::
a
::::::
simple

:::::
way

::
so

:::::
that

::::::
results

::::
can

:::
be

:::::::
derived

::::
with

:::::
basic

:::::::::::::
combinatorics. For example, the dominance878

of alleles may be a major determinant of the effective rates of migration between demes, and the possibility879

of allele swamping . Directional dominance, resulting from local adaptation, may therefore act as a source880

of asymmetric gene flow between derived and ancestral populations (see, e. g., Fig. 2C). Similarly, a large881

body of previous work suggests that
:::::
given

:::::
some

::::::
D, p12 ::::

and
:::
p2,

:::
we

:::
can

::::::
choose

::::
any

:::::
Dp12::::

out
::
of

::
D

:::::
sites

::
to

:::
be882

::::::::::::
heterozygous,

::::
and

::::
any

::::
Dp2::::

out
::
of

:::
the

::::::::::
remaining

::::::::::
D(1− p12)

::::
sites

:::
to

:::
be

:::::::::::
homozygous

:::
for

::::
the

:::::
allele

::::
from

::::
the883

::::::
second

::::::::
parental

::::::::::
population,

:::
so

:::::
there

::::
will

::
be

::
a
:::::
total

::
of

:
884

(
D

Dp12

)(
D(1− p12)

Dp2

)
=

D!

(Dp1)!(Dp2)!(Dp12)!
::::::::::::::::::::

:::::::
possible

:::::::
hybrids,

::::
and

:::
by

:::::::::::
assumption,

::::
each

::::
has

:::::
equal

:::::::::::
probability.

::
In

:::::::
theory,

:::
one

::::::
could

:::::
write

:::
out

::::
the

::::::::
complete885

:::::::
discrete

::::::::::
probability

:::::::::::
distribution

::::::::
function

:::
for

:::
the

::::::
hybrid

::::::
fitness

:::::
over

::
all

::::::::
possible

:::::::
hybrids

::
in

::
a
:::::
given

:::::::::
situation.886

::::
One

:::
can

::::
also

::::::::
compute

:::::::::
arbitrary

::::::::
moments

:::::
using

::::
the

:::::
same

::::::::
indicator

::::::::
function

::::::::
approach

:::
as

:::::::
detailed

::::::
below

::::
(see887

:::
also

:
Chevin et al., 2014

:
).

:
888

::
To

::::::::
calculate

:::::::::
expected

::::::
hybrid

:::::::
fitness,

::
let

:::
J1::

be
::::
the

::::::
subset

::
of

:
the architecture of adaptation will be affected889

by the presence or absence of gene flow . In particular, adaptation in the face of gene flow should create890

architectures that are more “concentrated”, i.e., involving fewer, larger effects, and tighter linkage. Combined891

with results here, this implies that ongoing gene flow during local adaptation might sometimes increase the892

strength of resulting intrinsic RI (Fig. ??).
::
D

:::
loci

:::
in

:::
the

::::::
hybrid

::::
that

::::
are

:::::::::::
homozygous

:::
for

:::
the

:::
P1

::::::
allele,

::
J2:::

be893

:::
the

::::::
subset

::
of

:::
the

::::
loci

::::
that

::::
are

:::::::::::
homozygous

:::
for

:::
the

:::
P2

::::::
allele,

:::
and

::::
J12 :::

the
::::::
subset

::
of

::::
loci

::::
that

::::
are

::::::::::::
heterozygous.894

:::
The

:::::
sizes

::
of

:::::
these

::::
sets

::::
are

:::::
then:

:
895
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1 Methods896

0.1 Derivation of main result897 ∣∣∣∣J1
::

∣∣∣∣ /D::
≡ p1
::::∣∣∣∣J2

::

∣∣∣∣ /D::
≡ p2
::::

(52)∣∣∣∣J12
::

∣∣∣∣ /D::
≡ p12 = (1− p1 − p2)
::::::::::::::::::

We want to derive the log fitness, or the squared Euclidean distance, of a hybrid to the optimum. That898

is, we want For the remainder of this subsection, we will focus on asingle trait
:::::
Since

::
all

:::::::::
divergent

::::
loci

::::
must

:::
be899

::
in

:::
one

:::
of

:::::
these

:::::
three

::::::
states,

::::
any

::::
two

::
of

:::::
these

::::
sets

::::
can

::::::::::
completely

:::::::::::
characterize

:::
the

:::::::
hybrid.

::::
We

::::
can

::::::::
therefore900

::::
write

::::
the

:
jand

:::
-th

:::::
trait

:::::
value

::
of

:::
an

::::::::
arbitrary

:::::::
hybrid

:::
as:901

zH,j
:::

= zP1,j +
∑
i∈J2

2aij +
∑
i∈J12

(aij + dij)

:::::::::::::::::::::::::::::::

(53)

:::
Let

:::
us

::::
now drop the subscript j for brevity. ,

::::
and

:::::::::
calculate

:::
the

::::::::
expected

::::::::
squared

:::::::::
deviation

::
of

:::
the

:::::
trait902

:::::
value

::::
from

:::
its

:::::::::
optimum:

:
903

E((zH,j − oj)2) = E((zH − o)2)
:::::::::::::::::::::::::::

= E
:::


zP1 − o+ 2

∑
i∈J22

ai +
∑
k∈J12

::::::::::::::::::::::

(
ak + dk
::::::

) 2



= E
:::

(
(zP1 − o)2 + 4
::::::::::::

∑
i∈J22

ai

::::::

 2+
::

∑
i∈J12

ai

::::::

 2+
::

∑
i∈J12

di

::::::

 2

+2(zP1 − o)
:::::::::::::

2
∑
i∈J22

ai +
∑
k∈J12

(ak + dk)

::::::::::::::::::::::


+2

∑
i∈J12

ai
∑
k∈J12

dk + 4
∑
i∈J22

ai
∑
k∈J12

(ak + dk)

:::::::::::::::::::::::::::::::::::::::::

)
(54)

In these expressions, the expectations are not over the additive and dominance effects, but over the904

particular set of loci that are homozygous and heterozygous in the hybrid. That is, they are over the sets905

J22 and J12. To obtain expectations over these sets, we define indicator functions.906

IJ(i) =
::::::

{
1 if i ∈ J
0 otherwise

We
:::::
Using

::
x
::::
and

::
y

::
as

:::::::::::
placeholder

:::::::::
variables,

:::
we can then use these functions as follows:907
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E
:

∑
i∈J

xi

:::::

= E
:::

 D∑
i=1

xiIJ(i)

:::::::::

=

D∑
i=1

xiE

::::::::

(
IJ(i)
::::

)

=

D∑
i=1

xiP (i ∈ J) =
|J |
D

D∑
i=1

xi

:::::::::::::::::::::::::

≡ |J |
D
Sx

:::::::

where |J | is the size of the set. We have introduced the notation908

Let us also introduce909

Sx,j ≡
D∑
i=1

xi,j

::::::::::::

Let us also introduce910

Sxy,j ≡
D∑
i=1

xi,jyi,j

Forboth, wewill
:::

againleaveoutthesubscriptjforsimplicityfortheremainderofthissectionbrevity
::::::

.

For the square and cross-terms in eq. 54, we use the same approach.911

E

(∑
i∈J

xi
∑
k∈J

yk

)
= E

(
D∑
i=1

D∑
k=1

xiykIJ(i)IJ(k)

)

=

D∑
i=1

xiyiP (i ∈ J) +

D∑
i=1

D∑
k=1,k 6=i

xiykP (i ∈ J ∩ k ∈ J)

=
|J |
D

D∑
i=1

xiyi +
|J | (|J | − 1)

D(D − 1)

D∑
i=1

D∑
k=1,k 6=i

xiyk

=
|J |Sxy
D

+
|J | (|J | − 1)

D(D − 1)
(SxSy − Sxy)

=
|J | (D − |J |)
D(D − 1)

(Sxy − SxSy) +
|J |
D
SxSy

and similarly912

E

(∑
i∈J

xi
∑
k∈K

yk

)
=

D∑
i=1

D∑
k=1,k 6=i

xiykP (i ∈ J ∩ k ∈ K)

=
|J | |K|

D(D − 1)

D∑
i=1

D∑
k=1,k 6=i

xiyk

=
|J | |K|

D(D − 1)
(SxSy − Sxy)
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Now we can combine these results, with eqs. 52 and 54. After some algebra, we obtain913

E((zH − o)2) = (zP1 − o)2 + 2(zP1 − o)((2p2 + p12)Sa + p12Sd)

+ 4p2S
2
a + p12S

2
a + p12S

2
d + 2p12SaSd

+ (4p2(1− p2) + p12(1− p12)− 4p2p12)
D

D − 1

(
Saa − S2

a

)
+ p12(1− p12)

D

D − 1

(
Sdd − S2

d

)
+ (2p12(1− p12)− 4p2p12)

D

D − 1
(Sad − SaSd) (55)

We note that, given some n, d, p12 and p2, there will be a total of
::::
Some

::::::::::::
rearranging,

:::
and

:::::::::::
summation

::::
over914

:::::
traits,

::::::
yields

:
915

E (lnwH) = p1 lnwP1 + p2 lnwP2 + p12 lnwF1

− D

D − 1
(p1p2 (m(2a)−M(2a)) − p12p1 (m (a + d)−M(a + d)) − p12p2 (m(a− d)−M(a− d)))

(56)

possible hybrids, each with equal probability, so in theory one could write out the complete discrete916

probability distribution function for the hybrid fitness over all possible hybrids in a given situation. One can917

also compute arbitrary moments using the same indicator function approach as above.918

0.1 Rearrangement of main result919

Let us now derive920

:::
The

::::
sole

::::::::::
difference

:::::::
between

:
eq. 56 from

:::
and

:::
the

:::::::
results

:::::::::::
summarized

:::
in

:::::
Table

:::
S1

::
is
:::::
that

:::
the

:::::::::
functions921

:::::
m(·, ·)

::::
and

:::::::
M(·, ·)

:::
are

::::
now

:::::::::
weighted

::
by

::
a
::::
new

::::::
factor

::::::::::
D/(D − 1)

::
–
::::::
which

:::::
stems

:::::
from

::::
the

::::::::::::::::
non-independence922

::::::
among

::::
loci

:::::
when

::::
true

::::::::
ancestry

:::::::::::
proportions

:::
are

:::::::
known.

::::::
Note

:::
too

:::::
that

:::::::::::::
D/(D − 1) ≈ 1

::::::
when

:::
the

::::::::
number

::
of923

::::::::
divergent

::::
sites

::
is
::::::
large.

::
It

:::::::
follows,

:::::::::
therefore,

::::
that

:
the above. We will start with the first two lines of equation924

55. Recall that in the section above, we were working in a single dimension corresponding to trait j, and925

had dropped the subscript. We re-introduce it here. Our equation is therefore
::::::
results

::
in

::::
the

::::
main

:::::
text

:::::
apply926

:::::::::::::
approximately

::
to

:::::
data

::::
with

::::::
known

::::::::
ancestry

::::::::::::
proportions.

:
927

:::::::::
Results

:::
in

:::::::
terms

::::
of

::::::::::
selective

:::::::::
effects928

We first note that, from eqs. 2 and 4, we have
::::
will

::::
now

:::::
follow

:
Chevin et al. (2014)

:::
and

:::::
show

::::
how

::::::
results

::::
can929

::
be

:::::::::
expressed

::
in

::::::
terms

::
of

::::
the

::::::
fitness

::::::
effects

::
of

:::::::
alleles,

::::::
rather

::::
than

:::::
their

::::::::::
phenotypic

:::::::
effects.

:::::
This

:::::::
implies

::::
that930

:::
the

:::::::::
quantities

::::::
M(·, ·)

::::
and

::::::
m(·, ·),

::::::
which

::::::::
describe

:::
the

:::::
total

:::::::
amount

::::
and

:::
net

:::::
effect

::
of

::::::::::::
evolutionary

:::::::
change,

::::
may931

::::
have

::
a

::::::
simple

:::::::::::::
interpretation,

:::::
even

:::::
when

::::
the

::::::::::
phenotypic

::::::
model

:::::::
cannot

::
be

:::::::::::
interpreted

:::::::
literally

::
(e.g. Martin,932

2014
:
).
::::

We
:::
use

:::::::
results

::
in

::::::
Table

::
S1

::::::
rather

:::::
than

:::
the

:::::
more

:::::::
general

::::::
Table

::
1,

:::::::
because

::::::::
selection

::::::::::
coefficients

::::::
apply933

::
to

:::
the

::::::::::::
heterozygous

::::
and

:::::::::::
homozygous

::::::
effects

::
of

::::::
alleles

:::
in

:
a
:::::
given

::::::::::::
background,

::::::
rather

::::
than

:::
to

:::
the

:::::::
average

::::
and934

:::::::::
dominance

:::::::
effects

::
of

::::::::::::
substitutions

:::
in

:
a
:::::::::::

population.
::::::

Note
::::
also

::::
that

::::
the

:::::::
results

:::::
below

::::::
apply

:::::
only

::::
with

::::
the935

::::::::
quadratic

::::::
fitness

::::::::
function

:::
of

:::
eq.

:::
1,

::::
and

:::
not

:::::
with

:::::
other

::::::
fitness

:::::::::
functions

:::::
with

::::::
higher

::::::::::
curvatures

::::
that

::::::
would936

:::::
allow

:::
for

:::::::
complex

::::::::
epistasis

::::
(i.e.

:::::::
fitness

:::::::::::
interactions

:::::::
between

:::::
three

:::
or

:::::
more

:::::
loci).

:
937

It therefore follows that:938

which
::
To

:::::::
express

::::
the

::::::
results

::
in

::::::
Table

:::
S1

::
in

::::::
terms

::
of

::::::
fitness

:::::::
effects,

:::
let

::
us

:::::
first

:::::::
consider

::::
the

:::
net

::::::
effect

::
of939

:::::::::::
evolutionary

:::::::
change

:
–
::
a
::::::::
quantity

::::::
which

:
corresponds to the first few lines of the expected hybrid fitness in940

equation ??.
:::::
fitness

::::::
effects

:::
of

:::::
whole

::::::::::
genotypes.

::::
For

::::::::
example,

:::::::::
m(2a, 2a)

::
is
:::::::
simply

:::
the

::::::
fitness

::
of
::::

one
::::::::
parental941

::::::::
genotype,

:::::::::
measured

:::
in

:::::::::::::
environmental

:::::::::
conditions

::::::
where

:::
the

::::::::::
alternative

::::::::
parental

:::::::::
genotype

::
is

::::::::
optimal:

:
942
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For the remaining terms in Equation ??, we use the definition943

m(2a, 2a) = − lnwP2, if lnwP1 = 0 (57)

= − lnwP1, if lnwP2 = 0 (58)

Notice that944

::::::::
Similarly,

:::::::::::::
m(a + d + d)

::::
and

::::::::::::::
m(a− d,a− d)

:::
are

::::
the

:::::::
fitnesses

:::
of

:::
the

:::
F1

::::::::
genotype

:::::::::
measured

::
in

::::::::::
conditions945

:::::
where

::::
one

::
or

:::::
other

:::
of

:::
the

::::::::
parental

:::::::::
genotypes

::
is
::::::::
optimal.

:
946

Using this, one can show an equivalence with the last three lines of equation 55.947

m(a + d,a + d) = − lnwF1, if lnwP1 = 0 (59)

m(a− d,a− d) = − lnwF1, if lnwP2 = 0 (60)

Altogether this gives Equation 56. We can also derive Equation ?? from here; the easiest way to see the948

equivalence is to set g(a,d) = f(a + d)− f(a− d) (as shown below ) in Equation ??, collect terms with the949

coefficient p12(1− p12), and set f(a + d) + f(a− d) = 2f(a) + 2f(d) as shown above.
:::
The

:::::
total

::::::::
amount

::
of950

:::::::::::
evolutionary

:::::::
change

:::::::
depends

:::
on

::::
the

::::::
fitness

::::::
effects

::
of
::::

the
:::::::::
individual

:::::::::
divergent

:::::::
alleles,

:::::::::::
introgressed

::::
one

::
at

::
a951

::::
time

::::
into

:::
an

:::::::
optimal

:::::::::::
background.

:::
To

::::
see

::::
this,

:::
let

::
si:::::::

denote
:::
the

::::::::::
deleterious

::::::
fitness

:::::
effect

:::
of

::::::::
inserting

:
a
::::::
single952

:::::::::::
homozygous

:::::::::::
substitution

:
i
::::
into

:::
an

:::::::::
otherwise

:::::::
optimal

:::::::::::
background.

:::::
This

::::::::
selection

:::::::::
coefficient

::
is
:::::::
defined

:::
in

:::
the953

::::::::
standard

::::
way,

:::
as

::::::::::::::
s = (w′ − w)/w

::::::
where

::
w′

::::
(w)

::
is
::::
the

::::::
fitness

::
of

::::
the

:::::::
mutant

:::::::::::
(wild-type).

::::
For

:::::
small

::::::::
selection954

::::::::::
coefficients,

:::
we

::::
also

:::::
have

::::::::::::::::
si ≈ − ln(1− si).::

If
::::

the
:::::::::
wild-type

::::::::
genotype

:::
is

:::::::::::::
phenotypically

::::::::
optimal,

::
it
:::::::
follows955

::::
that956

0.1 Representations of the functions f(·) and g(·, ·)957

We can write the functions f(·) and g(·, ·) in several different ways. Simplest is equation ??, which follows
directly from eq. ?? in the main text. We can also write both functions in terms of cosine similarities and
magnitudes of the vectors using the definition of dot product and the cosine rule. Notice that

si ≈ − ln(1− si) =

n∑
j=1

(2aij)
2 (61)

where θxi,xk
is the angle between the ith and the kth substitution vectors in the chain (e. g. see Figure958

??B), by the definition of dot product, and where
:::
and

:::
so,

::
if

:̄
s
::::::::
denotes

:::
the

:::::
mean

:::::::::
selection

:::::::::
coefficient

::::::
across959

::
all

:::
D

::::::::::::
substitutions,

:
the negative sign comes from the need to take the supplementary angle due to the960

directionality of the vectors. This is effectively a generalized cosine law, and yields Equation 24 directly.961

Equation 25 follows in the same way, as follows :
::::
total

:::::::
amount

::
of

::::::::::::
evolutionary

::::::
change

::
is
:

962

M(2a, 2a) = −
D∑
i

ln(1− si) ≈ Ds̄ (62)

Here, again, θxi,yk is the angle between the substitution vectors xi and yk, by the definition of dot963

product, and where the sign switch in the last line comes from the need to take the supplementary angle964

due to the directionality of the vectors.965

These representation of f(·) and g(·, ·) in terms of cosine similarities and vector magnitudes are only966

one way of capturing the amount of exchangeability between the fixed differences. We can also use the967

following relationship between the dot product and the squared Euclidean distance
:::::::::
Equivalent

::::::
results

:::::
hold968

::
for

:::::::::::::::
M(a± d,a± d)

:::
for

::::
the

::::::::::::
heterozygous

::::::::
selection

:::::::::::
coefficients.

::
It

::::::
follows

:::::::::
therefore

::::
that

::::
the

::::
total

::::::::
amount

::
of969
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:::::::::::
evolutionary

:::::::
change

::::
will

::
be

:::::
large

::
if
::::

the
::::::::
parental

:::::
lines

::::
have

:::::
fixed

::::::
many

:::::::::
mutations

:::::
with

::::::::::::
(potentially)

:::::
large970

:::::
fitness

:::::::
effects.

:
971

:::
We

::::
will

::::
now

:::::
show

:::::
that

:::
the

:::::::::
difference

::::::::
between

::::
the

:::::
total

:::::::
amount

::::
and

::::
net

:::::
effect

::
of

:::::::
change

::
is
::
a
::::::::
measure972

::
of

::::::
fitness

::::::::
epistasis.

:::::
Let

::
us

::::
first

:::::
note

:::::
that,

:::::
with

:::
the

:::::::::
quadratic

::::::
model

:::
of

:::
eq.

:::
1,

::
all

:::::::::
epistatic

:::::::::::
interactions

:::
are973

:::::::
pairwise

:
(Martin et al., 2007).

:::
If

:::
we

:::::
define

::::
sik ::

as
::::
the

::::::
fitness

:::::
effect

::
of

:::::::::
inserting

:
a
::::::
given

::::
pair

::
of

::::::::::::
substitutions974

:::
into

:::
an

:::::::
optimal

::::::::::::
background,

::::
then

::::
the

::::::::
pairwise

::::::::
epistatic

:::::
effect

::
is

:::
the

:::
log

::::::
fitness

:::
of

:::
the

:::::::
double

:::::::
mutant,

::::::
minus975

:::
the

:::
log

::::::::
fitnesses

::
of

::::
the

:::
two

::::::
single

::::::::
mutants:976

εik ≡ ln(1− sik)− ln(1− si)− ln(1− sk)

= −8

n∑
j=1

aijakj . (63)

which, with results above, yields: (e.g. Martin et al., 2007).
:::

It
:::::
then

:::::::
follows

:::::
from

:::
eq.

:::
22

:::::
that

:::
the

::::
key977

:::::::
quantity

:::
for

::::::::
hybrids

::
is978

m(2a, 2a)−M(2a, 2a) = 4

D∑
i=1

D∑
k=1,k 6=i

ai · ak

= − 1
2

D∑
i=1

D∑
k=1,k 6=i

εik

= − 1
2D(D − 1)ε̄ (64)

which shows clearly that , for a given amount of evolutionary change, i. e. a fixed M(x), f(x) is minimized979

:::::
agrees

:::::
with

::::::
results

:::::
from Chevin et al. (2014).

:::::::::
Equation

:::
63

:::::
shows

:::::
that

:::
the

::::
sign

::
of

::::
the

::::::
fitness

::::::::
epistasis

::::::
relates980

::
to

:::
the

:::::::::
tendency

::
of

:::::::::
mutations

:::
to

:::::
point

::
in

:::
the

:::::
same

:::::::::
direction (Martin et al., 2007; Chevin et al., 2014; Fräısse981

and Welch, 2019)
:
.
:::::::::::
Deleterious

:::::::::
mutations

:::::
with

:::::::
positive

::::::::
epistasis

::::
will

:::::
tend

::
to

:::
be

:::::::::::::
compensatory

:::::::::
(pointing

::
in982

:::::::
opposite

:::::::::::
phenotypic

::::::::::
directions),

::::
and

::::::
those

::::
with

::::::::
negative

:::::::::
epistasis

:::
will

:::::
tend

:::
to

:::
be

::::::::::
synergistic

::::::::
(pointing

:::
in983

:::
the

:::::
same

:::::::::::
phenoptypic

::::::::::
direction);

::::::::
epistasis

::::
will

::
be

::::::::::
maximally

::::::::
negative

:
when all substitutions have identical984

effects.985

Lastly, we can write f(x) in terms of the moments of the substitution vectors, so as to connect more986

clearly to the result given in . In particular, defining the sample mean and variance on trait j
:::::::::
individual987

::::::
effects,

::
in

::::::
which

::::
case

:::::::::
ε = −2s.

:::::
Note

::::
also

::::
that

:::::::::::::::::::::
m(2a, 2a)−M(2a, 2a)

:::
will

:::::::
vanish

:::::
when

:::::
there

::
is
:::
no

::::::::
epistasis988

::
on

:::::::
average

::::::::
(ε̄ = 0), as so that we can write Equation ?? provides a way to understand f(x) in the context989

of moments on each trait. In particular, it describes the effects of segregation variance on a trait-by-trait990

basis. When applied to the additive effects a, for example, it shows that these effects are captures by the991

sample variances and means of the additive effects. Note that thisexpression contains no covariances, but it992

applies whether or not the additive effects do covary between traits.
:::::
would

:::
be

:::
the

:::::
case

:
if
::::

the
:::::::::::
populations993

:::::::::::
accumulated

:::::::::::::::::::
randomly-orientated

:::::::::
mutations

:
(Martin et al., 2007; Simon et al., 2018; Fräısse and Welch,994

2019).
:::::::::::::

Evolutionary
:::::::::
differences

:::::
that

:::::
show

:::::::
positive

::::::::
epistasis

::
in
:::

an
::::::::
optimal

::::::::::
background

::::
will

:::::
tend

::
to

::::::::
increase995

::
RI

:::::::
among

:::::::
hybrids.

:
996

Simulations997

::::::::::::::
Appendix

:::
2:

:::::::::::::
Further

:::::::::::::::::
simulations

:::::::::
under

:::::::::::::::
stabilizing

::::::::::::::
selection998

::
In

::::
this

::::::::::
Appendix,

:::
we

::::::
report

::::
the

::::::
results

:::
of

:::::::::
additional

::::::::::::
simulations,

::
to

:::::::
explore

:::::
how

:::
the

::::
key

:::::::::
quantities

:::::
that999

:::::::::
determine

::::::
hybrid

::::::
fitness

::::::
(Table

:::
1)

:::::::
behave

:::::
under

::::::::::
stabilizing

::::::::
selection.

:
1000

The illustrative simulations shown in Figures 2-4, calculated new quantities from runs reported previously1001

by (and which were themselves based on the simulation methods reported in ). While full details are reported1002
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in these papers, briefly, simulations were individual-based, and used pairs of allopatric, diploid Wright-Fisher1003

populations, each comprising either N = 1000 (scenarios I-V)1004

:::::
The

::::::::
effects

:::
of

:::::::::::::
population

:::::::::
genetic

::::::::::::::
parameters

::::::::
under

::::::::::::
stabilizing

:::::::::::
selection

::::::
with

:::::
the1005

:::::::::
additive

:::::::::
model1006

:::
Let

::
us

:::::
first

:::::::
consider

::::
the

::::::
effects

::
of

:::::::
varying

:::
the

::::::::::
population

:::::::
genetic

:::::::::::
parameters,

::::::
which

::::
have

::::
also

:::::
been

::::::::
explored1007

::
in

::::::
several

::::::::
previous

:::::::
studies (Hartl and Taubes, 1996; Poon and Otto, 2000; Welch and Waxman, 2003; Zhang1008

and Hill, 2003; Tenaillon et al., 2007; Lourenço et al., 2011; Chevin et al., 2014; Roze and Blanckaert,1009

2014; Barton, 2016)
:
,
:::
but

:::::
here,

:::
we

:::::::::
explicitly

::::::
report

:::
the

:::::
total

:::::::
amount

::::::::::
(M(A,A))

::::
and

::::
net

:::::
effect

::::::::::
(m(A,A))

::
of1010

:::::::::::
evolutionary

:::::::
change.

:
1011

::
To

:::
do

:::::
this,

:::
we

:::::::::::
re-analysed

::::::::::
simulation

:::::::
results

:::::
from

:
Schneemann et al. (2020)

::::
each

:::::::::
comprised

:::
of

::::
5001012

:::::::::::
substitutions

::::::::
accrued

::::::
under

::::::::::
stabilizing

:::::::::
selection,

:::::
with

::
a
::::::::::

stationary
::::::::::

optimum.
:::::::::

Overall,
::::
128

::::::::::
conditions1013

::::
were

::::::::::
simulated,

:::::
using

::
a
:::::
fully

:::::::
crossed

:::
set

:::
of

:::::::::::
parameters.

::::::
Here,

::::::::::
dominance

::::::::::
coefficients

:::::
were

::::::
drawn

:::::
from

::
a1014

:::::::
uniform

:::::::::::
distribution

::::::::
bounded

:::
at

::
0
::::
and

:::
1,

::::
such

:::::
that

::::::::::
mutations

::::
were

:::
on

::::::::
average

:::::::::::::
phenotypically

:::::::::
additive.1015

:::
The

:::::::::::
parameters

:::::::
varied

:::::
were

:::
(i)

::::
the

::::::::::
population

::::
size

:::::::::::
(N = 1000,

:
or N = 10 (scenario VI) simultaneous1016

hermaphrodites, with discrete non-overlapping generations. Every generation, parents were selected with1017

a probability proportional to their fitness (as calculated from eq. 1) with n = 20
::::::::
N = 10),

::::
(ii)

:::
the

::::::
mean1018

:::::::
selection

::::::::::
coefficient

:::
of

::
a

::::
new

:::::::::
mutation

:::
in

:::
an

:::::::
optimal

:::::::::::
background

:::::::::::
(s̄mut=0.01

:::
or

:::::::::::::
s̄mut=0.0001),

::::
(iii)

::::
the1019

:::::::
genomic

:::::::::
mutation

:::::
rates

:::::::::::::::::::::::::::::::::
(U ∈ {0.01, 0.001, 0.0001, 0.00001}),

::::
(iv)

::::
the

:::::::
number

:::
of

:
traits under selection .1020

Gametes were generated from the parental genomes with
::::::
(n = 2

::
or

::::::::
n = 20),

::::
(v)

:::
the

::::
rate

:::
of

:::::::::::::
recombination1021

::::::
(either

::
a

:::::
single

::::::::::::
chromosome

::::
with

:::::
map

::::::
length

::::
one

::::::::
Morgan,

::::
and

:::::::::
Haldane’s

::::::::
mapping

::::::::
function,

:::::
such

::::
that

::::
the1022

:::::
mean

::::::::
crossover

:::::::
fraction

::::
was

:::::::::
c̄ ≈ 0.216;

:::
or free recombination among all sites, and mutation. For mutation, a1023

Poisson-distributed number, with mean 2NU , of mutations were randomly assigned to unique sites, and we1024

set U = 0.01. The
::::
loci,

::::
such

:::::
that

::::::::
c̄ = 0.5),

:::
and

::::
(vi)

:::
the

::::::
shape

::
of

::::
the

::::::::::
distribution

:::
of

::::::::::
mutational

::::::
effects

::::::
(either1025

::::
“top

:::::::
down”,

::::::
where

:::
the

:::::::::::
magnitudes

::
of

::::
new

::::::::::
mutations

:::::
were

::::::
drawn

::::
from

:::
an

:::::::::::
exponential

::::::::::::
distribution,

::::
with

::
a1026

:::::::
random

::::::::::
orientation

::
in

:
nhomozygous effects for each new mutation were drawn from a multivariate normal1027

distributionwith vanishing mean and covariances,
:::::::::::
-dimensional

::::::
space;

:::
or

:::::::
“bottom

:::::
up”,

::::::
where

:::
the

::::::::::
mutational1028

:::::
effect

::
on

:::::
each

:::::
trait

::::
was

::::::
drawn

:::::::::::::
independently

:::::
from

:
a
:::::::
normal

::::::::::::
distribution;

:
Poon and Otto, 2000

:
).
::::

Of
:::::
these1029

::
six

:::::::::::
parameters,

::::
four

::::
had

:::::::::::
appreciable

::::::
effects

:::
on

:::
the

:::::::
results,

::::
and

:::::
these

:::
are

:::::::::
indicated

::::::::
visually

::
in

::::::
Figure

:::
S1.

:
1030

:::
The

:::::::
results

::
in

:::::::
Figure

:::
S1

:::::
show

:
a
::::

few
:::::
clear

:::::::::
patterns.

::::::
First,

::::
and

:::::::::::::
unsurprisingly,

:::::::::::
populations

:::::
fixed

::::::
larger1031

:::::::
changes

::::::
(larger

::::::::::
M(A,A))

::::::
when

:::
the

:::::::::::
population

::::
size

::::
was

::::::::
smaller,

::::
and

::::::::::
mutations

:::::
were

:::::
large

::::::::
(smaller

:::
N ,1032

:::::
larger

::::::
s̄mut).::::::::

Results
:::
for

:::::::::
m(A,A)

::::::::
generally

::::::::
support

:::
eq.

::::
26,

::::::
whose

::::::
value

:::
for

::::
the

::::
four

::::::
values

:::
of

::::
n/N

::::
are1033

:::::
shown

:::
by

::::
the

::::::::
vertical

::::::
dashed

:::::
lines

:
(Barton, 2016)

:
.
:::::

The
::::
sole

::::::::::
exceptions

::::
are

::::::
results

:::::
with

::::::::::::::
Ns̄mut = 0.0011034

::::::
(empty

:::::
blue

::::::
points

::
in

::::
Fig.

:::::
S1).

:::
In

:::
this

:::::
case,

::::::::
selection

::::
was

:::
so

:::::::::
ineffective

:::::
that

:::
the

:::::::::::
populations

::::
had

:::::
failed

:::
to1035

:::::
reach

::::
their

:::::::::::
equilibrium

::::
level

::
of

:::::::::::::
maladaptation

:::::
after

::::::::
D = 500

::::::::::::
substitutions.

:::
In

::::::::::::
consequence,

::::::
results

:::
fell

:::
on

:::
the1036

:::
line

::::::::::::::::::::
m(A,A) ≈M(A,A),

::::::::
implying

::::
that

::::
the

:::::::::::
evolutionary

::::::::
changes

::::
were

::::::::::
wandering

:::::::::
erratically

:::
in

::::::::::
phenotypic1037

:::::
space,

:::
as

:::::
under

::::::
strict

:::::::::
neutrality.

:::
In

:::
all

:::::
other

:::::
cases,

::::
the

::::::
action

::
of

::::::::::
stabilizing

::::::::
selection

:::
was

:::::::::
apparent

:::::
from

:::
the1038

:::
fact

:::::
that

::::::::::::::::::::
m(A,A)�M(A,A).

:
1039

:::
We

::::
note

::::::
finally

::::
that

:::::
with

::::::
higher

:::::::::
mutation

:::::
rates

:::
the

::::::::::::
dependencies

:::
on

::
N

:
and a common variance set such1040

that the mean deleterious effects of a mutation in an optimal background was s̄mut = 0.01. The dominance1041

effect of each mutation on each
:
n
::::
can

:::::::
change (Roze and Blanckaert, 2014)

:
.
:::::
This

::
is

::::
due

::
to

:::::::::::::
accumulation

::
of1042

::::::
linkage

::::::::::::
disequilibria,

:::
not

:::::::
treated

:::
in

:::
the

:::::::
current

::::::
work.1043

:::::::::::::
Dominance

::::::::
effects

::::::::
under

:::::::::::::
stabilizing

:::::::::::
selection1044

::::
This

::::::
section

::::::::
explores

:::::::::
stabilizing

::::::::
selection

::::::
when

:::::::::
mutations

::::
may

:::
be

:::::::::::::
phenotypically

:::::::::
dominant

::
or

:::::::::
recessive,

::::
with1045

:
a
:::::::::
particular

::::::
focus

:::
on

:::
the

:::::::::
evolution

::
of
::::

the
::::::::::
dominance

:::::::
effects.

:::
In

:::
all

::::::
cases,

::::
this

::::
will

:::::::
involve

:::::::::
modifying

::::
the1046

:::::
model

:::
of

::::::::::
mutational

::::::::::
dominance

::::::::
reported

::
in

::::
the

::::::::
Methods,

:::
to

:::::::
enhance

::::
the

::::::::
influence

:::
of

::::::::::
dominance

::::::
effects.

:
1047

:::
Let

:::
us

:::::
begin

:::::
with

:::
the

:::::::::::
simulations

::::::::
reported

:::
in

::::::
Figure

:::::::
4C&D,

::::::
which

:::
are

:::::
also

::::::::
reported

::
in

:::::::
greater

::::::
detail1048

::
in

::::::
Figure

:::
S2.

:::::::
These

::::::::::
simulations

:::::
used

::
a

::::::::::
mutational

::::::
model

::
of

:
Schneemann et al. (2022)

:
.
::::::
Under

::::
this

:::::::
model,1049

::
as

::::
with

::::
the

::::::::
standard

:::::::::::
simulations,

::::
the

::::::::::::
heterozygous

:::::
effect

:::
of

:
a
::::
new

:::::::::
mutation

:::
on

::
a

:::::
given

:
trait was set at its1050
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Figure S1:
:::
The

::::::
value

:::
for

::::
the

:::::
total

:::::::
amount

:::::
and

:::
net

::::::
effect

::
of

:::::::::::::
evolutionary

:::::::
change

::::::
under

::::::::::
stabilizing

::::::::
selection

:::::::
depend

:::
on

:::::::
model

:::::::::::
parameters

::
in

:::::::::::
predictable

:::::
ways

:
.
:::::::::
Simulation

::::::
results

:::
are

::::::
shown

::::
pairs

:
of
:::::::::::

populations,
::::::::
diverging

:::::
under

:::::::::
stabilizing

::::::::
selection.

::::::::::
Simulations

:::::
used

::
an

:::::::
additive

::::::::::
phenotypic

::::::
model,

:::
and

::::
were

::::::
halted

::::
after

::::::::
D = 500

:::::::::::
substitutions

::::
have

:::::
fixed.

:::::
Each

:::::
panel

:::::::
contains

::::::
results

::::
from

:::
64

:::::::::
population

:::::
pairs,

:::::
using

:
a
::::
fully

:::::::
crossed

:::
set

::
of

:::::::::::::::
population-genetic

::::::::::
parameters.

::::::
Varied

:::::
were

:::
the

:::::::::
population

:::
size

::::
(N :

:::
red

::::::
versus

::::
blue

::::::
points),

::::
the

:::::
mean

:::::::
selection

:::::::::
coefficient

::
of

:
a
::::
new

::::::::
mutation

::
in

:::
an

::::::
optimal

::::::::::
background

::::::
(s̄mut: ::::

filled
::::::
versus

::::::
unfilled

:::::::
points);

::::
and

:::
the

:::::::
number

::
of

:::::::::
phenotypic

:::::
traits

:::
(n:

::::::
circular

::::::
versus

::::::::
triangular

:::::::
points).

::::::::
Mutation

::::
and

::::::::::::
recombination

:::::
rates

:::
also

::::::
varied,

::::
but

::::::
neither

::::
had

:
a

:::::::::
qualitative

::::
effect

:::
in

:::
the

:::::::::
parameter

::::::
regimes

:::::::::
simulated,

::::
and

::
so

:::
are

::::
not

::::::::
indicated

:::::::
visually.

::::
(A)

:::::
shows

:::::
results

:::::
when

:::
the

::::::::::
mutational

:::::
effects

:::
on

::::
each

::::
trait

:::::
were

::::
i.i.d.

:::::::
normal.

::::
(B)

:::::
shows

::::::
results

:::::
when

:::
the

:::::::::
magnitudes

::
of
::::
new

:::::::::
mutations

::::
were

::::::
drawn

::::
from

:::
an

::::::::::
exponential

::::::::::
distribution,

::::
with

:::::::
random

::::::::::
orientations

::
in

:::::::::::
n-dimensional

::::::
space;

::
In

:::::
both

::::::
panels,

::::::
vertical

:::::
lines

::::
show

:::
the

::::::::
expected

:::::
value

::
of

::::::::
m(A,A)

::
at

::::::::
stochastic

:::::::::
equilibrium

:::::::
(namely

::::::::
n/(8N);

::
eq.

::::
26).

:::::
This

::::::::::
equilibrium

:::
was

:::
not

::::::::
reached,

:::::::
however,

:::::
when

::::::::
selection

:::
was

:::
very

:::::::::
ineffective

:::::::::::::
(Ns̄mut = 10−3:

::::::
empty

::::
blue

:::::::
points),

::::
and

::
in

::::
this

:::
case

:::::::::::
evolutionary

:::::::
changes

::::::::
wandered

::::::::
erratically

::
in

::::::::::
phenotypic

:::::
space

:::::
(such

::::
that

:::::::::::::::::::
M(A,A) ≈ m(A,A)).

additive
::
to

:::
its

:::::::::::
homozygous

:
effect multiplied by a shifted beta-distributed random number with vanishing1051

mode, median and mean (implying additivity on average ), bounds at -1 and 1 (complete recessivity or1052

dominance)
:::::
mean

::
µ and variance 1/6 (see Figure 2 of ). After a total of D = 25 substitutions had fixed1053

across both populations , the two parental genotypes were chosen as the genotypes containing only the fixed1054

effects in each population. For scenarios I-IV, one or both populations were placed in environments where1055

the optimum on one of the n traits was at a distance of
√

1/2 away from the shared ancestral state. This1056

led to an initial bout of adaptive substitution, as populations adapted to their new optima. For scenario1057

I, this procedure was repeated twice for population P2, while for scenarios II-IV,
::
ν.

::::
But

::
in

::::
this

:::::
case,

:
both1058

populations adapted to new optima, displaced from the MRCA either in opposite directions (scenario II), or1059

on different traits(scenario III) , or in the same direction (scenario IV). For scenarios V-VI, the optima were1060

set equal to the shared ancestral state,
:
µ

::::
and

:
ν
:::::
were

:::
set

:::
to

::::
vary

:::::
with

:::
the

::::
size

::
of

::::
the

:::::::::
mutation,

::::
such

:::::
that1061

39



µ = 1− 1

1 + exp
(
−2 |a|σa

)
ν = (2µ− 1)3 − (2µ− 1) (65)

:::::
where

:::
σa::

is
:::
the

:::::::::
standard

:::::::::
deviation

::
in

::::
the

:::::::
additive

::::::
effects

:::
of

::::
new

::::::::::
mutations.

::::
The

::::::
result

::
is

::::
that

:::::::::::
small-effect1062

:::::::::
mutations

:::::
were

:::::::
additive

:::
on

::::::::
average

:::::
(with

::::::::::
µ ≈ 1/2),

:::::::
whereas

::::::
larger

::::::
effect

:::::::::
mutations

::::::::
became

:::::::::::
increasingly1063

:::::::
recessive

:
(Manna et al., 2011; Billiard et al., 2021)

:
.
:::::::
Figure

::::
S2G

:::::
(red

::::::
curve)

::::::
shows

::::::
clearly

:::::
that,

:::::
with

::::
this1064

::::::::
mutation

::::::
model,

:::::::::::
populations

::::::::
evolving

:::::
under

::::::::::
stabilizing

::::::::
selection

::::
have

:
a
::::::
strong

:::::::::
tendency

::
to

:::
fix

:::::::::::::
phenotypically1065

:::::::
recessive

::::::::::
mutations

::::
(eq.

::::
21).

:::::
Now

::
if
:::
P1

::::
had

:::::
fixed

::::::
wholly

:::::::
recessive

::::::::::
mutations

:::::
(with

:::
no

::::::::::
phenotypic

::::::
effect

::
in1066

:::::::::::
heterozygous

::::::
form)

:::::
then

::
it
::::::
would

::::::
follow

:::::
that

::::::::
aij = dij::::

for
:::
all

::::
loci

::::
and

::::::
traits

::::
(see

::::::
Table

:::
5).

:::
If

:::
we

:::::
then1067

:::::::
consider

::::::::::
genetically

:::::::::::::
homogeneous

::::::::
parental

:::::::::::
populations

:::
(as

:::
in

:::::::::
Appendix

:::
1),

:::
it

::::::
would

::::::
follow

:::::::
trivially

:::::
that1068

:::::::::::::::::::::::::::::
m(A,A) = m(∆,∆) = m(A,∆)

::::
and

::::
that

:::::::::::::::::::::::::::::::
M(A,A) = M(∆,∆) = M(A,∆).

:::
In

::::
this

::::
way,

::::
the

::::::::
tendency

:::
for1069

:::::
highly

::::::::
recessive

::::::::::
mutations

::
to

::::
fix,

:::::::
explains

::::
the

::::::::::
similarities

::
of

:::
the

::::
red

::::
lines

::::::
shown

::
in

::::
Fig.

:::::
S2C,

::
F
::::
and

::
I

::::::
(which1070

:::
are

:::::::
plotted

:::::::
together

:::
in

::::::
Figure

:::::
4D).1071

:::::
Note,

::::::::
however,

:::::
that

:::
the

:::::::::
fixations

::::
were

::::
not

:::::::
wholly

:::::::::
recessive,

::::
and

::
so

::::
the

::::
red

::::
lines

::::
are

:::::::
similar,

::::
but

::::
not1072

::::::::
identical.

:::
In

::::::::::
particular,

::
a

:::::::::
stochastic

:::::::::::
equilibrium

::
is

:::::::
reached

:::
by

:::
the

::::
red

::::::
curves

:::
in

::::
both

:::::::
Figure

::::
S2B

::::
(eq.

::::
26)1073

:::
and

:::::
Fig.

:::::
S2H

::::::
(where

::::
the

::::::::
recessive

:::::::::
fixations

::
in

:::
P1

::::::
imply

:::::
that

:::
the

::::
F1

::::
will

::::::
closely

:::::::::
resemble

:::
P2:

::::
eq.

:::::
18).1074

::::::::
However,

:::::
from

::::::
Figure

:::::
S3E

::
it

::
is

:::::
clear

::::
that

::::
the

::::
lack

:::
of

::::::::::::
coadaptation

::::::::
between

:::
the

::::::::::
dominance

:::::::
effects

::::::
means1075

::::
that

::::
their

::::
net

::::::
effect,

:::::::::
m(∆,∆),

::::
still

::::::::
wanders

::
in

::::::::::
phenotypic

::::::
space,

::::
and

::::::::
increases

::::::::
steadily

::::
with

:::::::::::
divergence.

:
1076

:::::
While

:::
the

:::::::
results

::
in

:::::::
Figures

:::::
4C-D

::::
and

::
S2

::::::::
assumed

::::
that

:::::::::
mutations

::::
will

::::
tend

:::
to

::
be

:::::::::::::
phenotypically

:::::::::
recessive,1077

:
it
:::

is
:::
not

:::::
clear

:::::
that

::::
this

::::
will

::::
hold

:::
in

:::::::
nature.

:::::
This

::
is
::::::

partly
::::::::

because
::::
the

:::::
traits

:::
in

:::::::
Fisher’s

::::::
model

:::::
need

::::
not1078

::::::::::
correspond

::
to

:::::::::
real-world

:::::::::::
quantitative

::::::
traits (Martin, 2014),

::::
and

::::::
partly

::::::::
because,

::::::
under

:::
the

::::::
fitness

::::::::
function

::
of1079

:::
eq.

::
1,

:::::::::
mutations

::::
can

:::
be

::::::::
recessive

:::
for

::::::
fitness,

:::::
even

::
if

::::
they

:::
are

::::::::
additive

::
or

:::::::
weakly

:::::::::
dominant

:::
for

:::
the

::::::::::
phenotype1080

:
(e.g. Manna et al., 2011

:
).
:

1081

::
As

:::::
such,

:::
we

:::::::::
repeated

:::
our

:::::::::::
simulations

::
of

::::::::::
stabilizing

::::::::
selection,

:::::
with

:::
no

::::::
special

:::::::::
tendency

:::
for

:::::::::
mutations

:::
to1082

::
be

:::::::::
recessive,

:::
but

::::
also

:::::::::
increasing

::::
the

:::::::
variance

:::
in

:::
the

::::::::::
dominance

::::::
effects.

::::
To

::
do

:::::
this,

::
we

:::::::
simply

:::
set

:::::::
µ = 1/2

:
and1083

substitutions accumulated via system drift . The two-trait cartoons in the left-hand panels of Figure 2 are1084

solely to illustrate these scenarios. All simulation results are reported in Supplementary Table 1.
::::::::
ν = 1/12

::
so1085

::::
that

:::
the

::::::::::::
heterozygous

:::::
effect

::
of

:
a
::::
new

:::::::
mutant

::::
was

:::
its

:::::::::::
homozygous

:::::
effect,

::::::::::
multiplied

::
by

::
a

:::::::::::::::::::
uniformly-distributed1086

:::::::
random

::::::::
number.

:::
As

:::::
with

::::
the

:::::
main

::::
text

::::::::::::
simulations,

:::
we

::::
first

::::::::
assumed

:::::
that

:::::
each

::::::::
mutation

::::
had

::
a
:::::::

unique1087

:::::::::
dominance

::::::::::
multiplier

::
on

:::::
each

:::::
trait

:
–
:::

so
::::
that

:::
we

:::::
used

::
n

::::::::
uniform

:::::::
random

::::::::
numbers

::::
per

:::::::::
mutation.

:::::::::
However,1088

::
we

::::
also

::::::::::
compared

::::
this

:::::::::
“per-trait

:::::::::::
dominance”

:::::::
model,

::
to

::
a
:::::::::::::
“per-mutation

:::::::::::
dominance”

:::::::
model,

:::
in

:::::
which

::::
the1089

:::::
effects

:::
on

:::::
each

::::
trait

:::::::
shared

:
a
::::::::::
dominance

:::::::::
multiplier

::
–
::
so

:::::
that

:::
we

::::
used

:::::
only

:
a
::::::
single

:::::::
uniform

::::::::
random

:::::::
number1090

:::
per

:::::::::
mutation.

:::::
The

::::::
effect

::
of

:::::
both

:::
of

:::::
these

::::::::
changes

::
to

::::
the

:::::::::::
mutational

::::::
model

::::
was

::
to

::::::
make

::
it
:::::
more

::::::
likely1091

::::
that

:::::::::
mutations

:::::
with

::::::::
extreme

:::::
levels

:::
of

::::::::::
dominance

::::::
would

::::
fix,

::::
but

::::
with

:::
no

:::::::::
tendency

:::
for

:::::
new

:::::::::
mutations

:::
to1092

::
be

::::::::::::::
phenotypically

:::::::::
recessive.

:::::
The

:::::::
results

::
of

::::::
these

:::::::::::
simulations

:::
are

:::::::
shown

::::::
Figure

::::
S3,

:::::
with

::::
the

:::::::::
“per-trait1093

::::::::::
dominance”

:::::::
results

::
as

:::::::
thinner

:::::
lines,

::::
and

::::
the

:::::::::::::
“per-mutation

:::::::::::
dominance”

::::::
results

:::
as

::::::
thicker

:::::
lines.

:
1094

::::::::
Consider

:::::
first,

::::::
results

:::
for

::::
the

::::::::::
interaction

::::::
terms

:::::::
(Figure

:::::::
S3G-I).

:::::::
Figure

::::
S3G

::::::
shows

:::::
that

::
a

::::::::
tendency

:::
to1095

::
fix

::::::::::::::
phenotypically

::::::::
recessive

::::::::::
mutations

::::
(an

::::::::::
increasing

::::::::::
M(A,∆))

::::
can

:::::
occur

::::
via

::
a
::::::::
selective

:::::
sieve

::::::::
without1096

::::::::::
mutational

::::
bias,

::::
but

:::::
only

:::
for

:::::
some

:::::::
models

::
of

:::::::::
mutation

::
–
::
in

::::
this

:::::
case,

:::::
only

:::
for

::::
the

::::::::::::::
“per-mutation”

::::::
model1097

:::::::
(thicker

:::
red

::::::
line),

::
in

::::::
which

:::::
each

::::::::
mutation

::::
has

::::
the

:::::
same

:::::
level

::
of

::::::::::
dominance

:::
on

:::
all

::
n

::::::
traits.

:::::::::
However,

::::
the1098

::::::::::::
corresponding

::::::::
negative

:::::
trend

:::
in

:::::::::::::::::::
m(A,∆)−M(A,∆)

:::::::
(Figure

::::
S3I)

::
is

::::
now

::::
very

:::::
weak

::
–
:::::
both

:::::::::
compared

::
to

:::
its1099

::::::::
standard

:::::::::
deviation

:::::::
between

:::::
runs

:::
(so

:::::
that

:::
the

:::::
term

::::
will

:::
be

:::::::
positive

:::
for

::
a
::::::::::
substantial

::::::::::
proportion

:::
of

:::::
runs)

::
–1100

:::
and

:::::::::
compared

:::
to

::::::::
negative

:::::
trend

::
in

::::
the

:::::::
additive

:::::
term

:::::
(Fig.

::::::
S3C).

:
1101

::::::::
Consider

::::::
finally

:::::::
results

:::
for

::::
the

::::::::::
dominance

:::::::
effects

:::::::
(Figure

::::::::
S3D-F).

::::::::::::
Remarkably,

::::
the

::::::
trend

::
in

:::::::
Figure1102

:::
S3F

:::
is

::::::::
opposite

::
of

:::::
that

::::::
shown

:::
in

::::::
Figure

:::::
S2F,

:::::
with

::
a
:::::
weak

:::::
tend

:::
for

:::::::::::
dominance

::::::
effects

:::
to

:::::
point

:::
in

:::::
same1103

::::::::::
phenotypic

:::::::::
direction.

:::::
This

:::::::
applies

::
in

:::
all

::::::
cases,

:::::::::
including

:::::
when

:::
the

:::::
sole

::::::::
evolving

::::::::::
population

::::::
tended

:::
to

:::
fix1104

:::::::::::::
phenotypically

::::::::
recessive

:::::::
alleles.

::::::
Note,

::::::::
however,

:::::
that

::::
this

:::::::::
tendency

::
is

:::::
again

::::::
weak

:
-
:::::
both

:::::::::
compared

:::
to

:::
its1105

::::::::
standard

:::::::::
deviation

:::
and

::::
the

::::::::
negative

:::::
trend

:::
in

:::
the

::::::::
additive

:::::
term

:::::
(Fig.

::::::
S3C).

::::
The

:::::::
upshot

:::
is,

::
at

:::::
least

::
in

::::
the1106
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Figure S2:
:::
The

::::
net

::::::
effect

::::
and

:::::
total

:::::::
amount

:::
of

::::::::::::
evolutionary

:::::::
change

:::::::::::
predictably

:::::::
under

::::::::::
stabilizing

:::::::::
selection,

:::::
when

::::::::::
mutations

:::::
tend

:::
to

:::
be

::::::::::::::
phenotypically

:::::::::
recessive.

::::
The

::::::::::
simulations

:::::::
reported

:::::::::
correspond

::
to

:::
be

:::::
shown

::
in
::::::
Figure

::::::
4C-D,

:::
and

:::
the

::::::
curves

::
in

::::::
panels

::
C,

::
F
::::
and

:
I
::::::::
replicate

::::
those

:::
in

:::::
Figure

::
4C

:::::
(blue

:::::::
curves),

:::
and

::::::
Figure

:::
4D

::::
(red

:::::::
curves).

:::
All

::::::::::
simulations

::::
used

:::
the

::::::::::
dominance

:::::
model

::
of

Schneemann et al. (2022),
::
in

:::::
which

::::::
larger

:::::
effect

::::::::
mutations

:::::
were

::::
more

:::::
likely

::
to

:::
be

::::::::::::
phenotypically

:::::::
recessive

::::
(eq.

:::
65).

::::
All

:::::
curves

:::::
show

:::
the

::::::
means

:::::
across

::::
100

:::::::
replicate

::::::::::
simulations,

::::
and

::::::
shaded

:::::
areas

:::::
(often

:::::
barely

::::::
visible)

:::::
show

:::
the

::::::::
standard

:::::::::
deviation.

:::::
Other

:::::::::
simulation

::::::::::
parameters

::::
were

::::::::
N = 100,

::::::
n = 20

::::
and

::::::::::::::
U = s̄mut = 0.01.

:
.
:

::::::
models

:::
we

::::::::::
simulated,

::::::::::
dominance

::::::
terms

::::
will

:::
be

::::::::
difficult

::
to

:::::::::
interpret

:::
in

:::
the

::::::::
absence

::
of

::
a
:::::::::::
mutational

::::
bias1107

:::::::
towards

::::::::::
phenotypic

::::::::::
recessivity.

:
1108
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Figure S3:
::::::::::
Dominance

::::::
effects

::::
can

::::::
show

:::::
weak

:::::::::::::
directionality

::::::
under

::::::::::
stabilizing

::::::::::
selection,

::::
even

::::::::
without

:
a
:::::::::
tendency

:::
for

::::::::::
mutations

:::
to

:::
be

::::::::::::::
phenotypically

:::::::::
recessive

:
.
:::::::::
Simulation

::::::
results

:::::
under

:::::::::
stabilizing

:::::::
selection,

:::::
with

:
a
:::::::::
stationary

::::::::
optimum.

:::::::::
Compared

:::
to

:::
the

:::::
main

:::
text

:::::::::::
simulations,

:::
the

:::::::
variance

::
in

:::
the

:::::::::
dominance

:::::
effects

::
of
:::::::::
mutations

::::
was

::::::::
increased

:::
(by

:::::::
drawing

:::::::::
dominance

:::::::::
multipliers

:::
for

::::
each

::::::::
mutation

::::
from

:
a
:::::::
uniform

::::::::::
distribution

:::::
with

:::::::
µ = 1/2

:::
and

:::::::::
ν = 1/12),

::::
and

::
we

::::
also

:::::::::
compared

:::
our

::::::::
standard

:::::
model

::::::::
(“per-trait

:::::::::::
dominance”)

:::
to

:
a
::::::
model

::
in

:::::
which

::::
each

::::::::
mutation

::::
was

::::::
equally

::::::::
dominant

:::
or

:::::::
recessive

:::
on

::
all

::
n

::::
traits

:::::::::::::
(“per-mutation

::::::::::::
dominance”).

:::::
Lines

:::
and

::::::
shaded

:::::
areas

::::::::
represent

:::
the

:::::
mean

::::
and

:::
one

::::::::
standard

:::::::
deviation

::::::
across

:::
200

::::::::
replicate

::::::::::
simulations.

::::::
Other

:::::::::
simulation

:::::::::
parameters

::::
were

::::::::
N = 10,

::::::
n = 20

:::
and

:::::::::::::
U = s̄mut = 0.01

:
.
:
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Supplementary figures1242

The total amount and net effect of evolutionary change under stabilizing selection. Under a1243

common evolutionary scenario, the key quantities described in this work will vary with the population genetic1244

parameters. To see this, the total amount of evolutionary change, M(2a), and the net effect of evolutionary1245

change, m(2a), were calculated from the simulation runs reported by . Each panel shows results from 1281246

simulated populations, using a fully crossed set of population-genetic parameters, each replicated twice.1247

Varied were the population size (N : red versus blue points), the mean selection coefficient of a new mutation1248

in an optimal background (s̄mut: filled versus unfilled points); and the number of phenotypic traits (n: circular1249

versus triangular points). Also varied were the genomic mutation rates: U ∈ {0.01, 0.001, 0.0001, 0.00001},1250

and the rates of recombination. For recombination, we used either a single chromosome with map length1251

one Morgan, and Haldane’s mapping function, such that the mean crossover fraction was c̄ ≈ 0.216; or free1252

recombination among all loci, such that c̄ = 0.5. Neither mutation nor recombination rates had a qualitative1253

effect in the parameter regimes simulated, and so they are not indicated visually. (A) shows results when1254

the magnitudes of new mutations were drawn from an exponential distribution, with a random orientations1255

in n-dimensional space; (B) shows results when the mutational effect on each trait was drawn from an i.i.d.1256

normal distribution. In all cases, the phenotypic model was additive (d = 0), and simulations were halted1257

after D = 500 substitutions had fixed. Individual simulation results are reported in Supplementary Table 2.1258
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