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How does the mode of evolutionary divergence affect reproductive
isolation?
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Abstract

When divergent populations interbreed, the outcome will be affected by the genomic and phenotypic
differences that they have accumulated. In this way, the mode of evolutionary divergence between
populations may have predictable consequences for the fitness of their hybrids, and so for the progress of
speciation. To 1nvest1gate these connections, we present a new analys1s of hybrldlzatlon under Fisher’s
geometric model-
few—, making fewer assumptlons about the adehtwe—&nd—dem}n&ne&awlkevh\g effects that dlfferentlate the
hybridizing populations. Results show that the strength and form of postzygotic reproductive isolation
(RI) depend on just two properties of the gene sneesevolutionary changes, which we call the “total
amount” and “net effect” of wemw%mm
the changes at different loci, or their tendency to act in the same phenotypic direction. It follows from
our results that identical patterns of RI can arise in different ways mm
can lead to the same total amount and net effect of change. Nevertheless, we show how the key quantities
do contain some information about the history of divergence, and WM&;
the dominance and addltlve eﬁects contam complementary information.

Impact Summary

When populations of animals or plants evolve differences in their genomes or traits, the nature of the
differences will help to determine whether they can continue to interbreed. For example, the hybrid offspring
may be infertile, or unlikely to survive to reproductive age, meaning that the two populations remain distinct
from one another even after mating. However, in some cases the hybrids may be more fertile than their
parents or have some other reproductive advantage. In this study, we use a mathematical model to relate
hybrid fitness to the evolved differences separating the parents. We find that the outcome depends on just
two properties of these differences, which capture the “total amount” and the “net effect” of evolutionary
change. We then show that different evolutionary divergence scenarios or modes can lead to the exact same
hybrid fitness. On the other hand, we can still make some 1nferences about the hlstory of divergence by
0bserv1ng Certaln propertles of hybrld fitness. Fi 3

s—Determining the relatlonshlp between hybrld ﬁtness and the rnode of
evolutlonary chvergence w111 help to understand how new species form, to plan conservation interventions such
as moving individuals between isolated populations to increase their adaptive potential, and to understand
how existing species might interact when their habitats overlap, for example by—due to climate change or
other human impacts.

* These authors contributed equally.
T Corresponding author: jjw23@cam.ac.uk.
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Introduction

Genomic and phenotypic differentiation between populations is-are a major cause of reproductive isolation
(RI), preventing hybrids from forming, or reducing their fitness when they do form. However, differentiation
can also be a source of adaptive variation, if hybrids contain new fit combinations of traits or alleles, or
act as conduits passing existing combinations from one population to another (Arnold and Hodges, 1995;
Edmands, 1999, 2002; Coyne and Orr, 2004; Bierne et al., 2013; Schluter and Conte, 2009; Bernardes et al.,
2017; Coughlan and Matute, 2020).

Which of these outcomes actually takes place must depend on the types of phenotypic and genomic dif-
ferences that have accumulated. A fundamental challenge in evolutionary biology is to understand the con-
nections between the mode of evolutionary divergence, the type of differences that accrue, and the outcomes

of subsequent hybridization. This can be framed in two ways: what can we learn about the (unobserved
history of parental divergence by observing their hybrids? (Lande, 1981; Welch, 2004; Schneemann et al.,
2020; Fraser, 2020); and conversely, which divergence scenarios will predictably lead to RI? (Coyne and Orr,

2004) What, for example are the respective roles of large- versus small-effect mutations in causing RI, and
what are the roles of natural selection versus genetic drift (Lynch, 1991; Coyne and Orr, 2004; Jezkova et al.,
2013; Satokangas et al., 2020; Moran et al., 2021; Clo et al., 2021)7 All of these questions are essential for

understanding the opposing processes of speciation and adaptive introgression (Abbott et al., 2013), and

redicting the outcomes of novel hybridizations, including those that are human-mediated (Genovart, 2008;
Chan et al., 2019),_

One tool to address these questions is Fisher’s geometric model. This is a mathematical model of selection
acting on quantitative traits (Fisher, 1930, Ch. 2), and has been used to understand both phenotypic data,
e.g., QTL for traits involved in adaptive divergence (Orr, 1998), and fitness data. In the latter case, the
phenotypic model need not be treated literally, but is a simple way of generating a fitness landscape (Martin
and Lenormand, 2006; Martin, 2014). Both uses of the model have been applied to hybrids (Lande, 1981;
Mani and Clarke, 1990; Barton, 2001; Chevin et al., 2014; Fraisse et al., 2016; Simon et al., 2018; Yamaguchi
and Otto, 2020; Schneemann et al., 2020; Thompson et al., 2021; Schneemann et al., 2022).

Most importantly here, the model allows us to consider the effects in hybrids of evolutionary changes of
different sizes, and which were driven by different evolutionary processes (Hartl and Taubes, 1996; Orr, 1998;
Chevin et al., 2014; Simon et al., 2018; Schneemann et al., 2020). However, previous analytical results have

for diploids (Schneemann et al. 2020) depended on strong assumptlons about the genomie-differencesgenetic

differentiation, such as no w&hm—peﬁ&meﬁﬁﬂvmerkvanatlon within the parental lines, normality and
universal pleiotropy among the fixed effects, and statistical independence among traits. Furthermore the

earlier results describe the overall strength of RI in terms of a single fitted parameter, whose relationship to
the process of evolutionary divergence is-remained obscure.
In this paper, we generalise-extend previous work on Fisher’s geometric model in two ways.

First, b cr)mbinin and generalizing previous work by several authors (Lande, 1981; Chevin et al., 2014;
Simon et al., 2018; Schneemann et al., 2020, 2022), we give results for the expected fitness of hybrids between
diploid populations, applying to all classes of hybrid, and allowing for variation within the hybridizin

opulations, and alleles with arbitrary additive and dominance effects. Second, we show how some key quan-
tities thc—}kthat that appear in the results relate transparently to the hlstory of dlvergence between the parental

populatlons p S
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1 Results

Results
0.1 The model
The phenotypic model and fitness landscape

Under Fisher’s geometric model, the fitness of any individual depends solely on its values of n quantitative
traits. The trait values for an individual can be collected in an n-dimensional vector z = (z1, ..., 2, ); and
its fitness, w, depends on the Euclidean distance of this phenotype from an optimum o = (o1, ..., 0,), whose
value is determined by the current environment. We will assume the simplest form of the model, where the
log fitness declines with the square of the distance:

n
Inw (z,0) = — |z —o|* = = (2 — 0,)° (1)
=1
This model can be derived either exactly, or approximately, from a wide class of more complicated fitness
functions (Martin, 2014; Schneemann et al., 2020), and in these latter cases, only a few, if any of the n traits,

need to be identified with real quantitative traits that might be measured in the field. Results can also be
k

lied if fitness declines more rapidly with distance from the optimum. For example, if Inw = — ||z — o
(Fraisse et al., 2016; Simon et al., 2018; Fraisse and Welch, 2019) then results below could be applied directl

2
2/k — ||z — o||°.

to the scaled log fitness (—Inw

0.0.1 Gharaeterizing-parental-divergenee
Characterizing parental divergence, and describing hybrids

ﬂ%he—pl&%eWm%We Wlll con81der hybrlds between two d1p101d parental hﬁ%m denoted
P1 and PQ—Whlbh—hYWH(—bﬁﬂﬂm We w111 assume that 1nd1v1duals in these po ulatlons vary_at D

biallelic loci, and that the allele frequencies might vary between populations. If we (arbitrarily) choose one

allele at each locus to be the focal allele, then the frequency of the focal allele at locus i = 1,.... D is denoted
WWQMMPl MHMH&G%%—%&%M&H&%&%&%M@%
, X ( 1S S o 7 9 o 5 E
MWMN
associations between alleles within the parental populations, so that both P1 and P2 are at Hardy-Weinberg
and linkage equilibrium at all D loci, and (2) there is no phenotypic epistasis between the allelic effects.

With these assumptions, the differences in the trait means between P1 alele—as—68—Thetrait—veetor
or—phenotype-of-and P2 can therefore-be written as Pl-—plas-the sum of twice—the-additive—effeets—For

contributions from each of the D loci, As such, for any trait j = 1,...,n, we-have-the difference in trait
means can be written

D
Zp2,j — ZP1,j = QZAij (2)

=1
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Figure-#Fa-where the factor 2 follows from diploidy. A simple consequence of eq. 2 is that the phenotypic
differentiation between the parental populations can be described as a chain of effects in n-dimensional
phenotypic space. Figure 1A shows an illustrative example with n = 2 traits, and-affected by changes at
D = 5 substitutionsloci. Here, the black arrows represent the path-ef-homozygous-substitutions;2a;-leading
&%M%WWPl to-and P2ﬂﬂ—%hewﬂﬂest——feeeﬂt~eemme&aﬂeea%er~%%—

Gf-—lﬂﬁei‘—Hﬂg—t—h& or the centr01ds of the clouds of 01nts that Would re resent the two arental opulations.
Each 2A4;; descrlbes the di 101d effect on trait j of chan in the allele frequency at locus ) t—h—%@l@ﬂﬁﬁe—&

from gpy; t0 gp2..
Thisis-llustrated-inFigure 77B—where-We _can also relate the Ay to the parental allele frequencies

and the size of the path-from-either-of-phenotypic effect, as represented by the Fisherian average effect of a

me g. Lynch and Walsh, 1998, Ch 4M@Wthe p&reﬂ‘ﬁa%pheﬂeﬁypes—%e%he

eﬁ%&—mmeﬂmmeﬂm@heﬂeg%m
Ay = 07ij (qp2,: — qp14) (3)

)

Mmmmmmm“www%mm@e g Lynch and Walsh
1998, eq. 4.10b), averaged across the two parental populations.
WW@WLynch and Walsh, 1998, Ch. 4, Schneemann et al., 2022) we also
need to account for the dominance deviations associated with allele frequency changes. We can do this by
considering the mean phenotype in the initial F1 eross—will-depend-on-properties-of-cross between P1 and

P2, in which all loci in all individuals carry one P1-derived allele and one P2-derived allele. We show in the
Memnggf‘gthe dlfference in tralt means between the F1 and the two parental hﬁes—&ﬁéjefepeft&e%ef%he

M&%&@ﬁf&%}—&ﬂdﬁ@ﬂmﬂm&f@ﬁa&%&m 0 ulatlons can be wrltten as
D
ZF1,j — ZP1,j = ZAij + Ay (4)

D
Zpo — Fr1; = ) Aij — Ay (5)
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where

< 2
Aij = 0ij (qp2,i — qpP1,3) (6)
and 4, is the dominance deviation of a substitution at locus i on trait j averaged across the two parental
opulations. The differences between the parental and F1 trait means can also be represented as chains of

effects, and this is illustrated by the red and blue arrows in Figure 1A. Moreover, we can separate out the

additive and dominance effects a-and-d{(Figure-22C)by considering the differences between the F1 and the
midparental mean phenotypes, defined as Z,,, 1 = (Zp1.5 + 2Zp1.4)/2.

0.0.1 Charaeterizing-an—-arbitraryhybrid
Zmp,j — ZP1j = 22, — Zmpj = 3 (P2 — 2p1,) = O Ay (7)

D
15— Zmpy = A (8)

The two resulting chains are illustrated in Figure 1B.
The arguments above for the F'1 cross generalize to an arbltrary hybrld (Say, an F2 or a backcross). AH

%MN
results for crosses, assuming free recombination among the D lociin-the-hybrid-that-are-homozygousfor-the,
and that no linkage disequilibrium has accumulated due to selection on early generation hybrids (see Lynch
and Walsh, 1998 Ch. 9, and Schneemann et al., 2020 for some generalizations). In this case, hybrid genomes
MMM@W

allele in the hybrid derives from parental line P2), and their inter-class heterozygosit defined as the

robability that a randomly chosen locus carries one allele of P1
hemezygeﬂﬂrfer—th&orl in and one allele of P2 ‘

Our—atm—in—this—paper—origin). Results in the main text treat h and as probabilities determined

by the crossing scheme, and which apply to all loci independent of their allelic effects. In Appendix 1 we

report _equivalent results for sequenced genomes with known patterns of ancestry, such that A and are
known proportions. In either case, our aim is to calculate the expected fitness of a hybrld conditional on its

genome-compositioni-e—econditional-onpr—pr-h and p1o. When we take expectations, they will be over the

particular loci that are in any given statee—g-overthe particular Dpryloecithat-are-heterezygous—ancestry
state. We then determlne how this result depends on propertles of a aﬁd—d{the additive and domlnance

»clis ¢ s These will be collected in D X1 - dlmenslonal matrlces, denoted A = (A;;
and A = (A;;), and treated as ﬁxed observations, rather than random variables.

0.1 Expeetedlogfitness-of-ahybrid
Expected log fitness of a hybrid



trait 2

Figure 1:

(A) (B)

trait 2

— M(2A,2A)
---- m(2A,2A)
— M(A+AA+D)
---- m(A+AA+AD)
— M(A-AA-A)
---- m(A-AA-D)

trait 1 trait 1

The key quantities that determine hybrid mean log fitness under Fisher’s geometric
model. The fitness of any given phenotype is determined by its distance from some optimum
phenotype, as determined by the current environment. This optimum and fitness landscape is
illustrated, for n = 2 traits, by the cross and contour lines. (A): The diploid parental populations, P1
and P2, are each characterized by mean phenotypic values, Zp; and Zps, and the difference between
these points are due to allele frequencies changes at D = 5 loci, each affecting one or more of the traits.
The diploid changes associated with each locus are represented by the black arrows, whose components
are denoted 24 for the diploid change to the 7' trait due to the i'" locus. The model allows for
phenotypic dominance, so that the differences between the trait means of the parents, and the initial F1

cross, also involve dominance effects, denoted as A;; for the change to the j** trait due to the " locus.
B): the additive (black) and dominance (purple) effects can also decom osed into chams of differences

linking the P1 or F1 trait means to the mid- i =1 . Inset panels:

The mean log fitness of an arbitrary hybrid is affected by the total amount 0 evolutzonary change (the
sum of squared lengths of the arrows in a chain), and by the net effect of the evolutionary change (the
squared lengths of the dotted lines). See text for full details.

200 Given the model described above, the expected log fitness of an arbitrary cross can be determined from the

201

202

203

In the

expected means and variances of its n traits.

E(lnwy) = — ZE ((ZH,j - Oj)Q)
= — ZE2 (zm,j — 05) — ZVar (zm,5) 9)

Methods, we show that the-expeetedlogfitness-of-the-hybrid-deseribed-each of the two terms in

eq. 5359 can be written as the sum of six terms, weighted by the same six combinations of h and pi5. All



204 12 of these terms are shown in Table 1, where we introduce the notation

Vpl ZV&I‘ ZP1 j Vpg = ZV&I‘ (szj) VFl ZV&I‘ ZF1 ] (10)

205 where-thefunetion—{--s-defined-as—to denote the sum of the trait variances in a given population. We

s also introduce two new functions of D x n - dimensional matrices_

207

208 we}gl%eekwhose meanings we dlscuss below The expected log fitness of any hybrid with a given value of h
200 and 9) is equal to the sum of the loefitnesses-of-thethreefixed-genotvpes—thetwo parents—and

210 %heg}ebaﬂfhe%efezygmﬁtwelve terms in the second and third columns of Table 1, as weighted by their

a1 coefficients in the first column. Examining these terms, it follows that the expected log fitness depends on
22 both properties of the parental populations (see top two rows of Table 1), and properties of the initial F1

213 cross (see third row of Table 1 lus properties of the additive and dominance effects, as captured by the
24 functions m(-,-) and M(-,-) (see the bottom three rows of Table 1).

Table 1: Components of expected log hybrid fitness

Coefficient =377 E? (21 — 0 g Var (2m,3)

L:JAW =VeL
h Inw(zpy,0)

A~

=Ve2
MMWMMW;W
AR(L—h) —pia. m(AA) —M(AA)
wLL:JzulWLAWVéL —M(A,A)
2p12(L = 2h)  m(A.A) —M(A.A)

NI NI NI

215 Now, let us note that, given the quadratic fitness function of eq. 1, the mean fitness of individuals in
2 arental population P1 is given by Inwp; = Inw (z . Becanse these terms contain fitnessvalues.

17 %heye&n&ﬂ%wm%he—pemefﬂi&eﬁﬂfemﬁeﬂ%&kepﬁﬂm%As such, these three terms describe the
28 we can combine the terms in each row of Table 1, to yield:

=
o

E(lnwyg) = Inwp
+ (5 n) (e~ Tnwe)
+ D12 (m - M)
+ (4h(1 = h) = p12) (m (A, A)— M (A, A))
+p12(1 —p12) (M (A, A) - M (A, A))
+dpiz (5 —h) (m(A,A) - M (A, A)) (13)
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Here the overbars denote the expected fitness of randomly chosen individuals, either from a single
opulation (subscripts P1, P2 or F1) or from the two parental populations at random (subscript P, such

that mwp = (Inwp; + Inw 2).

Note that the first three terms of Equation 13 all depend on the current position of the environmental
optimum, and so they capture the extrlnsm or env1ronnlent dependent component of expeeted-hybrid fitness.

These terms depend solel

on the mean log fitnesses of arental and Fl 0 ulatlons B contrast the second three terms depend only
on the additive-and-dominance-effeets—A and A — ie. on a—and-dthe genomic differences accrued by the

arental populations, but not on the current position of the environmental optimum. As such, they-deseribe
hese three terrns capture the intrinsic, or env1ronn1ent 1ndependent component of hybrld ﬁtness Each-term

WM&@L@&MWMWWM&

the within-population trait variances within the extrinsic terms (Table 1). However, eq. 13 does correspond
closely to the partition of Hill (1982), showing that all of the terms, including the quantities M(..:) —m(,-)
are estimable as_composite effects by standard quantitative genetic methods (Lande, 1981; Lynch, 1991;
Lynch and Walsh, 1998, Ch. 9; Rundle and Whitlock, 2001; Schneemann et al., 2020; Clo et al., 2021).
MW&WMMMMWI . ﬂsmg—%h&eh&ﬁmﬂuﬁ&ted
in—Fig—??Cinstead—of these—inFisg—??Bthe separate functions M (-,-) and m are estimable under
Wﬁw&%ﬁmmm et al., 2022 for a
discussion). In ; s sthat-eq ‘ that case, all terms containing
m%m
1 simplifies to Table 2, implying that M(A, A) and m(A. A) can be separately estimated.

Table 2: Components of expected log hybrid fitness with additive phenotypes

Coefficient  — 30 E? (zu —0) =354 Var(zn)
Loh  Inw(zpy,0) Ve
D Inw(Zps,0) “Ve2
Rz, O M(AA
Al —h) m(AA) “M(A A

dominance effects are non-ne, h ible, some of the individual function Values can be estimated, if fitness

measurements are made in environments to which the parental populations are well adapted (Rundle and
Whitlock, 2001). For example, if the mean phenotype of P1 is optimal (zp; = o), then from Table 1 and egs.

1.3 and 11, the
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mean log fitness is shown in Table 3

Table 3: Population mean log fitnesses in different environmental conditions

Env, conditions  Inwpy Inwpy. Inwgy

Zp; =0 =Vpi_ —4Am(A,A) — 1 -m(A+AA+A) -V
Zpy =0 —4m(A,A) -V =Vpa_ —-m(A—-—AA—-A)-V
Zp; =0 -m(A+ A A+A)-1] —m(A—-—AA—-—A)—V =VrL

With-this-definition—eq—22 s ]
If we also note the following identities:

m(A+AA+A) =m(AA) +m(A A)+2m (A, A)

mA—-—AA—A)=m(AA)+m(AA)—2m (A A) (14)
"- ooP ooP A '. e 0 7 d O . . @ \4 O O
5 - it was i S ons then it follows that the quantities m(A, A

and m(A,A) can be estimated from reciprocal transplant experiments in habitats to which the parental

2

or with data from a third environment in which the F1 shows bounded hybrid advantage such that zp; =~ o.

Interpreting the functions m(-,-) and M(-, -

In the previous section, we saw that genomic differences between populations influence the mean log fitness
of their hybrids solely via the functions m(-,:) and M (-,-), as applied to the additive and dominance effects

(A and A). We also saw that the value of these functions can, in principle, be estimated from hybrid fitness
data. In this section s—we-we show that these functions have a simple interpretation, which can be related to
the divergence history of the populations.

It follows from egs. 11 and 12, that m(-,-) and M (-,-) can be interpreted on a trait-by-trait basis, as the

sum over the means and variances of the changes on each trait. However, it can also be helpful to consider
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the i

changes in multi-dimensional trait s éce i.e. the arrows depicted in Figure 1.
To see this, let us begin by noting that the function m(-, -) captures the net effect of evolutionary change.
For example, for the additive effects, from egs. 7 and 11 we find:

D 2

A

i

1
m(A, A) = = lap2 — 701 (15)

so that m(A, A) will be large if the fixed—effeets;,—which—result—from—the-evolutionary divergence between
%he«p&fefﬁa}%rﬂes—teﬂi&eﬂteefﬁe%eﬁhvbﬁdﬁaﬁeﬁ%e%weeﬂ%h&}mesPl and P2 led to their evolving ver

different phenot, . By contrast, m(A,A) will be small if, due to compensatory changes at different

loci, the evolutionar divergence led to little net change in phenotype. Analogous arguments apply to the
dominance effects, where, from eqs. 8 and 11, the function m(A, A) describes the distance between the F1
and midparental phenotypes.

0.0.1 Direetionality-inthe-chains-eof-effeets

D

>a

i

m(A,A) = = [|Zmp — Zr1|” (16)

e&p%ufe%h&exeh&ﬁge&bﬂiﬁfeﬁ.ﬂnall for fhe interaction term, we use eq. 14 from which it follows that .
m(A,A) = %m(A+A,A~I—A) — im(A—A,A—A) (17)
=1 lzE1 — Zp1|* — 1 1261 — Zpo|® (18)

The interaction term can therefore be negative or positive, and it tells us whether the net effect of the
evolutionary change has led to the substitutionsF'l more closely resembling one or other of the parental

populations.
If the function m(:,-) describes the net effect of evolutionary change, the function M(-, ), describes the

total amount of evolutionary change. For example, from eq. 12 we have:

D
= Z A7 (19)

D 2 2
- (Z |Az-||> x L VAL (20)

i=1

where ||A;|| is the length of an individual black arrow in Figure 1B and CV (- is the coefficient of variation
among the complete set of D len ths, i.e. - i S :

%ffeeﬁeﬁahby—iﬂ%h&ehafﬂés—}ef—%ﬂ%sﬂmfﬁeﬁs— helr standard dev1at10n d1v1ded b their mean. It follow
that M (A, A) will be large if there was a large amount of evolutionary change, i.e. if there were changes at
many loci, and the changes were individually large. This applies regardless of whether or not the changes at

each locus were compensatory, such that there was no net change in phenotype. Equation 20 also clarifies
the roles of large- versus small-effect changes. It implies that for a given amount of phenotypic change (i.e. a

10
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iven value of the first factor in eq. 20, or a given length of the chain of black arrows in Fig. 1B), M (A, A

will be larger if the changes were fewer (lower D) and more variable in size (higher CV (||A;]])).

All of the arguments above also apply to M (A, A), which concerns the chain of dominance effects; while
for the interaction term, we use results analogous to eq. 14 to show that

M(A,A)=IMA+AA+A)-IMA-AA-A)

D D
=D A AP -1 (A - A (21)

So eq. 21 will be positive if the red arrows in Figure 1A tend to be longer than the blue arrows, and vice
versa. This is equivalent to asking whether the alleles that are more common in P2 tend to be phenotypicall

dominant. M (A, A) will be positive if P2 alleles tend to be phenotypically dominant, and negative if the

tend to be phenotypically recessive.
The comments above shed light on the functions m and M (-, -) individually, but eq. 13 depends on
%mﬁ see this, let us note
& ‘ ks see-M ‘ atlsjuse eqs. 15 and 19, to show that:

D D D D
m(A,A) — M(A,A) = ZAZ Aitd S Y AAL =) AcA
i=1 k=1,ki i=1
D D
i=1 k=1,k#i
D-1 D
=(D-1)MAA) - > A - AP (23)
1=1 k=:+1
D D
=3 > llAillllAk] cos(8a,,4,) (24)
i=1 k=1,k#i
Here iz Hsthe-magnitude-of-a-veetor-So this quantity can be interpreted in two ways. Equation 23 uses

the relationship between the dot product and the squared Euclidean distance to show that m(A, A) — M(A, A)
s a measure of the similarity of the evolutionary changes at different loci (Schneemann et al., 2020); it take
its largest value when changes are identical at all loci (i.e. when ||A; = Agl| =0 for all i and k). but _the
quantity becomes smaller and negative as_the effects become more different.
M&%@Wm@mmmmwm length-of-the-arrowinFig—77}

and-fz——is-the-angle between ¢ 2Z7the 4th and the kth vectors of change (see to
right of Figure 1B for an ; stbs s-illustration). This

implies that cos(d) = 1 when the addltlve eﬁects at two loci point in the same phenotypic direction (such
that #=-)0 = 0); similarly, cos(#) = 0 when the vectors are orthogonal (e.g., altering the values of different

tralts)&ﬂd—eesééa—l—fer—substrtuﬂeﬂ%%r&t—pemtf and finally, cos(f) = —1 for effects that act in opposite

directions. It follows that the difference m — M(- uantlﬁes the tendency for evolutionary changes

at different loci to act in the same phenotypic direction. It is therefore a measure of the directionality (or
conversely meandering) in the chains of evolutionary changes.

ef-Again, the same argument applies to the Chaln of dommance effects m(A, A M A A . Finally, for
the additive-by-dominance interaction, by analogy with eq. 24, we can write

11



D
m(A,A) = M(A,A) =" > |Ailll|[Ax]|cos(8a,,a,) (25)
i=1 k=1,k#i

349 So that the interaction term measures the tendency for additive and dominance effects at different loci
30 to point in the same phenotypic direction.

Additive effects

« (A) Total amount, M(A,A) (B) Net effect, m(A,A) ~ (C)m(AA) - M(AA)
o o
Divergence Scenarios - -
g o o 2 = = -— -
I - e—— - - -
I: Same direction IV: P2 moving opt. 9 — - —— —r—
84 — -— o
o ancestral o—=<> o P — 8
;;7_ phenotype ;;7_ I v v Vv 1w v v T 00wV v Vv
Dominance effects
g (D)M(AL) i (E) m(AD) o (F) m(A,0) - M(A,L)
II: Different traits V: Different traits o o ]
o—=Z>e —=o - T T 4 . : | ‘ - E
P2 P2 = - — ) == = L -~ -— 7 |
= =
o 4 | e 0
o o <
1 v v v | 1 v v v T o0Lo0omv Vv Vv
11I: Opposite dir. VI: P2 distant opt.
Additive—by—dominance
i P2 —2 P2 a (G) M(A.L) ~ (Hym(A,A) ~ (I m(AA) - M(AD)
N N =1 o - (=] _-—
- T e - = T =
O_EE‘E;L: O_;.E. N U O_éEEé# .......
a4 . i . i
T L nnmiv v Vv L TR TR IVARVARY] TR TR IVARVARV]

Figure 2: The history of directional selection affects the total amount and net effect of evolutionary
change. [llustrative individual-based simulations of divergence between allopatric populations, driven
by directional selection. Simulations used six distinct scenarios of divergence, illustrated via their net
additive and dominance effects in the cartoons in the left-hand panels. Scenarios are I: both populations
adapt to the same distant optimum; II: each population adapts to shifted optimum on a different
phenotypic trait; TIL: each population adapts to a shifted optimum on the same trait. but in opposite
phenotypic directions; IV: P2 alone adapts to an optimum that shifts in one phenotypic direction, and
then shifts back to its initial position; V: P2 alone adapts to an optimum that changes on one trait, and
then on another; VI: P2 alone adapts to an optimum that shifts twice in the same phenotypic direction.

A)-(I): Boxes represent results for 100 replicate simulations (median, quantiles and full range), each
including n = 20 traits, and halted after D = 50 fixations. The quantities shown match those in Tables
1 and 3. The quantities vary predictably between the six scenarios; and in different ways for the additive

and dominance effects (see text). Simulation parameters were N = 1000, n = 20, and U = Sy, = 0.01.
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How does directional selection affect the total amount and net effect of evolutionar
change?

In the previous section we showed that the functions m(-,-), M(-,-) and the difference between them,
m(-,-)— M(-,-), each have a natural interpretation. In the next two sections, we show how these quantities

vary with the history of divergence between the parental lines (summarizing the results in Table 4).

We will begin with divergence under directional selection. To supplement verbal arguments, we use
illustrative simulations of ada tive divergence under Fisher’s geometrlc modelﬂﬂdei—ﬁ%ﬂhﬂsﬁmmeseeﬂaﬂes

. Full simulation

W%
identical and genetically uniform parental populations, which then evolved in allopatry to different conditions
of environmental change, i.c. different positions of the phenotypic optimum (Chevin et al., 2014; Yamaguchi
and Otto, 2020; Schneemann et al., 2020). While multiple variants could segregate during the simulations,
the A and A values were calculated only for fixed differences between the populations. This means that we
could avoid complications from linkage disequilibrium, which we did not treat analytically, but also implies
that the analytical results apply to cases that we did not simulate.

The first set of simulations, summarized in Figure 2. involved six different divergence scenarios, illustrated
bmmleft hand panels, ' sttbst ; :

- In scenarios I-III, both populations
adapted to distant optima at a distance ||Z,n. —o|| = +/1/2 from thelr shared ancestral phenotype (such

that their initial fitness was exp(=1/2) &~ 60% of its maximum value). The sole difference between scenarios
LI is the relative positions of the optima experienced by each population. In scenario I, the two optima
moved in identical ways. so that_this scenario corresponds to mutation-order speciation (Mani and Clarke,
1990). In scenarios TI-TIL, the two optima differed, so that these scenarios correspond to divergent selection
and local adaptation (Schluter, 2000); in scenario II, the optima differed on different traits, while in scenario
I, the optima differed on the same trait, but in opposite phenotypic directions. Finally, scenarios IV-VI
corresponded to scenarios LI-IIL, but with both bouts of adaptive substitution taking place in_population

P2. while P1 retained their common ancestral phenotype. This meant that P2 adapted to two successive
changes in environmental conditions (i.e. two changes in the position of its optimum). After the initial bout

of adaptation in P2, its optimum either jumped back to its initial position (scenario IV), or changed on a

different trait (scenario V), or jumped again in the same phenotypic direction (scenario VI). Panels A-I of

Figure 2 summarizes the results of 100 replicate simulations under each of these six scenarios, after D = 50
substitutions had occurred. Figure2

Additive effects

MWMMA Cshow-the-consequences-of-these-different
‘ i ids— _ Figure 2A shows that the total amount of
W@&MAMWWMMMW
two bouts of adaptive substitution under equivalent conditions; as such, they led to the same total amount
of change, regardless of how the changes were distributed among the traits and the diverging populations.
Adehbwe—eﬂ'eet& F}gﬁ%p%&&—%h%ﬂ%&%@%%@——ﬂﬁ&k&@%ﬁkmheﬂcﬁmm
i i i Figure 2B shows the net effect of the
evolutionary change, m(A,A). This quantity is proportional to the squared distance between the parental
mean_phenotypes_(eq. #%—)—15). So_when populations _are well adapted to_their_optima, m(A,A)
will be proportional to the squared distance between these optima. This explains the observed results
of m(A,A)~0 for scenarios I and IV, m(A,A) =~ 2|z, — 0||>/4 = 0.25 for scenarios II and V, and
(A A) = ||2(24ne = 0)||2/4 = 0.5 for scenarios I and VI,
Figure 2C combines results from Fig, 2A-B, to quantify the directionality in the chain of additive effects
that differentiate P1 and P2. From eq. 24, f{a)<-0-should-held-if-the-chain-of-additive-this value will
be positive if the effects mostly point in the same direction, such that cos(d) ~ 1 holds for most pairs of
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han es. This occurs under seenarioT{blre-box—inFig—2A)—wherepopulation P2-underwent—direction

henotype to the P2 henot e. Results

F}g—%A—}%he&—féa—}ﬁsﬂH—ﬁeg&HV&bﬂt—Sﬂmﬂer—sme&ees@}—%—k
are also positive, but around half as large, in scenarios II and V, since cos(f) ~ 1 for half of the pairs of
substitutions-changes and cos(f) ~ 0 for the other half. By contrast, when natural selection tends to return

the chain of additive effects to its startmg pomt %he&eesé@}%%as in scenarios I and IV then cos(0) <0

%emm%epﬁmml ading to a ne atlve value.
All of the quantitative results above will, of course, vary over time (as more divergence accrues), and

From—theresults—above—with the various parameters of the model. For example, previous work has
shown that populations often approach their optima more efficiently if the number of traits under selection,
n, Is small, because mutations tend to have fewer deleterious pleiotropic effects (e.g. Orr, 1998; Welch and
Waxman, 2003; Matuszewski et al., 2014; Chevin et al., 2014). This is confirmed in Figure 3A, which
shows results for scenarios II-III as a function of the divergence, D. When we reduced the number of traits
from n = 20 to n = 2 populations approached their optima much more rapidly. Figure 3B shows how the
relative sizes of M(A, A) and eqs—7-or2it-s i ‘ i

divergence. In the initial stages of divergence, as the distant optima are approached (see Fig. 3A

additive effects point in a consistent direction, and so the ratio decreases. More quantitatively, it follows
from eq. 20 that if the changes at each locus act in the same direction, then the first term of eq. 20 will
equal m(A, A). If these changes are also similarly sized (such that CV (||A;]]) & 0), then admixture between

m(A, A) change with the

the—parentaltinesM (A, A)/m(A,A) ~ 1/D should hold. This redlctlon — 1ndlcated by the line in
Figure 3B — does hold approximately for scenario III when n = 2 (solid red line in Figure 3B), While the

optimum remains distant. The decline is slower than 1/D (implying a less direct approach to the optimum),

when populations fixed deleterious or when the position of

the ancestral phenotype led to effects acting in different phenotypic directions (scenario II; green lines).

The decline also slows as the optimum is approached, and populations begin to fix alleles of smaller effect
thereby increasing C'V (||A;]]); Orr, 1998). In all cases, the ratio M (A, A)/m(A, A) starts to increase after

the optimum is reached, when evolutionary changes continue to accrue, but without much net phenotypic
change (Schiffman and Ralph, 2021). ¥4 - = i i TS

Dominance and interaction terms

Results for the simulated dominance effects under the six divergence scenarios are shown in Figure 2D-F. For
the total amount of evolutionary change (M (A, A); Fig. 2D), results are indistinguishable, just as they were

for the additive effects (Fig. 2A). By contrast, results for net effect (m(A, A); Fig. 2E) are qualitativel

different, and so — in consequence — are results in Fig. 2F.
The key fact here is Haldane’s Sieve — the tendency for directional selection to preferentially fix alleles

that are dominant in the direction of past selection (Haldane, 1924, 1927; Frankham, 1990; Crnokrak and
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Figure 3: The net effect and total amount of evolution change predictably during directional
selection. Panels show (A): the net effect of evolutionary change in the additive effects, m(A. A). and
(B): the ratio of the total amount to the net effect, M(A, A)/m(A. A). both plotted as functions of D,
the number of substitutions that have accumulated. Results are compared for different numbers of
phenotypic traits, namely n = 2 (solid lines) and n = 20 (dashed lines), and for two scenarios detailed in
Figure 2. All curyes represent means over 100 replicate simulations, with shaded areas representing one
standard deviation. The grey curve in (B) shows the prediction of M (A, A)/m(A,A) =~ 1/D, which
holds when the additive effects at cach locus are identical (eq. 20). Other simulation parameters
matched Figure 2 (N = 1000 and U = Smye = 0.01).

o~

Roff, 1995; Schneemann et al., 2022), especially when adaptation takes place from new mutations, rather
than standing variation (Orr and Betancourt, 2001). This means that direetionality-in-the-dominanece-effeets
%m%mw%mm%whe
additive effects—wl}l—éepeﬁd—efkth&i\ﬂ%%

The result is that demi

for scenarios I and

{IV all of the dommance effects oint in a consistent direction (from the ancestral state to the new o tlmum
leading to large net changes in phenot, i.e. to large m(A,A); Fig. 2

A—}—bﬂvgwe—qﬂaht&twe}}%ﬁefeﬂt
restltsfor-the-dominanee-effeetsE) and to large positive values of m(A, A) — M (A, A) (Fig. 2B)—Fhisis
bec—&use&n—seeﬁraﬁe—k—a}kF By contrast, for scenarios III and IV, the domlnance effects pomt #efﬁ—theMrPcGA

#dé—{eq.—%élé.fin opposite directions (half towards one new o timum and half towards the other , leadin
to a small values of m(A, A) (Fig. 2D) and weakly negative values of the difference m(A, A) — M(A, A
Fig. 2F).

Finally, results for the additive-by-dominance interactions are shown in Figure 2G-L Unlike terms involving
additive or dominance effects alone, the interaction terms capture differences in the evolutionary changes
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between the two populations (eqs. 18, 21 and 25). As such, it is unsurprising that all of these terms are close

to zero for scenarios I- HI where both opulations underwent snnllar amounts and patterns of evolution.
By contrast e b : 3 S :

a%w%&ﬁmwﬁmmwmmmmwm
optima, and did so_via dominant substitutions. It follows that, for these scenarios, the P2 alleles tended to
be phenotypically dominant, leading to M(A, A) > 0; eq. 21; Fig. 2Ajbut-areidentical with-respeet—to
their-dominance-effeets{G). If the parental populations differ phenotypically (scenarios V-VI), then the F1
m&n@w&w&mm 2B

H). The result, shown in Figure 21,

)

is that the additive and domlnance effects at different loci tend to point in opposite directions for scenario
1V (for Wthh m(A A — M(A, A) is weakly negative), but in the same dﬂfeeﬂeﬂ—@eﬂ%%ﬁﬂg—feﬁ&l—tﬁ—fef
i : ; : henot ic dlrectlon for

scenarios V-VI

faet-here—(for Wthh m(A, A M A A is 031t1ve

How does stabilizing selection affect the total amount and net effect of evolutionar
change?

Now let us turn to evolution under stabilizing selection. The arguments in this section are illustrated
by simulation results shown in Figure 4. In these simulations, the optima for both populations remained

stationary and identical, matching their common ancestral phenotype. As such, any evolutionary change
was due to the drift-driven fixation of mildly deleterious mutations, combined with compensatory changes.

Additive effects

MMMM&WS that the additi ets— 55 : i

ax i ess, brtnet phenotypic change, m(A, A), will reach a stochastic
equilibrium, reflecting the deviations of the populations from the optimun due to mutation and drift. Barton
(2016) showed that, with independent loci but otherwise very general assumptions, the expected log fitness

under stabilizing selection on n traits is ~ —n/(4N,) (sec also Lande, 1976; Hartl and Taubes, 1996; Poon
and Otto, 2000; Zhang and Hill, 2003; Tenaillon et al., 2007; Lourenco et al., 2011; Chevin et al., 2014; Roze
and Blanckaert, 2014). Now, if the two populations are maladapted in random phenotypic directions (such
that their displacements from the optimum are orthogonal on average; Schneemann et al., 2022), then it
follows from egs. 1 and 15, that

E(m(A A)) = —% (F (Inwpq) + E (Inwps))
~n/(8N,) (26)

where J\Nfe is the harmonic mean of the two effective population sizes. This result is confirmed by simulations
reported in Appendix 2 as shown in Supplementary Figure S1.
Whlle the net effect of change is determlned largel b n and N, the e}efmnzmeebeﬁeets—(ﬁe—ﬂet—«}t

WKWW%%WWW@MW
mutations that fix (as determined by the distribution of scaled selective effects: Nes). Evolutionary changes
will continue to accrue even after m(A, A) has equilibrated (Schiffman and Ralph, 2021), so that M(A, A)
will increase over time at a constant rate. The result is illustrated by the solid blue lines in Figure 4A-D,
MWJ%MWMM
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Figure 4: The net effect and total amount of evolution change predictably under stabilizin

selection. Each plot compares the amount of directionality in the additive effects
m(A, A) — M(A, A); solid blue lines), dominance effects (m(A,A) — M(A, A); dashed red lines), and

the interaction term (m(A,A) — M (A, A); dotted purple lines), plotted against the level of genetic
divergence (D) under stabilizing selection to a stationary optimum. A-B: results with the standard

model of mutation (as in Figure 2), with all mutations equally likely to be phenotypically recessive or
dominant. C-D: results with biased mutation, in which mutations of larger phenotypic effect were more
likely to be recessive (see Appendix 2). A and C: Both populations had identical population sizes of

IV = 100, so that they accrued substitutions at a similar rate; B and D: We assumed that P2 remained
in_the optimal ancestral state, while P1 (with N = 100) underwent all of the evolutionary change. Lines
and shaded areas represent the mean and one standard deviation across 200 replicate simulations. Other
simulation parameters matched Figure 2 (n = 20 and U = Syye = 0.01).

509

510 hold—

17



511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

Dominance and interaction terms

The evolution of dominance effects under stabilizing selection is more complex, and sensitive to the underlying
model of mutation. For this reason, some of the discussion is relegated to Appendix 2, while here we report
the clearest patterns.

Figure 4A-B _show results with the mutation model used in Figure 2, in which each new mutation
W@@Lﬁm this case, hybrids—with

#we found that m(A, A) ~ M(A, A)
M@%@w&&iﬁ
identical rates. The reason is that, unlike the additive effects; the dominance effects are not expressed together
in_the parental genotypes during the divergence process, and so unlike the additive effects, the dominance

effects show little tendency to be coadapted to their optimum, but are free to wander in phenotypic space
(Schneemann et al., 2020, 2022).

%ﬁmwﬁ%%%%ﬁ%wﬂfds%w%&m%@%@&w@mw
when we adopted the mutational model of Schneemann et al. (2022), in which larger effect mutations were
more likely to be phenotypically recessive (Billiard et al., 2021;_see Appendix 2 for full details). Now, as
shown by the dashed red lines, m(A,A) =~ M(A, A) decreases over time, This is because both M(A, A)
and m(A, A) increase with D, but at different rates. This implies that -on-average-the dominance effects,
%00, have a tendency to be coadapted to_the optimum. The explanation is clear if we consider the extreme
case of complete phenotypic recessivity. In that case, the additive and dominance effects of mutations would
be equal and opposite (such that the heterozygous effects were zero). As such, the apparent “coadaptation”
of the dominance effects would follow trivially from the coadaptation of the additive effects (see Appendix
2 for more details). The dominance curves in Figure 4C-D show this effect in less extreme form, so_that
m(A,A) = M(A, A) decreases with D, but slightly less rapidly than m(A, A) = M(A,A).

Consider finally the interaction terms, shown by the dotted purple lines in Figure 4. As shown in Figure
4A and G, the interaction terms are always close to zero when both populations undergo similar patterns

of evolution (in this case due to their identical population sizes). More surprisingly, as shown in Figure 4B

with the standard model of mutation, results remain qualitatively unchanged when P2 &Heles—af&deﬁﬂﬂ&ﬂé

took place in P1. The explanation is that, with tmmm
tendency to fix phenotypically recessive mutations — and recalling that, under this model, mutations can be
recessive for fitness, even if they are addltlve or even dominant, for the phenot (Manna et al., 201 1)M]§X

henotypically recessive (Figure 4C D then M A A

becomes non-zero, and the mteractlon term becomes a reliable guide to whether the recessive mutations were
fixed more-or-less equally in both populations (such that m(A, A) ~ M (A, A) ~ 0; Figure 4C), or mostl

Pl (m(A,A) — M(A,A) <0; Figure 4D) or in P2 (m(A, A) — M (A, A) > 0; not shown). Notethatthis

signal would remain even after a transient reduction in N,, as long as a substantial number of phenotypicall
recessive mutations were fixed during the bottleneck.
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Discussion

This work has explored how the mode of divergence between parental populations impacts_the fitness of
their hybrids. We have focused on expected hybrid fitness. and not the variance or higher moments, and
on results that apply to controlled crosses, where the measures of genome composition (h and are
probabilities determined by the crossing scheme. However, as we show in Appendix 1, the results can also
be applied to data of other kinds, e.g. when h and pyp are estimates of ancestry from individual genome
sequences. To generate simple, testable predictions. we have used a simple model of selection on quantitative
traits introduced by Fisher (1930), but have extended and generalized previous work on this model, both
by allowing for arbitrary additive and dominance effects at each locus, and by accounting for segregating

Results show_how the expected fitness of hybrids depends on only a handful of summary statistics,
WMMN
functions m and M egs. 11-12). If the opulatlon genetlc parameters{see—egTSupp}emeﬁbafy

)

%hehsafﬁep&%effkw&%evﬁeﬂt—m%édé—%h& or the hlstor of env1ronmental chan e 1nﬂuence the outcome
of hybridization (Chevin et al., 2014; Yamaguchi and Otto, 2020; Schneemann et al., 2020), then they do

so via these quantities. The statlstlcs moreover, are estimable by quantitative enetlc methods (Hill, 1982;
Lynch, 1991; Rundle and Whitlock, 2001; Schneemann et al., 2020; Clo et al., 2021),&1\1,@%%
interpretation. In particular, m represents the “net effect of evolutionary change”, M (-, -) represents the

“total amount of evolutlonary changeﬁk%h&demfﬁaﬂee»eﬁeeﬁ— and the dlfference m — M(: which
24-25; Martin et al.,

2007 Chevin et al., 2014; Fraisse and Welch, 2019). lied to additive effects, m(A A — M(A,A), closel
resembles an Q) F comparison (Whltlock 2008)

,, ; o - Hiv It follows immediately from the
results above that very different histories of evolutionary divergence can yield identical patterns of hybrid

fitness, as long as they lead to the same values of m(-,-) = M(-,-). Nevertheless, we have shown that some
information about the divergence history is present in hybrid fitness data (Figure 2). These results are

summarized in Table 4, which contains the predicted signs of the key quantities that appear in the three
final terms in eq. 13.

conditions-are-shared;—m{a)-As is clear from Table 4, the simplest results concern directional selection. In

articular, m(A, A) — M(A,A) will tend to be positive only when the divergence between the parental

lines was driven b ositive selectlon towards dlstlnct env1r0nmenta1 optima. The size of the term Wlll

depend on

pafame’eef&further detalls of the ada tlve dlver ence F1 ure 3 It is maximized, for example, when all
allelic changes produced identical effects (eq. 23), and decreases in size if the ada tlve change is achieved
via a circuitous route (e.g.

eﬁee%ef—evehmewehzmge%bccausc of dclcterlous leiotro overshoots of the o tlmum ﬂuctuatm

environmental conditions, or maladapted ancestral states); and — for a given amount of phenotypic change

— the term decreases if the number of loci is smaller, and their effects more variable in size (eq. 20; see also
Chevin et al., 2014). Additional and complementary information about the divergence history is present in
the dominance and interaction terms (m(A, A) — M(A,A) and m(A, A) — M(A,A)). Due to Haldane’s
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Sieve (Haldane, 1924), dominance effects will often point in the direction of past selection. For example,
if one population adapted to new conditions via dominant mutations, while the other remained in their
shared ancestral habitat, then we would expected both m(A; A) = M(A, A) and m(A. A) =~ M(A,A) to
be positive, as well as m(A, A) — M (A, A). It follows, therefore, that the analysis of hybrid fitness might tell
us not only about the presence of past directional selection (e.g. Fraser, 2020), but also about the direction
of that selection, and the lineage in which the adaptation oceurred (see Figure 2; Table 4).
whieh—is—the-distance between—the-midparent—and-If m(A, A) =~ M(A, A) is negative, then inferences
about the evolutionary divergence are more challenging, since negative values can arise in a number of
r@mmmmmmm Fl(see-the-purple

mw@%gﬁmm
a_pair_of populations with similar current phenotypes and fitness, but which nonetheless produce unfit
hybrids, due to m(A, A) = M(A, A) < 0. In this case, an estimate of m(A,A) = M(A, A) = 0 would not
be very informative, as it can arise under stabilizing selection, fluctuating selection, or even directional
selection_if Haldane’s Sieve is weak (Orr and Betancourt, 2001). However, a strongly positive estimate
of m(A.A) — M(A,A) would be consistent with the populations having diverged via different genomic
&mme%WN(Flgure 2 Eaﬁdfz"{—fei—seefraﬁe&ﬂ-lvq?%here—w&&ﬁeﬁy%ef&&m

%WWWMMWMMMWM%
undergone prolonged periods of low Ve, and fixing deleterious recessive mutations (Figure 4D). The sign of
the interaction term, m(A, A) = M(A, A). would then tell us which of the two populations had experienced
the low Ne. Note that, from eq. 13 the result would be alleles from one parental line being selected against,
despite the lines having equal fitness (Barton, 1992).

MHW&&%&S@Y@@E&MW&M
henotypic model (with its lack, for example, of phenotypic epistasis, and directional plasticity; Stamp and
Hadlfield, 2020). However, this model can be defended as an approximation of more complex and realistic
models (Martin, 2014), or simply as a way of generating a fitness landscape with few parameters (Simon

et al., 2018). In this case, as shown in Appendix 1, we can follow Chevin et al. (2014)@@@999;}%
in terms of fitness effects rather than S St i ineiple—eve

MVVW\J

—phenotypic chan es. Of course,

even as a fitness landsca e, the quadratic model of eq. 1 remains very simple, and precludes strong fitness
epistasis and multi-locus fitness interactions (Barton, 2001 Martin et al., 2007; Fraisse and Welch, 2019) —

both both of which are often observed in cross data (Coyne and Orr, 2004; Fralsse et al., 2014, 2016)%

in the presence of such effects, results might still apply to transformed fitness measurements Fraisse et al.,
2016; Simon et al., 2018; Schneemann et al., 2020).

A second major caveat is our neglect of linkage disequilibrium (Lande, 1981; Schneemann et al., 2020),
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which is_essential to_studying the full dynamics of introgression. Nevertheless, even the current results
have suggestive implications for the stability of local adaptation, and the evolution of genetic architectures
(Dekens et al., 2021; Yeaman, 2022). For example, the dominance of alleles may be a major determinant of the
effective rates of migration between demes, and the possibility of allele swamping (Barton, 1992). Directional
dominance, resulting from local adaptation, may therefore act as a source of asymmetric gene flow between
derived and ancestral populations. Similarly, a body of previous work suggests that the architecture of
adaptation will be affected by the presence or absence of gene flow (as reviewed in Yeaman, 2022). In
particular, adaptation in the face of gene flow should create architectures that are more “concentrated”, i.c.,
involving fewer, larger effects, and tighter linkage. Combined with results here (eq. 20), this implies that

ongoing gene flow during local adaptation might sometimes increase the strength of resulting intrinsic RI.

Table 4: Inference of divergence scenario from the signs of terms in eq. 13

Scenario Figure Additive Dominance Interaction
Neutrality, or erratically wandering optimum Fig. S1 0 0 0
Divergent selection, acting only in P1 — + +1 -1
Divergent selection, acting only in P2 Fig. 2-V&VI + +1 +1
Divergent selection where both populations evolve Fig. 2-11 -+ +1 0
in similar phenotypic directions

Divergent selection where both populations evolve Fig. 2-IIT + 0/-1 0
in dissimilar phenotypic directions

Stabilizing selection; most evolution in P1 Fig. 4B&D, and S2-S3 - 0/-2 0/-2
Stabilizing selection; most evolution in P2 - - 0/-2 0/+2
Stabilizing selection; evolution in both populations Fig. 4A&C, and S1-S3 - 0 0
Cyclically moving optima Fig. 2-1V - 0 / -1 0
Independent genetic responses to identical direc- Fig. 2-1 - +1! 0
tional selection in both populations

Note: Additive: m(A, A) — M (A, A), Dominance: m(A, A) — M (A, A), Interaction: m(A, A) — M(A, A);
1. Only if Haldane’s Sieve acts.; 2. Weak without mutational bias towards phenotypically recessive mutations.
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Methods

Derivation of main result

We assume that individuals from our two diploid parental populations, P1 and ‘m{é’a—}eaﬂﬁ}sergevefﬁ{he

iffer ie-optimarFor simpliel ovi it-ass E&X@MQ@@H@Q&M
mmmmmmtmmmm
can be denoted b. Since loci are assumed to be independent, let us first specify the genetic model for a
single locus, following the standard conventions of quantitative genetics (e.g. Lynch and Walsh, 1998, Ch.
4). Accordingly, we define the contribution of the bb genotype to the trait j as 0, so that the point (0,0,....0)
in n-dimensional trait space corresponds to the individual with only bb genotypes at each of the D loci. The
contribution of the Bb genotype on locus 7 to the trait j is defined as a;; + di;, and the contribution of the
BB genotype on locus i to trait j is 2a;;. This is summarized in Table 5.

Table 5: The genotypic values for locus 7 and trait j

Locus i genotype  Contribution to trait j

bb 0
Bb a5 + dij_
BB 205

Properties of the three focal populations
Here we will s e01f rO ertles of three key populations, namely the two parental populatlonsafe—weH

WMMWWW
ancestry states of any given locus in the hybrid, ie. m{2a)="Hox—op{{*};and thefitnesses-of the-three
fixed-genotypes-are—cither both alleles are derived from P1. or both from P2, or there is mixed ancestry
with one allele derived from each population. Table 6 gives a list of fundamental parameters in our model
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Table 6 begins by defining the marginal frequency of the focal (B) allele at locus i as ; and gp

opulations P1 and P2 respectively. The marginal frequency of the B allele in the F1 is-population is th
mean of the mar 1nal frequencies in P1 and P2, denoted ¢;. By assumption, the s&meﬂfbeebemﬂfeﬁmeﬂ%s

A na - 1ta nhana
a t P10 7

WW%WWMW
will have an excess of heterozygotes, which can be parameterized by a negative coefficient of inbreeding, f;.
The frequencies of the three possible genotypes at the locus, bb, Bb and BB, then follow from standard
results (e.g., Lynch and Walsh, 1998, eqs. 4.21). The F'l genotype frequencies can also be written in terms of
WWWW%

PHD—H~t—In-this-easefromeq—2-wefind:—P2), which allows us to solve for the 1nbreed1n CoefﬁClent
as shown in the Table. The next lines of the Table follow standard quantitative genetics (e.g. Fisher, 1930;
Cockerham, 1954; Lynch and Walsh, 1998, Ch. 4) and define the average effects and dominance deviations

%he»eaeﬁeﬂt—teﬂ%elfhybﬁéﬁfeseﬁﬂalePQ ThlS is given b the sum of the three enot e frequencies in the
opulation, weighted by their trait contributions, as given in Table 5.

Zp1j = 20i5qp1 ; + (ai; + dij) - 2qp1.i(1 — qp1 ) (27)
Zpo.ij = 2aijqpy,; + (aij + dig) - 2qp2.i(1 — qpa.:) (28)

in_populations P1 er-and P2 ;- i ittle
H&eeeﬂ%feef—e&ekkp}e%}%smnl&r—ﬁ%ﬂesﬁe%heres ectively. Equation 3 then follows 1mmed1atel as

Ajj = Y(zpoy — Zp1,ij) = 22aij (qpa,i — qp1,i) + 3dij (2qpa,i (1 — qpai) — 2qp1,i(1 — qp1,:)) (29)
= aij (qp2,i — qp1,i) + dij (qp2,i — qp1,i) (1 — qp1s — qp2.4)

= a;j (gp2,i — qP1,i)

where the mean average effect is defined as

Qi = 2(ap1,ij + ap2ig) = aij + dij(1 — gp1,; — qp2.i) (30)

Similarly, to derlve eq. 6. we use the genotype frequencies for the F1 {shew&by—%h&bkxeleemsﬁeﬁ—By

effeets—as shown in Table 6. to yield the contribution of locus ¢ to the mean of trait 7 in the F1
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Zr1,ij = 2045qp1,iqp2,i + (aij + dij)(gp1,i(1 — gp2,i) + qp2,i(1 — qp1,i)) (31)

s and so it follows that

Nij = Zp145 — 5(Zpayij + Zp1,is) = 2aij (5(ap2,i + qp1) — 2(gp2,i + ap1,i)) (32)
+ dij (qp2,i(1 = gp1,i) + ap1,i(1 — ap2,i) — 5 (2gp2,:(1 — gp2,i) + 2gp1,i(1 — gp1,i)))
2
= dij (QP2,z' - QPl,i)
= gij (QPz,i - QPl,i)2

744 where-which is equation 6, and where the mean dominance deviation is simpl

dij = 5 (Op1,ij + Opo,ij) = di (33)
745 Having defined the mean trait values of each population, let us now consider their variances. The

ue  contribution of locus ¢ to the variance in trait j in population P1 is

Var (ZPl,ij) = E(Zlgl,ij) - 2%1,1‘;‘ (34)
= (2aij)2 (I%u + (ai; + dij)2 2qp1,i(1 — qr14)
— (2aijqpy ; + (aij + dij) - 2qp1,i(1 — qp1,:))?
= oy 45qr1i(1 — qp1s) + (2qp1,i(1 — qp1,i)di5)°
= 0245 (P1) + 0§ ;(P1)

747 where we have partitioned the result into an additive variance and a dominance variance term, as listed
us  in Table 6, and following egs. 4.12 of Lynch and Walsh (1998). Similarly for P2

N

Var (2pa,ij) = gy ;1qp2,i(1 — qp2,i) + (2qp2,i(1 — qp2,i)0i;)* (35)
= Ui,ij(PQ) + Ug,ij(P2)

o and for the F1

Var(zp1,i;) = (2a:5)2qp1,iqp2,i + (ai; + dij)? (qp1,i(1 — gpa,i) + qp2i(1 — gp1.:)) (36)
=02 ,;(F1) + 03 ,;(F1)

a,]

7

o

o which all agree with results in Cockerham (1954). So far, we have given the contributions of a single locus
1 to a single trait. The general results, found in Table 1, simply require summing over all loci 7 = 1,..., D and
2 all traits 7 = 1,...,n. That is, we can write the sums of trait variances for P1, P2 and F1 as
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n D
Ve = szar(ZPl,ij) = Z Z (Ui,ij(Pl) + Ug,z‘j (P1)) (37)

j=11i=1 j=11i=1
n D n D
Vpo = Z Z Var(zp2,i;) Z Z 0415 (P2) + o2 i {(P2)) (38)
j=11i=1 j=li=1
n D n D
Ver =Y > Var(zpii) = » Y (02,;(F1) +03,;(F1)) (39)
j=11i=1 j=114=1

=3  Extension to an arbitrary hybrid

= Now, to derive the results found in Table 1 and eq. 13, let us consider an arbitrary hybrid. Let us begin by
s parameterizing the hybrid’s genome using the probabilities pi, p and pi2, which are the probabilities that a
%IMMMWM&MMM
w7 length , 3 Feov he-evolving —probability that a randomly
7 WM@%WMMWMIWM&%M

=0 the P2 population, and pj2 that it inherits one allele from each population (as with all loci in the F1). It

p1tp2tp2=1 (40)

761 We also define the hybrid index

h=p2+ 3p12 (41)
762 as the probability that a randomly chosen single allele in the hybrid has P2 ancestry.

763 Using results in Table 6, it then follows that the probabilities of the BB and Bb genotypes at a locus ¢
w4 10 the hybrid are

133/1\11 p1(IP1 i +p2QP2 i T DP12qP1,iqP1,2 (42)
= (L= 1)aps + hpa,—5p12(ap2i — ap2a)”

765 so the overall marginal probability of the B allele is
Ppi= Pop,its Pan (44)

766 We can now derive Equation 13 Flrst the contribution to the mean tralt value for the smﬁefﬂie—}eﬂg%hs

767
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Zr,i; = E(2m,i;)= p12p1,ij + p2Zpa,ij + D122r1,;

~7enyy 20y Pt
which can be seen by substituting in equations 29 and 32. Summed over the D loci, we have

D D D
E(zn,;) = ZE(ZH,ij)fEPLj + 2hZAij + D12 ZAU

i=1 i=1 i=1

3 i - Let us now compute E(zpy ; — 0;

B T e T e
appears in the first term of eq. 9. It will first be useful to define the intermediate variable
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(47)

i=1

D D D

= 1 Diseussion

76 such that

,ZK-: (I1-=h)lnw (Zp1,0> +hlnw (zP2,0> +p12(lnw (ZF1,0> i% (19\;@ <Zp1,0> +Inw <Zp2,0>> )

797
798

799

800

sr  Lhen we ﬁnd by E uatlon 46,

D
E? (ZHJW—vvog) =|Zp1; —0; 20> Aij+pi2d Ay |? (49)

i=1 i=1
D
() (o) s 0 S
1:1

D

—’té\hf ZA” ij:/\pﬁ/% ZA” + 4hp12 ZA” ( A

o)

i=1 i=1 i=1

D D
=K <4NML&3> DA |2 pia(l = pi) | oAy | 2= 2pe (L;%) > Ay

A~~~

i=1 i=1
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Summing over traits and using the definition of the function m(-,-) in eq. 11, we can see that

j=1

as given in the second column of Table 1.
The calculation for the variance follows in the same way, but is much more involved algebraically. The

result, as shown in the third column of Table 1, is

n n D
Zvar(ZH,j): Z Z(Qaij)2PBB,i + (aij + dij)*Pob,i — (2045 Pss.i + (ai; + dij) Psp.i)’ (50)

=1 j=1i=1

1
= (1—=h)Vp1 + hVpa + p12(Vr1 + §(VP1 + Vp2))

way—Vpy are defined as in eqgs. 34-36, and the function M(-,-) is defined by eq. 12. The first equalit
follows from the definition of variance and the independence of loci. The second follows by substituting
variables as per their definitions above. Because the full proof is rather lengthy, although straightforward,
we_provide a _proof in_the form of a Mathematica notebook instead of writing it out here, available at
https://github.com/bdesanctis/mode-of-divergence.

wh&eh—we%a%&e&ﬂed%heiThe illustrative simulations shown in Figures 2-4, calculated new quantities from
runs reported previously by Schneemann et al. (2022) (and which were themselves based on the simulation
methods reported in Schneemann et al., 2020). Simulations were individual-based, and used pairs of allopatric

i.e. independently simulated) populations. The populations followed the Wright-Fisher assumptions, and

contained N simultancous hermaphrodites, with discrete non-overlapping generations. Fvery generation,

arents were selected with a probability proportional to their fitness (as calculated from eq. 1) with n traits
under selection. Gametes were generated from the parental genomes with free recombination among all sites,
and mutation. For mutation, a Poisson-distributed number, with mean 2NU, of mutations were randomly
assigned to unique sites, and we set U = 0.01. The n homozygous effects for each new mutation were drawn
from a multivariate normal distribution with zero mean and no covariances, and a common variance set such
that the mean deleterious effects of a mutation in an optimal background was Sy = 0.01._The heterozygous
effect of each mutation on each trait was set at its homozygous effect multiplied by a beta-distributed random

number, with bounds at 0 and 1 (corresponding to complete recessivity or complete dominance), a mean
= 1/2 (implying additivity on average), and a variance of v = 1/24 (Schneemann et al., 2022), After a
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total of D substitutions had fixed across both populations, the two parental genotypes were chosen as the
enotypes containing only the fixed effects in each population. For Figures 2-3 one or both populations
adapted to a optimum at a distance 1/1/2 from its ancestral phenotype. In scenarios I-1II, both populations

in_this way, while for scenarios TV-VI, we re-analysed the same simulations, but_we treated all substitutions

as if they had occurred in P2 while P1 remained in their common ancestral state. This was done by the

contrivance of combining the first 25 substitutions accrued in two simulated po ulatlons ensuring, therefore,
‘g/hv@tvgggjotal amount of evolutlonary change ; : —27

Appendix 1: Results with homogeneous parental populations
In this A endix, we show 1 how our results apply to data where the ancestr roportions of the &ddﬁwe

W&MWMWMSM}HWWW
reasons explained below, we will rely on the additional assumption that parental populations are genetically
wwmrmmwme
all =(1— = 1. It therefore follows from eqs. 29 and 32 that the between-population differences

at each locus egs. 7-8) correspond dlrectl to the genotypic effects at that locus Table 5) i.e. Hrom—the

Az, and o By =dy A geei = (1 ap) 21 (51)

It will also be useful to rearrange the results shown in Table 1 so that they are expressed in terms of
the three probabilities p, and rather than the two probabilities h and see eqs. 40-77—Fie-

1). Accordingly, using eqgs. 11-12 and 40-41, and substituting in eq. 51 to account for the genetic

homogeneity of the parental lines, we have the result shown in Table S1.
e
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Table S1: Components of log hybrid fitness with homogeneous parental populations

Coefficient  — 37 E? (zu —0) =35 4 Var(zi)
p. Inw(zpy,0)
p2. Inw(zps.0)
P12, Inw(zpi,0
npiz. mlatdatd) —M(atd,atd)
P12, mla=d,a=d) —Ma=d,a=d)
pipa.  m(2a,2a) —M(2a,2a)

lololo

Note that with homogenous populations. py. p2 and pyz are now the probabilities of the three genotypes,
bb, BB and Bb, as well as the ancestry states. Moreover, the arguments of the functions M(-,-) and m(, -
now_correspond to_the phenotypic effects of inserting single alleles in cither heterozygous or homozygous
state into a fixed background.

Results with known ancestr roportions

In the main text, we treated the quantities h and or equivalentl , and as probabilities
determined by the crossing scheme. However, for some data, the ancestries of hybrids can be estimated
directly from genome sequences. Moreover, if the parental populations are genetically homogeneous (as
assumed in Table S1), then the ancestry pro ortions for diver ent sites can be known with certainty. In this

section, we show that our results also

}eealﬁd&p%&aeﬁ—&ﬁd—%heevemﬂewe#geﬁeﬂ&&e}u%eeﬁﬁerhold approximately for such data.
If and are known proportions, instead of probabilities, loci in the hybrid become non-independent
but in a simple way so that results can be derlved with basic combmatorlcs For example, %h&defmﬂ&ﬂee

bed{yuei—pfemisﬁfeﬂeﬂﬂgges%s—%h% iven some D we can choose an D out of D 51tes to b

heterozygous, and any Dps out of the remaining D(1 — sites to be homozygous for the allele from the
second parental population, so there will be a total of

<D§12> (D(lD;pr))WM

possible hybrids, and by assumption, each has equal probability. In theory, one could write out the complete
discrete probability distribution function for the hybrid fitness over all possible hybrids in a given situation.
One can also compute arbitrary moments using the same indicator function approach as detailed below (sce
also Chevin et al., 2014).

"o calculate expected hybrid fitness, let .J; be the subset of the afehrﬁeemfeefﬂéap%&ﬁeﬂwﬁﬁ%e—&ﬁeefed

strength-of resulting-intrinsie RIHFie—223—D loci in the hybrid that are homozygous for the P1 allele, J5 be
the subset of the loci that are homozygous for the P2 allele, and J;o the subset of loci that are heterozygous.
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» 1 Metheds

o 0.1 Derivation of main result
A /D=p
B| [D=p2 (52)

T2 [D=piz = (L= p1 —p2)

898 O oPp t

S : he-r —ofthis see S Sit -ait-Since all divergent loci must be
o0 in one of these three states, any two of these sets can completely characterize the hybrid. We can therefore
s write the jand—th trait value of an arbitrary hybrid as:

899

o

2= zpig + ) 205+ Y (i +dyj) (53)
i€Ja i€J12

902 Let us now drop the subscript j for brevity—, and calculate the expected squared deviation of the trait
o3 value from its optimum:

By~ o)) = ElGn ~of)=E | (202 Yt 3 (wrai) |

1€ Jao keJio

ce(imooten| Yaln| Yalu| Tl

i€ Jao i€Jia i€Ji2

P2 —0) [ 2D ait ) (ak+dk)

1€ J2o keJio
=PI SLRED o oI IETR) &
i€Ji2  k€J12 i€Jaz  kE€Ji2
904 In these expressions, the expectations are not over the additive and dominance effects, but over the

os particular set of loci that are homozygous and heterozygous in the hybrid. That is, they are over the sets
ws Jog and Jyo. To obtain expectations over these sets, we define indicator functions.

lified
I;(1) =
MW {O otherwise

907 We-Using 2 and y as placeholder variables, we can then use these functions as follows:

33



E> z|=E Zm, :ixE(Lfv@)

icJ

I
tjb

| &
PlielJ) = 523%
=1

-
Il
-

<~

S,

S|

ws where |J| is the size of the set. We have introduced the notation

909 Letus also-introduce

1=

D
Seg =) _ T
i=1
910 Let us also introduce

D
Seys = D Ti Vi
=1

Forboth, wewillagainleaveoutthesubscriptj forsimplicity fortheremaindero fthissectionbrevity.

o11 For the square and cross-terms in eq. 54, we use the same approach.

B(So ) =5 (S e >)

icJ keJ i=1 k=1

7Zx1ylPZEJ +Z Z iy Pt e JNk e J)

i=1 k= lkséz
D
IJI IJI Z Z
WIS i+ 102 1) -
i=1 i=1 k=1,k#1
_ 1 Say IJl(IJ\ 1)
o) D(D— 0 (S2Sy — Szy)
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Now we can combine these results, with eqs. 52 and 54. After some algebra, we obtain

E((zmg — 0)?) = (2p1 — 0)* + 2(2p1 — 0)((2p2 + P12)Sa + P12S4)
+ 4p2S% 4 p12S? + 1253 + 20125454

D 2
1 (Saa - Sa)

+ (4p2(1 — p2) + p12(1 — p12) — 4p2p12) D

+ p12(1 — p12) (Saa — S3)

D—-1

D (St~ $u50) (55)

+ (2p12(1 — p12) — 4p2p12)

A e+th Some rearranging, and summation over
traits, vields

E (Inwy) = p1 Inwpy + p2 Inwpa + pr2 Inwpy

_ —DD— 1 (p1p2 (m(2a) — M(2a)) — p1ap1 (m(a+d) — M(a+d)) —piap2 (m(a—d) — M(a—d)))

The sole difference between eq. 56 frem-and the results summarized in Table S1 is that the functions
m(-,-) and M(-,-) are now weighted by a new factor D /(D — 1) — which stems from the non-independence

among loci when true ancestry proportions are known. Note too that D/(D — 1) ~ 1 when the number of
dlver ent sites is lar e. It follows therefore, that the &beve—%%wﬁs&&ﬁ—wrﬁh%heﬁ%s&%weﬁﬂe&ef—eqmmeﬂ

approximately to data with known ancestry proportions.

Results in terms of selective effects

We first-note-that—from—eqs—2-and-4—we-have-will now follow Chevin et al. (2014) and show how results can

be expressed in terms of the fitness effects of alleles, rather than their phenotypic effects. This implies that
the quantities M (-,-) and m(-,-), which describe the total amount and net effect of evolutionary change, ma;

have a simple interpretation, even when the phenotypic model cannot be interpreted literally (e.g. Martin,

2014). We use results in Table S1 rather than the more general Table 1, because selection coefficients apply
to the heterozygous and homozygous effects of alleles in a given background, rather than to the average and
dominance effects of substitutions in a population. Note also that the results below apply only with the
quadratic fitness function of eq. 1. and not with other fitness functions with higher curvatures that would
allow for complex epistasis (i.e. fitness interactions between three or more loci).

whieh-To express the results in Table 51 in terms of fitness effects, let us first consider the net effect of
evolutionary change — a quantity which corresponds to the firstfewlines-ofthe-expected-hybrid-fitness-in
equation—77—fitness effects of whole genotypes. For example, m(2a, 2a) is simply the fitness of one parental
genotype, measured in environmental conditions where the alternative parental genotype is optimal:
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Fortl " i Eeution 27, b definiti

m(2a,2a) = — ln wp,, if lnwp; =0 (57)
= —lnwp, if Inwpe =0 (58)
Notice that-
Similarly, m(a+d +d) and m(a —d,a — d) are the fitnesses of the F'1 genotype measured in conditions
where one or other of the parental genotypes is optimal.

%MW&%&%&#M@MWM@
evolutionary change depends on the fitness effects of the individual divergent alleles, introgressed one at a
time into an optimal background. To see this, let s; denote the deleterious fitness effect of inserting a single

homozygous substitution ¢ into an otherwise optimal background. This selection coefficient is defined in the
standard way, as s = (w’ — w)/w where w’ (w) is the fitness of the mutant (wild-type). For small selection

Equivalent results hold
for M a :I: d,a :I: d for the heterozygous selection coefficients. It follows therefore that the total amount of
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evolutionary change will be large if the parental lines have fixed many mutations with (potentially) large
fitness effects.

We will now show that the difference between the total amount and net effect of change is a measure
of fitness epistasis. Let us first note that, with the quadratic model of eq. 1. all epistatic interactions are
pairwise (Martin et al., 2007)._If we define s, as the fitness effect of inserting a given pair of substitutions
into an optimal background, then the pairwise epistatic effect is the log fitness of the double mutant, minus

€ixr = In(1 — s5,) — In(1 — s;) — In(1 — sg)

n
=-8 Z Qi Qs - (63)
=1

which—with—results-abeve—yields:—(e.g. Martin et al., 2007). It then follows from eq. 22 that the ke
uantity for hybrids is

D
m(2a,2a) — M(2a,2a) = 42 Z a; - ag

I
|
[
NE
NE
o
x>

agrees with results from Chevin et al. (2014). Equation 63 shows that the sign of the fitness epistasis relates
to the tendency of mutations to point in the same direction (Martin et al., 2007; Chevin et al., 2014; Fraisse
and Welch, 2019). Deleterious mutations with positive epistasis will tend to be compensator ointing in

e —

effecté in which case € = —2s. Note also that m 2a,2a) — M (2a,2a

on average (€ = 0), as so-thatwe can—write Equation-2 2 providesa—w

applies—whether-or-not-the-additive-effeets-do—covary-between—+traits—would be the case if the populations
accumulated randomly-orientated mutations (Martin et al., 2007; Simon et al., 2018; Fraisse and Welch,
2019)._Evolutionary differences that show positive epistasis in an optimal background will tend to increase
RI among hybrids.

Simulati

Appendix 2: Further simulations under stabilizing selection

In this Appendix, we report the results of additional simulations, to explore how the key quantities that
determine hybrid fitness (Table 1) behave under stabilizing selection.
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The effects of population genetic parameters under stabilizing selection with the
additive model

Let us first consider the effects of varying the population genetic parameters, which have also been explored
in several previous studies (Hartl and Taubes, 1996; Poon and Otto, 2000; Welch and Waxman, 2003; Zhang

and Hill, 2003; Tenaillon et al., 2007; Lourenco et al., 2011; Chevin et al., 2014; Roze and Blanckaert,

2014; Barton, 2016), but, here, we explicitly report the total amount (M(A, A)) and net effect (m(A, A)) of
evolutionary change.

To_do_this, we re-analysed simulation results from Schneemann et al. (2020) each comprised of 500
substitutions accrued under stabilizing selection, with a_stationary optimum. Overall, 128 conditions
were simulated, using a fully crossed set of parameters. Here, dominance coefficients were drawn from a
uniform distribution bounded at 0 and 1. such that mutations were on average phenotypically additive.
&WWMm MG%%%%H@W%W%

%

enomic mutation rates (U € {0.01,0.001,0.0001,0.00001 iv) the number of traits under selectlon <

Gametes—were-generatedfrom—the-parental-genomes—with-(n = 2 or n = 20), (v) the rate of recombination

either a single chromosome with map length one Morgan, and Haldane’s mapping function, such that the
mean crossover fraction was ¢ &~ 0.216; or free recomblnatlon among all sites—and-mutation—For-mutation;a

WAAAAAAWM

se%%@—@l—?h& oci such that ¢ = 0 5 and vi the sha e of the d1str1but10n of mutatlonal effects elther

4

‘top down”, where the magnitudes of new mutations were drawn from an ex onentlal dlstrlbutlon with a

random orientation in nh

é%t%mﬂ}%%%mgm%%ﬁwm
effect_on _each frait was drawn independently from a normal distribution; Poon and Otto, 2000). Of these
six parameters, four had appreciable effects on the results, and these are indicated visually in Figure S1.
The results in Figure S1 show a few clear patterns. First, and unsurprisingly, populations fixed larger
changes (larger M(A.A)) when the population size was smaller, and mutations were large (smaller N,

larger s . Results for m(A, A) generally support eq. 26, whose value for the four values of n/N are

shown by the vertical dashed lines (Barton, 2016). The sole exceptions are results with N3y, = 0.001
empty blue points in Fig. S1). In this case, selection was so ineffective that the populations had failed to

reach their equilibrium level of maladaptation after D = 500 substitutions. In consequence, results fell on the

line m(A,A) ~ M(A,A), implying that the evolutionary changes were wandering erratically in phenot

space, as under strict neutrality. In all other cases, the action of stabilizing selection was apparent from the
fact that m(A,A) < M(A,A).

We note finall that Wlth hi her mutatlon rateb the de endenc1es on N and 2

eﬁee%e#eaekmtm&meﬁe&e&e}kwg&v}@vggg (Roze and Blanckaert 2014 ThlS is due to accumulatlon of
linkage disequilibria, not treated in the current work.

Dominance effects under stabilizing selection

This section explores stabilizing selection when mutations may be phenotypically dominant or recessive, with
a particular focus on the evolution of the dominance effects. In all cases, this will involve modifying the
model of mutational dominance reported in the Methods, to enhance the influence of dominance effects.
Let us begin with the simulations reported in Figure 4C&D, which are also reported in greater detail
in Figure 52. These simulations used a mutational model of Schneemann et al. (2022). Under this model,
as with the standard simulations, the heterozygous effect of a new mutation on a given trait was set at-its
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Figure S1:

Properties of fixed differences under stabilizing selection

(A) Multivariate normal distribution (B) Exponential distribution
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The value for the total amount and net effect of evolutionary change under stabilizing
selection depend on model parameters in predictable ways. Simulation results are shown pairs
of populations, diverging under stabilizing selection. Simulations used an additive phenotypic model,
and were halted after D = 500 substitutions have fixed. Each panel contains results from 64
population pairs, using a fully crossed set of population-genetic parameters. Varied were the
population size (N: red versus blue points), the mean selection coefficient of a new mutation in an
optimal background (Spy: filled versus unfilled points); and the number of phenotypic traits (n:
circular versus triangular points). Mutation and recombination rates also varied, but neither had a
ualitative effect in the parameter regimes simulated, and so are not indicated visually. (A) shows
results when the mutational effects on each trait were i.i.d. normal. (B) shows results when the

magnitudes of new mutations were drawn from an exponential distribution, with random orientations

in n-dimensional space; In both panels, vertical lines show the expected value of m(A, A) at stochastic

equilibrium (namely n/(8N); eq. 26). This equilibrium was not reached, however, when selection was

very ineffective (INSput = 103 empty blue points), and in this case evolutionary changes wandered
erratically in phenotypic space (such that M (A, A) ~ m(A. A)).

additive-to its homozygous effect multiplied by a shifted-beta-distributed random number with vanishing

deminanee)-mean y and variance i : =
aeross-bothp attons s FPes—Wer s

set-equal-to-the-shared-aneestral-state—u and v were set to vary with the size of the mutation, such that

o
O 3 O
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1+ exp (—2%)
v=(2u— 1)~ (2u—1) (65)

p=1-

where g, is the standard deviation in the additive effects of new mutations. The result is that small-effect

mutations were additive on average (with p ~ 1/2), whereas larger effect mutations became increasingl
recessive (Manna et al., 2011; Billiard et al., 2021). Figure S2G (red curve) shows clearly that, with this

mutation model, populations evolving under stabilizing selection have a strong tendency to fix phenotypicall
recessive mutations (eq. 21). Now if P1 had fixed wholly recessive mutations (with no phenotypic effect in

heterozygous form) then it would follow that a;; = d;; for all loci and traits (see Table 5). If we then
consider genetically homogeneous parental populations (as in Appendix 1), it would follow trivially that
m(A,A)=m(A, A) =m(A,A) and that M(A, A) = M(A,A) = M(A,A). In this way, the tendency for
highly recessive mutations to fix, explains the similarities of the red lines shown in Fig. S2C, F and I (which

are plotted together in Figure 4D).
Note, however, that the fixations were not wholly recessive, and so the red lines are similar, but not

identical. In particular, a stochastic equilibrium is reached by the red curves in both Figure S2B (eq. 26
and Fig. S2H (where the recessive fixations in P1 imply that the F1 will closely resemble P2: eq. 18).
However, from Figure S3E it is clear that the lack of coadaptation between the dominance effects means
that their net effect, m(A, A), still wanders in phenotypic space, and increases steadily with divergence.

While the results in Figures 4C-D and 82 assumed that mutations will tend to be phenotypically recessive,
it is not clear that this will hold in nature. This is partly because the traits in Fisher’s model need not
correspond to real-world quantitative traits (Martin, 2014), and partly because, under the fitness function of
eq. 1, mutations can be recessive for fitness, even if they are additive or weakly dominant for the phenotype
(e.g. Manna et al., 2011).

As such, we repeated our simulations of stabilizing selection, with no special tendency for mutations to
be recessive, but also increasing the variance in the dominance effects. To do this. we simply set 4 = 1/2 and

that the heterozygous effect of a new mutant was its homozygous effect, multiplied by a uniformly-distributed
random number. As with the main text simulations, we first assumed that each mutation had a unique
dominance multiplier on each trait — so that we used n uniform random numbers per mutation. However,
we also_compared this “per-trait dominance” model, to a “per-mutation dominance” model, in which the
effects on each trait shared a dominance multiplier —so that we used only a single uniform random number
per mutation. The effect of both of these changes to the mutational model was to make it more likely
that_mutations with extreme levels of dominance would fix, but with no tendency for new mutations to
be phenotypically recessive. The results of these simulations are shown Figure 83, with the “per-trait
dominance” results as thinner lines, and the “per-mutation dominance” results as thicker lines.

Consider first, results for the interaction terms (Figure S3G-I). Figure S3G shows that a tendency to
fix phenotypically recessive mutations (an increasing M (A, A)) can occur via a selective sieve without

mutational bias, but only for some models of mutation — in this case, only for the “per-mutation” model

thicker red line), in which each mutation has the same level of dominance on all n traits. However, the

corresponding negative trend in m(A, A) = M(A, A) (Figure S31) is now very weak _ both compared to its
standard deviation between runs (so that the term will be positive for a substantial proportion of runs) —
and compared to negative trend in the additive term (Fig. S3C).

Consider finally results for the dominance effects (Figure S3D-F). Remarkably, the trend in Figure
S3E _is opposite of that shown in Figure S2F, with a weak tend for dominance effects to point in same
phenotypic direction. This applies in all cases, including when the sole evolving population tended to fix

henotypically recessive alleles. Note, however, that this tendency is again weak - both compared to its
standard deviation and the negative trend in the additive term (Fig. S3C). The upshot is, at least in the

50 PO G apPP y a
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Figure S2: The net effect and total amount of evolutionary change predictably under stabilizin

selection, when mutations tend to be phenotypically recessive. The simulations reported
correspond to be shown in Figure 4C-D, and the curves in panels C, F and I replicate those in Figure

4C (blue curves

and Figure 4D (red curves). All simulations used the dominance model of

Schneemann et al. (2022), in which larger effect mutations were more likely to be phenotypicall
recessive (eq. 65). All curves show the means across 100 replicate simulations, and shaded areas (often
barely visible) show the standard deviation. Other simulation parameters were N = 100, n = 20 and

U= S =001

nor - models we simulated, dominance terms will be difficult to interpret in the absence of a mutational bias
nos  towards phenotypic recessivity.
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Figure S3: Dominance effects can show weak directionality under stabilizing selection, even without

a tendency for mutations to be phenotypically recessive. Simulation results under stabilizin
selection, with a stationary optimum. Compared to the main text simulations, the variance in the
dominance effects of mutations was increased (by drawing dominance multipliers for each mutation

from a uniform distribution with

=1/2 and v = 1/12), and we also compared our standard model

“per-trait dominance”) to a model in which each mutation was equally dominant or recessive on all n

traits

“per-mutation dominance”). Lines and shaded areas represent the mean and one standard

deviation across 200 replicate simulations. Other simulation parameters were N = 10, n = 20 and

U = S = 0.01
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