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Abstract7

When divergent populations interbreed, the outcome will be affected by the genomic and phenotypic8

differences that they have accumulated. In this way, the mode of evolutionary divergence between9

populations may have predictable consequences for the fitness of their hybrids, and so for the progress of10

speciation. To investigate these connections, we present a new analysis of hybridization under Fisher’s11

geometric model, making fewer
:::
few

:
assumptions about the allelic effects that differentiate the hybridizing12

populations. Results show that the strength and form of postzygotic reproductive isolation (RI) depend13

on just two properties of the evolutionary changes, which we call the “total amount” and “net effect” of14

change, and whose difference quantifies the similarity of the changes at different loci, or their tendency15

to act in the same phenotypic direction. It follows from our results that identical patterns of RI can arise16

in different ways, since different evolutionary histories can lead to the same total amount and net effect17

of change. Nevertheless, we show how the key
::::
these

::::::::
estimable

:
quantities do contain some information18

about the history of divergence, and that – thanks to Haldane’s Sieve – the dominance and additive19

effects contain complementary information.20

Impact Summary21

When populations of animals or plants evolve differences in their genomes or traits, the nature of the22

differences will help to determine whether they can continue to interbreed. For example, the hybrid offspring23

may be infertile, or unlikely to survive to reproductive age, meaning that the two populations remain distinct24

from one another even after mating. However, in some cases the hybrids may be more fertile than their25

parents or have some other reproductive advantage. In this study, we use a mathematical model to relate26

hybrid fitness to the evolved differences separating the parents. We find that the outcome depends on just27

two properties of these differences, which capture the “total amount” and the “net effect” of evolutionary28

change. We then show that different evolutionary divergence scenarios or modes can lead to the exact29

same hybrid fitness. On the other hand, we can still make some inferences about the history of divergence30

by observing certain properties of hybrid fitness. Determining the relationship between hybrid fitness and31

the mode of evolutionary divergence will help to understand how new species form, to plan conservation32

interventions such as moving individuals between isolated populations to increase their adaptive potential,33

and to understand how existing species might interact when their habitats overlap, for example due to34

climate change or other human impacts.35
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Introduction36

Genomic and phenotypic differentiation between populations are a major cause of reproductive isolation37

(RI), preventing hybrids from forming, or reducing their fitness when they do form. However, differentiation38

can also be a source of adaptive variation, if hybrids contain new fit combinations of traits or alleles, or39

act as conduits passing existing combinations from one population to another (Arnold and Hodges, 1995;40

Edmands, 1999, 2002; Coyne and Orr, 2004; Bierne et al., 2013; Schluter and Conte, 2009; Bernardes et al.,41

2017; Coughlan and Matute, 2020).42

Which of these outcomes actually takes place must depend on the types of phenotypic and genomic43

differences that have accumulated
:::::
before

::::
the

:::::::
hybrids

::::
form. A fundamental challenge in evolutionary biology44

is to understand the connections between the mode of evolutionary divergence, the type of differences that45

accrue, and the outcomes of subsequent hybridization. This can be framed in two ways: what can we learn46

about the (unobserved) history of parental divergence by observing their hybrids? (Lande, 1981; Welch,47

2004; Schneemann et al., 2020; Fraser, 2020); and conversely, which divergence scenarios will predictably48

lead to RI? (Coyne and Orr, 2004). What, for example, are the respective roles of large- versus small-49

effect mutations in causing RI, and what are the roles of natural selection versus genetic drift (Lynch, 1991;50

Coyne and Orr, 2004; Jezkova et al., 2013; Satokangas et al., 2020; Moran et al., 2021; Clo et al., 2021)?51

All of these questions are essential for understanding the opposing processes of speciation and adaptive52

introgression (Abbott et al., 2013), and predicting the outcomes of novel hybridizations, including those that53

are human-mediated (Genovart, 2008; Chan et al., 2019).54

One tool to address these questions is Fisher’s geometric model. This is a mathematical model of selection55

acting on quantitative traits (Fisher, 1930, Ch. 2), and has been used to understand both phenotypic data,56

e.g., QTL for traits involved in adaptive divergence (Orr, 1998), and fitness data. In the latter case, the57

phenotypic model need not be treated literally, but is a simple way of generating a fitness landscape (Martin58

and Lenormand, 2006; Martin, 2014). Both uses of the model have been applied to hybrids (Lande, 1981;59

Mani and Clarke, 1990; Barton, 2001; Chevin et al., 2014; Fräısse et al., 2016; Simon et al., 2018; Yamaguchi60

and Otto, 2020; Schneemann et al., 2020; Thompson et al., 2021; Schneemann et al., 2022).61

Most importantly here, the model allows us to consider the effects in hybrids of evolutionary changes of62

different sizes, and which were driven by different evolutionary processes (Hartl and Taubes, 1996; Orr, 1998;63

Chevin et al., 2014; Simon et al., 2018; Schneemann et al., 2020). However, previous analytical results for64

diploids (Schneemann et al., 2020) depended on strong assumptions about the genetic differentiation, such65

as no variation within the parental lines, normality and universal pleiotropy among the fixed effects, and66

statistical independence among traits. Furthermore, the earlier results describe the overall strength of RI67

in terms of a single fitted parameter, whose relationship to the process of evolutionary divergence remained68

obscure.69

In this paper, we extend previous work on Fisher’s geometric model in two ways. First, by combining70

and generalizing previous work by several authors (Lande, 1981; Chevin et al., 2014; Simon et al., 2018;71

Schneemann et al., 2020, 2022), we give results for the expected fitness of hybrids between diploid populations,72

applying to all classes of hybrid, and allowing for variation within the hybridizing populations, and alleles73

with arbitrary additive and dominance effects. Second, we show how some key quantities that appear in the74

results relate transparently to the history of divergence between the parental populations.75

Results76

The phenotypic model and fitness landscape77

Under Fisher’s geometric model, the fitness of any individual depends solely on its values of n quantitative78

traits. The trait values for an individual can be collected in an n-dimensional vector z = (z1, ..., zn); and79

its fitness, w, depends on the Euclidean distance of this phenotype from an optimum o = (o1, ..., on), whose80

value is determined by the current environment. We will assume the simplest form of the model, where the81

log fitness declines with the square of the distance:82
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lnw (z,o) = −‖z− o‖2 = −
n∑
j=1

(zi − oi)2 (1)

This model can be derived either exactly, or approximately, from a wide class of more complicated fitness83

functions (Martin, 2014; Schneemann et al., 2020), and in these latter cases, only a few, if any of the n traits,84

need to be identified with real quantitative traits that might be measured in the field. Results can also be85

applied if fitness declines more rapidly with distance from the optimum. For example, if lnw = −‖z− o‖k86

(Fräısse et al., 2016; Simon et al., 2018; Fräısse and Welch, 2019) then results below could be applied directly87

to the scaled log fitness (−lnw)2/k = ‖z− o‖2.88

Characterizing parental divergence, and describing hybrids89

We will consider hybrids between two diploid parental populations, denoted P1 and P2. We will assume that90

individuals in these populations vary at D biallelic loci, and that the allele frequencies might vary between91

populations
:
,
::::::
which

:::::::
includes

::::
the

::::
case

::::::
when

::
an

::::::
allele

::
is

:::::
fixed

::
in

::::
one

::::::::::
population

::::
and

:::::::
absent

::
in

::::
the

:::::
other. If92

we (arbitrarily) choose one allele at each locus to be the focal allele, then the frequency of the focal allele93

at locus i = 1, ..., D is denoted as qP1,i (qP2,i) in population P1 (P2). We now make the key simplifying94

assumptions that (1) there are no statistical associations between alleles within the parental populations,95

so that both P1 and P2 are at Hardy-Weinberg and linkage equilibrium at all D loci, and (2) there is no96

phenotypic epistasis between the allelic effects.97

With these assumptions, the differences in the trait means between P1 and P2 can be written as the sum98

of contributions from each of the D loci. As such, for any trait j = 1, ..., n, the difference in trait means can99

be written100

z̄P2,j − z̄P1,j = 2

D∑
i=1

Aij (2)

where the factor 2 follows from diploidy. A simple consequence of eq. 2 is that the phenotypic differentiation101

between the parental populations can be described as a chain of effects in n-dimensional phenotypic space.102

Figure 1A shows an illustrative example with n = 2 traits, affected by changes at D = 5 loci. Here, the103

black arrows represent the 2Aij , connecting the trait means of P1 and P2, or the centroids of the clouds of104

points that would represent the two parental populations. Each 2Aij describes the diploid effect on trait j105

of changing the allele frequency at locus i from qP1,i to qP2,i.106

We can also relate the Aij to the parental allele frequencies and the size of the phenotypic effect, as107

represented by the Fisherian average effect of a substitution (e.g. Lynch and Walsh, 1998, Ch. 4). In108

particular, we show in the Methods that109

Aij = ᾱij (qP2,i − qP1,i) (3)

where ᾱij is the average effect of a substitution at locus i on trait j (e.g. Lynch and Walsh, 1998, eq. 4.10b),110

averaged across the two parental populations.111

When there is phenotypic dominance (Lynch and Walsh, 1998, Ch. 4, Schneemann et al., 2022) we also112

need to account for the dominance deviations associated with allele frequency changes. We can do this by113

considering the mean phenotype in the initial F1 cross between P1 and P2, in which all loci in all individuals114

carry one P1-derived allele and one P2-derived allele. We show in the Methods that the difference in trait115

means between the F1, and the two parental populations can be written as116
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z̄F1,j − z̄P1,j =

D∑
i=1

Aij + ∆ij (4)

z̄P2,j − z̄F1,j =

D∑
i=1

Aij −∆ij (5)

where117

∆ij = δ̄ij (qP2,i − qP1,i)
2

(6)

and δ̄ij is the dominance deviation of a substitution at locus i on trait j averaged across the two parental118

populations. The differences between the parental and F1 trait means can also be represented as chains of119

effects, and this is illustrated by the red and blue arrows in Figure 1A. Moreover, we can separate out the120

additive and dominance effects by considering the differences between the F1 and the midparental mean121

phenotypes, defined as z̄mp,j ≡ (z̄P1,j + z̄P1,j)/2.122

z̄mp,j − z̄P1,j = z̄P2,j − z̄mp,j = 1
2 (z̄P2,j − z̄P1,j) =

D∑
i=1

Aij (7)

z̄F1,j − z̄mp,j =

D∑
i=1

∆ij (8)

The two resulting chains are illustrated in Figure 1B.123

The arguments above for the F1 cross generalize to an arbitrary hybrid (say, an F2 or a backcross). Hybrid124

genomes can be characterized in a number of different ways. In the main text, we will consider results for125

crosses, assuming free recombination among the D loci, and that no linkage disequilibrium has accumulated126

due to selection on early generation hybrids (see Lynch and Walsh, 1998 Ch. 9, and Schneemann et al., 2020127

for some generalizations). In this case, hybrid genomes can be described solely in terms of their hybrid index,128

h (defined as the probability that a randomly chosen allele in the hybrid derives from parental line P2), and129

their inter-class heterozygosity, p12 (defined as the probability that a randomly chosen locus carries one allele130

of P1 origin and one allele of P2 origin). Results in the main text treat h and p12 as probabilities determined131

by the crossing scheme, and which apply to all loci independent of their allelic effects. In Appendix 1 we132

report equivalent results for sequenced genomes with known patterns of ancestry, such that h and p12 are133

known proportions. In either case, our aim is to calculate the expected fitness of a hybrid, conditional on134

h and p12. When we take expectations, they will be over the particular loci that are in any given ancestry135

state. We then determine how this result depends on properties of the additive and dominance effects. These136

will be collected in D × n - dimensional matrices, denoted A = (Aij) and ∆ = (∆ij), and treated as fixed137

observations, rather than random variables.138

Expected log fitness of a hybrid139

Given the model described above, the expected log fitness of an arbitrary cross can be determined from the140

expected means and variances of its n traits.141

E (lnwH) = −
n∑
j=1

E
(

(zH,j − oj)2
)

= −
n∑
j=1

E2 (zH,j − oj)−
n∑
j=1

Var (zH,j) (9)
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Figure 1: The key quantities that determine hybrid mean log fitness under Fisher’s geometric
model. The fitness of any given phenotype is determined by its distance from some optimum
phenotype, as determined by the current environment. This optimum and fitness landscape is
illustrated, for n = 2 traits, by the cross and contour lines. (A): The diploid parental populations, P1
and P2, are each characterized by mean phenotypic values, zP1 and zP2, and the difference between
these points are due to allele frequencies changes at D = 5 loci, each affecting one or more of the traits.
The diploid changes associated with each locus are represented by the black arrows, whose components
are denoted 2Aij for the diploid change to the jth trait due to the ith locus. The model allows for
phenotypic dominance, so that the differences between the trait means of the parents, and the initial F1
cross, also involve dominance effects, denoted as ∆ij for the change to the jth trait due to the ith locus.
(B): the additive (black) and dominance (purple) effects can also decomposed into chains of differences
linking the P1 or F1 trait means to the mid-parental trait mean (zmp ≡ 1

2
(zP1 + zP2)). Inset panels:

The mean log fitness of an arbitrary hybrid is affected by the total amount of evolutionary change (the
sum of squared lengths of the arrows in a chain), and by the net effect of the evolutionary change (the
squared lengths of the dotted lines). See text for full details.

In the Methods, we show that each of the two terms in eq. 9 can be written as the sum of six terms,142

weighted by the same six combinations of h and p12. All 12 of these terms are shown in Table 1, where we143

introduce the notation144

VP1 ≡
n∑
j=1

Var (zP1,j) VP2 ≡
n∑
j=1

Var (zP2,j) VF1 ≡
n∑
j=1

Var (zF1,j) (10)

to denote the sum of the trait variances
::::::::::
phenotypic

::::::::
variances

::::
over

::::
the

:
n
::::::
traits in a given population. We145

also introduce two new functions of D × n - dimensional matrices146
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m(x,y) =

n∑
j=1

(
D∑
i=1

xij

)(
D∑
i=1

yij

)
(11)

M(x,y) =

n∑
j=1

D∑
i=1

xijyij (12)

whose meanings we discuss below. The expected log fitness of any hybrid with a given value of h and p12147

(eq. 9) is equal to the sum of the twelve terms in the second and third columns of Table 1, as weighted by148

their coefficients in the first column. Examining these terms, it follows that the expected log fitness depends149

on both properties of the parental populations (see top two rows of Table 1), and properties of the initial F1150

cross (see third row of Table 1), plus properties of the additive and dominance effects, as captured by the151

functions m(·, ·) and M(·, ·) (see the bottom three rows of Table 1).152

Table 1: Components of expected log hybrid fitness

Coefficient −
∑n
j=1E

2 (zH − oj) −
∑n
j=1 Var (zH,j)

1− h lnw (z̄P1,o) −VP1

h lnw (z̄P2,o) −VP2

p12 lnw (z̄F1,o)− 1
2 (lnw (z̄P1,o) + lnw (z̄P2,o)) −VF1 + 1

2 (VP1 + VP2)
4h(1− h)− p12 m(A,A) −M(A,A)

p12(1− p12) m(∆,∆) −M(∆,∆)
2p12(1− 2h) m(A,∆) −M(A,∆)

Now, let us note that, given the quadratic fitness function of eq. 1, the mean fitness of individuals in153

parental population P1 is given by lnwP1 = lnw (z̄P1,o)− VP1. As such, we can combine the terms in each154

row of Table 1, to yield:155

E (lnwH) = lnwP

+
(

1
2 − h

) (
lnwP1 − lnwP2

)
+ p12

(
lnwF1 − lnwP

)
+ (4h(1− h)− p12) (m (A,A)−M (A,A))

+ p12(1− p12) (m (∆,∆)−M (∆,∆))

+ 4p12

(
1
2 − h

)
(m (A,∆)−M (A,∆)) (13)

Here the overbars denote the expected fitness of randomly chosen individuals, either from a single pop-156

ulation (subscripts P1, P2 or F1) or from the two parental populations at random (subscript P, such that157

lnwP ≡
(
lnwP1 + lnwP2

)
/2).158

Note that the first three terms of Equation 13 all depend on the current position of the environmental159

optimum, and so they capture the extrinsic or environment-dependent component of hybrid fitness. These160

terms depend solely on the mean log fitnesses of parental and F1 populations. By contrast, the second three161

terms depend only on the A and ∆ – i.e. on the genomic differences accrued by the parental populations,162

but not on the current position of the environmental optimum. As such, these three terms capture the163

intrinsic, or environment-independent component of hybrid fitness.
::::
Note

:::::
that

:::::
fixed

::::::::::
differences

::::
and

::::::
shared164

:::::::::::::
polymorphisms

::::::::::
contribute

::
in

::::::::
identical

::::::
ways,

::
as

::::
long

:::
as

:::
the

:::
A

::::
and

::
∆

::::
are

::::::::
correctly

:::::::
defined

::::
(eqs.

::
3
::::
and

:::
6).

:
165

We note that the partition of the term shown in eq. 13 is not unique, because it includes the within-166

population trait variances within the extrinsic terms (Table 1). However, eq. 13 does correspond closely167
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to the partition of Hill (1982), showing that all of the terms, including the quantities M(·, ·) −m(·, ·) are168

estimable as composite effects by standard quantitative genetic methods (Lande, 1981; Lynch, 1991; Lynch169

and Walsh, 1998, Ch. 9; Rundle and Whitlock, 2001; Schneemann et al., 2020; Clo et al., 2021). Moreover,170

even the separate contributions of the trait means and variances, i.e. the separate functions M(·, ·) and171

m(·, ·), are estimable under some conditions. This is clearest if the dominance effects are negligible (see172

Schneemann et al., 2022 for a discussion). In that case, all terms containing the ∆ vanish, and the F1 trait173

means and variances are equal to the midparental values. As a result, Table 1 simplifies to Table 2, implying174

that M(A,A) and m(A,A) can be separately estimated.175

Table 2: Components of expected log hybrid fitness with additive phenotypes

Coefficient −
∑n
j=1E

2 (zH − o) −
∑n
j=1 Var (zH)

1− h lnw(z̄P1,o) −VP1

h lnw(z̄P2,o) −VP2

p12 0 M(A,A)
4h(1− h) m(A,A) −M(A,A)

Even when dominance effects are non-negligible, some of the individual function values can be estimated,176

if fitness measurements are made in environments to which the parental populations are well adapted (Rundle177

and Whitlock, 2001). For example, if the mean phenotype of P1 is optimal (z̄P1 = o), then from Table 1 and178

eqs. 1, 3 and 11, the log fitness of the mean P2 phenotype is lnw(z̄P2,o) = lnw(z̄P2, z̄P1) = −‖zP2 − z̄P1‖2 =179

−4m(A,A). A set of equivalent results for population mean log fitness is shown in Table 3.
:

180

Table 3: Population mean log fitnesses in different environmental conditions

Env. conditions lnwP1 lnwP2 lnwF1

z̄P1 = o −VP1 −4m(A,A)− VP2 −m(A + ∆,A + ∆)− VF1

z̄P2 = o −4m(A,A)− VP1 −VP2 −m(A−∆,A−∆)− VF1

z̄F1 = o −m(A + ∆,A + ∆)− VP1 −m(A−∆,A−∆)− VP2 −VF1

If we also note the following identities:

m (A + ∆,A + ∆) = m (A,A) +m (∆,∆) + 2m (A,∆)

m (A−∆,A−∆) = m (A,A) +m (∆,∆)− 2m (A,∆) (14)

then it follows that the quantities m(A,A) and m(A,∆) can be estimated from reciprocal transplant ex-181

periments in habitats to which the parental populations are well adapted (i.e. habitats where z̄P1 = o and182

z̄P2 = o). Moreover, the remaining function, m(∆,∆) can be estimated either with genetically homogeneous183

parental lines (i.e., if VP1 = VP2 = VF1 = 0), or with data from a third environment in which the F1 shows184

bounded hybrid advantage such that z̄F1 ≈ o.185

Interpreting the functions m(·, ·) and M(·, ·)186

In the previous section, we saw that genomic differences between populations influence the mean log fitness187

of their hybrids solely via the functions m(·, ·) and M(·, ·), as applied to the additive and dominance effects188

(A and ∆). We also saw that the value of these functions can, in principle, be estimated from hybrid fitness189

data. In this section we show that these functions have a simple interpretation, which can be related to the190

divergence history of the populations.191

It follows from eqs. 11 and 12, that m(·, ·) and M(·, ·) can be interpreted on a trait-by-trait basis, as the192

sum over the means and variances of the changes on each trait. However, it can also be helpful to consider193

the overall size of changes in multi-dimensional trait space, i.e. the arrows depicted in Figure 1.194
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To see this, let us begin by noting that the function m(·, ·) captures the net effect of evolutionary change.195

For example, for the additive effects, from eqs. 7 and 11 we find:196

m(A,A) =

∥∥∥∥∥
D∑
i

Ai

∥∥∥∥∥
2

=
1

4
‖z̄P2 − z̄P1‖2 (15)

so that m(A,A) will be large if the evolutionary divergence between P1 and P2 led to their evolving very197

different phenotypes. By contrast, m(A,A) will be small if, due to compensatory changes at different198

loci, the evolutionary divergence led to little net change in phenotype. Analogous arguments apply to the199

dominance effects, where, from eqs. 8 and 11, the function m(∆,∆) describes the distance between the F1200

and midparental phenotypes.201

m(∆,∆) =

∥∥∥∥∥
D∑
i

∆i

∥∥∥∥∥
2

= ‖z̄mp − z̄F1‖2 (16)

Finally, for the interaction term, we use eq. 14 from which it follows that202

m(A,∆) = 1
4m(A + ∆,A + ∆)− 1

4m(A−∆,A−∆) (17)

= 1
4 ‖z̄F1 − z̄P1‖2 − 1

4 ‖z̄F1 − z̄P2‖2 (18)

The interaction term can therefore be negative or positive, and it tells us whether the net effect of the203

evolutionary change has led to the F1 more closely resembling one or other of the parental populations.204

If the function m(·, ·) describes the net effect of evolutionary change, the function M(·, ·), describes the205

total amount of evolutionary change. For example, from eq. 12 we have:206

M(A,A) =

D∑
i

‖Ai‖2 (19)

=

(
D∑
i=1

‖Ai‖

)2

× 1 + CV (‖Ai‖)2

D
(20)

where ‖Ai‖ is the length of an individual black arrow in Figure 1B, and CV (·) is the coefficient of variation207

among the complete set of D lengths, i.e. their standard deviation divided by their mean. It follows that208

M(A,A) will be large if there was a large amount of evolutionary change, i.e. if there were changes at many209

loci, and the changes were individually large. This applies regardless of whether or not the changes at each210

locus were compensatory, such that there was no net change in phenotype. Equation 20 also clarifies the211

roles of large- versus small-effect changes. It implies that for a given amount of phenotypic change (i.e. a212

given value of the first factor in eq. 20, or a given length of the chain of black arrows in Fig. 1B), M(A,A)213

will be larger if the changes were fewer (lower D) and more variable in size (higher CV (‖Ai‖)).214

All of the arguments above also apply to M(∆,∆), which concerns the chain of dominance effects; while215

for the interaction term, we use results analogous to eq. 14 to show that216

M(A,∆) = 1
4M(A + ∆,A + ∆)− 1

4M(A−∆,A−∆)

= 1
4

D∑
i

‖Ai + ∆i‖2 − 1
4

D∑
i

‖Ai −∆i‖2 (21)
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So eq. 21 will be positive if the red arrows in Figure 1A tend to be longer than the blue arrows, and vice217

versa. This is equivalent to asking whether the alleles that are more common in P2 tend to be phenotypically218

dominant. M(A,∆) will be positive if P2 alleles tend to be phenotypically dominant, and negative if they219

tend to be phenotypically recessive.220

The comments above shed light on the functions m(·, ·) and M(·, ·) individually, but eq. 13 depends on221

the difference between them, and this difference has its own natural interpretation. To see this, let us use222

eqs. 15 and 19, to show that:223

m(A,A)−M(A,A) =

 D∑
i=1

Ai ·Ai +

D∑
i=1

D∑
k=1,k 6=i

Ai ·Ak

− D∑
i=1

Ai ·Ai

=

D∑
i=1

D∑
k=1,k 6=i

Ai ·Ak (22)

= (D − 1) M(A,A)−
D−1∑
i=1

D∑
k=i+1

||Ai −Ak||2 (23)

=

D∑
i=1

D∑
k=1,k 6=i

||Ai||||Ak|| cos(θAi,Ak
) (24)

So this quantity can be interpreted in two ways. Equation 23 uses the relationship between the dot224

product and the squared Euclidean distance to show that m(A,A)−M(A,A) is a measure of the similarity225

of the evolutionary changes at different loci (Schneemann et al., 2020); it take its largest value when changes226

are identical at all loci (i.e. when ||Ai −Ak|| = 0 for all i and k), but the quantity becomes smaller and227

negative as the effects become more different.228

Similarly, eq. 24 is a generalized cosine law, and uses θAi,Ak
to denote the angle between the ith and the229

kth vectors of change (see top right of Figure 1B for an illustration). This implies that cos(θ) = 1 when the230

additive effects at two loci point in the same phenotypic direction (such that θ = 0); similarly, cos(θ) = 0231

when the vectors are orthogonal (e.g., altering the values of different traits); and finally, cos(θ) = −1 for232

effects that act in opposite directions. It follows that the difference m(·, ·)−M(·, ·) quantifies the tendency233

for evolutionary changes at different loci to act in the same phenotypic direction. It is therefore a measure234

of the directionality (or conversely meandering) in the chains of evolutionary changes.235

Again, the same argument applies to the chain of dominance effects (m(∆,∆)−M(∆,∆)). Finally, for236

the additive-by-dominance interaction, by analogy with eq. 24, we can write237

m(A,∆)−M(A,∆) =

D∑
i=1

D∑
k=1,k 6=i

||Ai||||∆k|| cos(θAi,∆k
) (25)

So that the interaction term measures the tendency for additive and dominance effects at different loci238

to point in the same phenotypic direction.239

How does directional selection affect the total amount and net effect of evolu-240

tionary change?241

In the previous section we showed that the functions m(·, ·), M(·, ·) and the difference between them, m(·, ·)−242

M(·, ·), each have a natural interpretation. In the next two sections, we show how these quantities vary with243

the history of divergence between the parental lines (summarizing the results in Table 4).244

We will begin with divergence under directional selection. To supplement verbal arguments, we use245

illustrative simulations of adaptive divergence under Fisher’s geometric model. Full simulation details are246
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Figure 2: The history of directional selection affects the total amount and net effect of evolutionary
change. Illustrative individual-based simulations of divergence between allopatric populations, driven
by directional selection. Simulations used six distinct scenarios of divergence, illustrated via their net
additive and dominance effects in the cartoons in the left-hand panels.
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panels
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:::::::
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::::
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::::
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:::::::
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::::
The

:::::
larger

::::::
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:::
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:::::::
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(all

::::::
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::
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:::
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::::::::
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P2),

::::
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::::::
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::::::
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:::::::
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:::::::::
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::::::
shown

::
by

:::
an

::::::
empty

::::
black

::::::
circle.

:
Scenarios are I: both populations

adapt to the same distant optimum; II: each population adapts to shifted optimum on a different
phenotypic trait; III: each population adapts to a shifted optimum on the same trait, but in opposite
phenotypic directions; IV: P2 alone adapts to an optimum that shifts in one phenotypic direction, and
then shifts back to its initial position; V: P2 alone adapts to an optimum that changes on one trait, and
then on another; VI: P2 alone adapts to an optimum that shifts twice in the same phenotypic direction.
(A)-(I): Boxes represent results for 100 replicate simulations (median, quantiles and full range), each
including n = 20 traits, and halted after D = 50 fixations. The quantities shown match those in Tables
1 and 3. The quantities vary predictably between the six scenarios, and in different ways for the additive
and dominance effects (see text). Simulation parameters were N = 1000, n = 20, and U = s̄mut = 0.01.

.

given in the Methods, but in brief, we used individual-based simulations, starting with a pair of identical247

and genetically uniform parental populations, which then evolved in allopatry to different conditions of248

environmental change, i.e. different positions of the phenotypic optimum (Chevin et al., 2014; Yamaguchi249

and Otto, 2020; Schneemann et al., 2020). While multiple variants could segregate during the simulations,250

the A and ∆ values were calculated only for fixed differences between the populations. This means that we251

could avoid complications from linkage disequilibrium, which we did not treat analytically, but also implies252

that the analytical results apply to cases that we did not simulate.253
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The first set of simulations, summarized in Figure 2, involved six different divergence scenarios, illustrated254

by the cartoons in the left-hand panels. In scenarios I-III, both populations adapted to distant optima at255

a distance ||zanc − o|| =
√

1/2 from their shared ancestral phenotype (such that their initial fitness was256

exp(−1/2) ≈ 60% of its maximum value). The sole difference between scenarios I-III is the relative positions257

of the optima experienced by each population. In scenario I, the two optima moved in identical ways, so258

that this scenario corresponds to mutation-order speciation (Mani and Clarke, 1990). In scenarios II-III, the259

two optima differed, so that these scenarios correspond to divergent selection and local adaptation (Schluter,260

2000); in scenario II, the optima differed on different traits, while in scenario III, the optima differed on the261

same trait, but in opposite phenotypic directions. Finally, scenarios IV-VI corresponded to scenarios I-III,262

but with both bouts of adaptive substitution taking place in population P2, while P1 retained their common263

ancestral phenotype. This meant that P2 adapted to two successive changes in environmental conditions (i.e.264

two changes in the position of its optimum). After the initial bout of adaptation in P2, its optimum either265

jumped back to its initial position (scenario IV), or changed on a different trait (scenario V), or jumped266

again in the same phenotypic direction (scenario VI). Panels A-I of Figure 2 summarizes the results of 100267

replicate simulations under each of these six scenarios, after D = 50 substitutions had occurred.268

Additive effects269

Results for the simulated additive effects are shown in Figure 2A-C. Figure 2A shows that the total amount270

of evolutionary change, M(A,A), was identical under all six scenarios. This is because all scenarios involved271

two bouts of adaptive substitution under equivalent conditions; as such, they led to the same total amount272

of change, regardless of how the changes were distributed among the traits and the diverging populations.273

Figure 2B shows the net effect of the evolutionary change, m(A,A). This quantity is proportional to the274

squared distance between the parental mean phenotypes (eq. 15). So when populations are well adapted to275

their optima, m(A,A) will be proportional to the squared distance between these optima. This explains the276

observed results of m(A,A) ≈ 0 for scenarios I and IV, m(A,A) ≈ 2||zanc − o||2/4 = 0.25 for scenarios II277

and V, and m(A,A) ≈ ||2(zanc − o)||2/4 = 0.5 for scenarios III and VI.278

Figure 2C combines results from Fig. 2A-B, to quantify the directionality in the chain of additive effects279

that differentiate P1 and P2. From eq. 24, this value will be positive if the effects mostly point in the same280

direction, such that cos(θ) ≈ 1 holds for most pairs of changes. This occurs under scenarios III and VI, where281

most of the additive effects point from the P1 phenotype to the P2 phenotype. Results are also positive, but282

around half as large, in scenarios II and V, since cos(θ) ≈ 1 for half of the pairs of changes and cos(θ) ≈ 0283

for the other half. By contrast, when natural selection tends to return the chain of additive effects to its284

starting point, as in scenarios I and IV, then cos(θ) < 0 will hold on average, leading to a negative value.285

All of the quantitative results above will, of course, vary over time (as more divergence accrues), and with286

the various parameters of the model. For example, previous work has shown that populations often approach287

their optima more efficiently if the number of traits under selection, n, is small, because mutations tend to288

have fewer deleterious pleiotropic effects (e.g. Orr, 1998; Welch and Waxman, 2003; Matuszewski et al., 2014;289

Chevin et al., 2014). This is confirmed in Figure 3A, which shows results for scenarios II-III as a function290

of the divergence, D. When we reduced the number of traits from n = 20 to n = 2 populations approached291

their optima much more rapidly. Figure 3B shows how the relative sizes of M(A,A) and m(A,A) change292

with the divergence. In the initial stages of divergence, as the distant optima are approached (see Fig.293

3A), the additive effects point in a consistent direction, and so the ratio decreases. More quantitatively,294

it follows from eq. 20 that if the changes at each locus act in the same direction, then the first term of295

eq. 20 will equal m(A,A). If these changes are also similarly sized (such that CV (‖Ai‖) ≈ 0), then296

M(A,A)/m(A,A) ≈ 1/D should hold. This prediction – indicated by the grey line in Figure 3B – does297

hold approximately for scenario III when n = 2 (solid red line in Figure 3B), while the optimum remains298

distant. The decline is slower than 1/D (implying a less direct approach to the optimum), when populations299

fixed deleterious pleiotropic effects (n = 20; dashed red line), or when the position of the ancestral phenotype300

led to effects acting in different phenotypic directions (scenario II; green lines). The decline also slows as the301

optimum is approached, and populations begin to fix alleles of smaller effect (thereby increasing CV (‖Ai‖);302

Orr, 1998). In all cases, the ratio M(A,A)/m(A,A) starts to increase after the optimum is reached, when303
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evolutionary changes continue to accrue, but without much net phenotypic change (Schiffman and Ralph,304

2021).305
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Figure 3: The net effect and total amount of evolution change predictably during directional
selection. Panels show (A): the net effect of evolutionary change in the additive effects, m(A,A). and
(B): the ratio of the total amount to the net effect, M(A,A)/m(A,A), both plotted as functions of D,
the number of substitutions that have accumulated. Results are compared for different numbers of
phenotypic traits, namely n = 2 (solid lines) and n = 20 (dashed lines), and for two scenarios detailed in
Figure 2. All curves represent means over 100 replicate simulations, with shaded areas representing one
standard deviation. The grey curve in (B) shows the prediction of M(A,A)/m(A,A) ≈ 1/D, which
holds when the additive effects at each locus are identical (eq. 20). Other simulation parameters
matched Figure 2 (N = 1000 and U = s̄mut = 0.01).

.

Dominance and interaction terms306

Results for the simulated dominance effects under the six divergence scenarios are shown in Figure 2D-F. For307

the total amount of evolutionary change (M(∆,∆); Fig. 2D), results are indistinguishable, just as they were308

for the additive effects (Fig. 2A). By contrast, results for net effect (m(∆,∆); Fig. 2E) are qualitatively309

different, and so – in consequence – are results in Fig. 2F.310

The key fact here is Haldane’s Sieve – the tendency for directional selection to preferentially fix alleles311

that are dominant in the direction of past selection (Haldane, 1924, 1927; Frankham, 1990; Crnokrak and312

Roff, 1995; Schneemann et al., 2022), especially when adaptation takes place from new mutations, rather313

than standing variation (Orr and Betancourt, 2001). This means that dominance effects reflect the history314

of past selection in a different way to the additive effects.315

The result is that for scenarios I and IV
::
VI, all of the dominance effects point in a consistent direction316

(from the ancestral state to the new optimum); leading to large net changes in phenotype (i.e. to large317

m(∆,∆); Fig. 2E) and to large positive values of m(∆,∆)−M(∆,∆) (Fig. 2F). By contrast, for scenarios318
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III and IV, the dominance effects point in opposite directions (half towards one new optimum, and half319

towards the other), leading to a small values of m(∆,∆) (Fig. 2D) and weakly negative values of the320

difference m(∆,∆)−M(∆,∆) (Fig. 2F).321

Finally, results for the additive-by-dominance interactions are shown in Figure 2G-I. Unlike terms involv-322

ing additive or dominance effects alone, the interaction terms capture differences in the evolutionary changes323

between the two populations
::
tell

:::
us

::::::::
whether

:::
the

::::
two

:::::::::::
populations

::::
have

:::::::
evolved

:::
in

:::::::
different

:::::
ways

:
(eqs. 18, 21324

and 25). As such, it is unsurprising that all of these terms are close to zero for scenarios I-III, where both325

populations underwent similar amounts and patterns of evolution. By contrast, for scenarios IV-VI, P2 alone326

adapted to a distant optima, and did so via dominant substitutions. It follows that, for these scenarios, the327

P2 alleles tended to be phenotypically dominant, leading to M(A,∆) > 0; eq. 21; Fig. 2G). If the parental328

populations differ phenotypically (scenarios V-VI), then the F1 will more closely resemble the population329

carrying the dominant alleles (m(A,∆) > 0; eq. 18; Fig. 2H). The result, shown in Figure 2I, is that the330

additive and dominance effects at different loci tend to point in opposite directions for scenario IV (for which331

m(A,∆)−M(A,∆) is weakly negative), but in the same phenotypic direction for scenarios V-VI (for which332

m(A,∆)−M(A,∆) is positive).333

How does stabilizing selection affect the total amount and net effect of evolu-334

tionary change?335

Now let us turn to evolution under stabilizing selection. The arguments in this section are illustrated336

by simulation results shown in Figure 4. In these simulations, the optima for both populations remained337

stationary and identical, matching their common ancestral phenotype. As such, any evolutionary change338

was due to the drift-driven fixation of mildly deleterious mutations, combined with compensatory changes.339

Additive effects340

The first key point about stabilizing selection is that the net phenotypic change, m(A,A), will reach a341

stochastic equilibrium, reflecting the deviations of the populations from the optimum due to mutation and342

drift. Barton (2016) showed that, with independent loci but otherwise very general assumptions, the expected343

log fitness under stabilizing selection on n traits is ∼ −n/(4Ne) (see also Lande, 1976; Hartl and Taubes,344

1996; Poon and Otto, 2000; Zhang and Hill, 2003; Tenaillon et al., 2007; Lourenço et al., 2011; Chevin345

et al., 2014; Roze and Blanckaert, 2014). Now, if the two populations are maladapted in random phenotypic346

directions (such that their displacements from the optimum are orthogonal on average; Schneemann et al.,347

2022), then it follows from eqs. 1 and 15, that348

E (m(A,A)) = − 1
4 (E (lnwP1) + E (lnwP2))

≈ n/(8Ñe) (26)

where Ñe is the harmonic mean of the two effective population sizes. This result is confirmed by simulations349

reported in Appendix 2 as shown in Supplementary Figure S1.350

While the net effect of change is determined largely by n and Ne, the total amount of change will351

depend on the size of mutations that fix (as determined by the distribution of scaled selective effects: Nes).352

Evolutionary changes will continue to accrue even after m(A,A) has equilibrated (Schiffman and Ralph,353

2021), so that M(A,A) will increase over time at a constant rate. The result is illustrated by the solid blue354

lines in Figure 4A-D, which show that m(A,A)−M(A,A) declines steadily under stabilizing selection.355

Dominance and interaction terms356

The evolution of dominance effects under stabilizing selection is more complex, and sensitive to the underlying357

model of mutation. For this reason, some of the discussion is relegated to Appendix 2, while here we report358

the clearest patterns.359
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Figure 4: The net effect and total amount of evolution change predictably under stabilizing
selection. Each plot compares the amount of directionality in the additive effects
(m(A,A) −M(A,A); solid blue lines), dominance effects (m(∆,∆) −M(∆,∆); dashed red lines), and
the interaction term (m(A,∆) −M(A,∆); dotted purple lines), plotted against the level of genetic
divergence (D) under stabilizing selection to a stationary optimum. A-B: results with the standard
model of mutation (as in Figure 2), with all mutations equally likely to be phenotypically recessive or
dominant. C-D: results with biased mutation, in which mutations of larger phenotypic effect were more
likely to be recessive (see Appendix 2). A and C: Both populations had identical population sizes of
N = 100, so that they accrued substitutions at a similar rate; B and D: We assumed that P2 remained
in the optimal ancestral state, while P1 (with N = 100) underwent all of the evolutionary change. Lines
and shaded areas represent the mean and one standard deviation across 200 replicate simulations. Other
simulation parameters matched Figure 2 (n = 20 and U = s̄mut = 0.01).

.

Figure 4A-B show results with the mutation model used in Figure 2, in which each new mutation360

was equally likely to be phenotypically recessive or phenotypically dominant. In this case, we found that361

m(∆,∆) ≈ M(∆,∆) at all levels of divergence (dashed red lines), because m(∆,∆) and M(∆,∆) both362

increased with D, but at identical rates. The reason is that, unlike the additive effects, the dominance363
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effects are not expressed together in the parental genotypes during the divergence process, and so unlike the364

additive effects, the dominance effects show little tendency to be coadapted to their optimum, but are free365

to wander in phenotypic space (Schneemann et al., 2020, 2022).366

Figure 4C-D shows comparable results when we adopted the mutational model of Schneemann et al.367

(2022), in which larger effect mutations were more likely to be phenotypically recessive (Billiard et al., 2021;368

see Appendix 2 for full details). Now, as shown by the dashed red lines, m(∆,∆) −M(∆,∆) decreases369

over time. This is because both M(∆,∆) and m(∆,∆) increase with D, but at different rates. This370

implies that the dominance effects, too, have a tendency to be coadapted to the optimum. The explanation371

is clear if we consider the extreme case of complete phenotypic recessivity. In that case, the additive and372

dominance effects of mutations would be equal and opposite (such that the heterozygous effects were zero).373

As such, the apparent “coadaptation” of the dominance effects would follow trivially from the coadaptation374

of the additive effects (see Appendix 2 for more details). The dominance curves in Figure 4C-D show this375

effect in less extreme form, so that m(∆,∆) −M(∆,∆) decreases with D, but slightly less rapidly than376

m(A,A)−M(A,A).377

Consider finally the interaction terms, shown by the dotted purple lines in Figure 4. As shown in Figure378

4A and C, the interaction terms are always close to zero when both populations undergo similar patterns379

of evolution (in this case due to their identical population sizes). More surprisingly, as shown in Figure380

4B, with the standard model of mutation, results remain qualitatively unchanged when P2 remained in its381

ancestral state, while all of the evolution took place in P1. The explanation is that, with this mutation model,382

the evolving population showed no tendency to fix phenotypically recessive mutations – and recalling that,383

under this model, mutations can be recessive for fitness, even if they are additive, or even dominant, for the384

phenotype (Manna et al., 2011). By contrast, when mutations tended to be phenotypically recessive (Figure385

4C-D) then M(A,∆) becomes non-zero, and the interaction term becomes a reliable guide to whether the386

recessive mutations were fixed more-or-less equally in both populations (such that m(A,∆) ≈M(A,∆) ≈ 0;387

Figure 4C), or mostly in P1 (m(A,∆)−M(A,∆) < 0; Figure 4D) or in P2 (m(A,∆)−M(A,∆) > 0; not388

shown). Note that this signal would remain even after a transient reduction in Ne, as long as a substantial389

number of phenotypically recessive mutations were fixed during the bottleneck.390
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Discussion391

This work has explored how the mode of divergence between parental populations impacts the fitness of392

their hybrids. We have focused on expected hybrid fitness, and not the variance or higher moments, and393

on results that apply to controlled crosses, where the measures of genome composition (h and p12) are394

probabilities determined by the crossing scheme. However, as we show in Appendix 1, the results can also395

be applied to data of other kinds, e.g. when h and p12 are estimates of ancestry from individual genome396

sequences. To generate simple, testable predictions, we have used a simple model of selection on quantitative397

traits introduced by Fisher (1930), but have extended and generalized previous work on this model, both398

by allowing for arbitrary additive and dominance effects at each locus, and by accounting for segregating399

variation within the parental populations.400

Results show how the expected fitness of hybrids depends on only a handful of summary statistics, which401

describe the evolutionary changes that differentiate the populations, and which are described by the functions402

m(·, ·) and M(·, ·) (eqs. 11-12). If the population genetic parameters, or the history of environmental change,403

influence the outcomes of hybridization (Chevin et al., 2014; Yamaguchi and Otto, 2020; Schneemann et al.,404

2020), then they do so via these quantities. The statistics, moreover, are estimable by quantitative genetic405

methods (Hill, 1982; Lynch, 1991; Rundle and Whitlock, 2001; Schneemann et al., 2020; Clo et al., 2021),406

and have a natural interpretation. In particular, m(·, ·) represents the “net effect of evolutionary change”,407

M(·, ·) represents the “total amount of evolutionary change”, and the difference m(·, ·) − M(·, ·) (which408

appears directly in eq. 13) represents the similarity of changes at different loci (eqs. 24-25; Martin et al.,409

2007; Chevin et al., 2014; Fräısse and Welch, 2019). Applied to additive effects, m(A,A)−M(A,A), closely410

resembles an QST -FST comparison (Whitlock, 2008).411

It follows immediately from the results above that very different histories of evolutionary divergence412

can yield identical patterns of hybrid fitness, as long as they lead to the same values of m(·, ·) −M(·, ·).413

Nevertheless, we have shown that some information about the divergence history is present in hybrid fitness414

data (Figure 2). These results are summarized in Table 4, which contains the predicted signs of the key415

quantities that appear in the three final terms in eq. 13.416

As is clear from Table 4, the simplest results concern directional selection. In particular, m(A,A) −417

M(A,A) will tend to be positive only when the divergence between the parental lines was driven by positive418

selection towards distinct environmental optima. The size of the term will depend on further details of the419

adaptive divergence (Figure 3). It is maximized, for example, when all allelic changes produced identical420

effects (eq. 23), and decreases in size if the adaptive change is achieved via a circuitous route (e.g. because421

of deleterious pleiotropy, overshoots of the optimum, fluctuating environmental conditions, or maladapted422

ancestral states); and – for a given amount of phenotypic change – the term decreases if the number of loci423

is smaller, and their effects more variable in size (eq. 20; see also Chevin et al., 2014). Additional and424

complementary information about the divergence history is present in the dominance and interaction terms425

(m(∆,∆)−M(∆,∆) and m(A,∆)−M(A,∆)). Due to Haldane’s Sieve (Haldane, 1924), dominance effects426

will often point in the direction of past selection. For example, if one population adapted to new conditions427

via dominant mutations, while the other remained in their shared ancestral habitat, then we would expected428

both m(∆,∆)−M(∆,∆) and m(A,∆)−M(A,∆) to be positive, as well as m(A,A)−M(A,A). It follows,429

therefore, that the analysis of hybrid fitness might tell us not only about the presence of past directional430

selection (e.g. Fraser, 2020), but also about the direction of that selection, and the lineage in which the431

adaptation occurred (see Figure 2; Table 4).432

Ifm(A,A)−M(A,A) is negative, then inferences about the evolutionary divergence are more challenging,433

since negative values can arise in a number of different ways (see Figures 2 and 4 and Table 4). Nevertheless,434

even in this case, the dominance and interaction terms might yield useful information. Consider, for example,435

a pair of populations with similar current phenotypes and fitness, but which nonetheless produce unfit436

hybrids, due to m(A,A) −M(A,A) � 0. In this case, an estimate of m(∆,∆) −M(∆,∆) ≈ 0 would437

not be very informative, as it can arise under stabilizing selection, fluctuating selection, or even directional438

selection if Haldane’s Sieve is weak (Orr and Betancourt, 2001). However, a strongly positive estimate439

of m(∆,∆) −M(∆,∆) would be consistent with the populations having diverged via different genomic440

responses to identical directional selection (Figure 2 scenario I). By contrast, if this dominance term were441
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negative, and the interaction term was also non-zero, then this would be consistent with one of the populations442

having undergone prolonged periods of low Ne, and fixing deleterious recessive mutations (Figure 4D). The443

sign of the interaction term, m(A,∆) −M(A,∆), would then tell us which of the two populations had444

experienced the low Ne. Note that, from eq. 13 the result would be alleles from one parental line being445

selected against, despite the lines having equal fitness (Barton, 1992).446

A major caveat of all of the results presented here is the extreme simplicity of the phenotypic model447

(with its lack, for example, of phenotypic epistasis, and directional plasticity; Stamp and Hadfield, 2020).448

However, this model can be defended as an approximation of more complex and realistic models (Martin,449

2014), or simply as a way of generating a fitness landscape with few parameters (Simon et al., 2018). In this450

case, as shown in Appendix 1, we can follow Chevin et al. (2014), and reframe our results in terms of fitness451

effects, rather than phenotypic changes. Of course, even as a fitness landscape, the quadratic model of eq.452

1 remains very simple, and precludes strong fitness epistasis and multi-locus fitness interactions (Barton,453

2001; Martin et al., 2007; Fräısse and Welch, 2019) – both of which are often observed in cross data (Coyne454

and Orr, 2004; Fräısse et al., 2014, 2016). Yet even in the presence of such effects, results might still apply455

to transformed fitness measurements (Fräısse et al., 2016; Simon et al., 2018; Schneemann et al., 2020).456

A second major caveat is our neglect of linkage disequilibrium (Lande, 1981; Schneemann et al., 2020),457

which is essential to studying the full dynamics of introgression. Nevertheless, even the current results458

have suggestive implications for the stability of local adaptation, and the evolution of genetic architectures459

(Dekens et al., 2021; Yeaman, 2022). For example, the dominance of alleles may be a major determinant of the460

effective rates of migration between demes, and the possibility of allele swamping (Barton, 1992). Directional461

dominance, resulting from local adaptation, may therefore act as a source of asymmetric gene flow between462

derived and ancestral populations. Similarly, a body of previous work suggests that the architecture of463

adaptation will be affected by the presence or absence of gene flow (as reviewed in Yeaman, 2022). In464

particular, adaptation in the face of gene flow should create architectures that are more “concentrated”, i.e.,465

involving fewer, larger effects, and tighter linkage. Combined with results here (eq. 20), this implies that466

ongoing gene flow during local adaptation might sometimes increase the strength of resulting intrinsic RI.467
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Table 4: Inference of divergence scenario from the signs of terms in eq. 13

Scenario Figure Additive Dominance Interaction

Neutrality, or erratically wandering optimum Fig. S1 0 0 0

Divergent selection, acting only in P1 – + +1 -1

Divergent selection, acting only in P2 Fig. 2-V&VI + +1 +1

Divergent selection where both populations evolve
in similar phenotypic directions

Fig. 2-II + +1 0

Divergent selection where both populations evolve
in dissimilar phenotypic directions

Fig. 2-III + 0/-1 0

Stabilizing selection; most evolution in P1 Fig. 4B&D, and S2-S3 - 0/-2 0/-2

Stabilizing selection; most evolution in P2 – - 0/-2 0/+2

Stabilizing selection; evolution in both populations Fig. 4A&C, and S1-S3 - 0 0

Cyclically moving optima Fig. 2-IV - 0/-1 0

Independent genetic responses to identical direc-
tional selection in both populations

Fig. 2-I - +1 0

Note: Additive: m(A,A) −M(A,A), Dominance: m(∆,∆) −M(∆,∆), Interaction: m(A,∆) −M(A,∆);
1. Only if Haldane’s Sieve acts.; 2. Weak without mutational bias towards phenotypically recessive mutations.

Methods468

Derivation of main result469

We assume that individuals from our two diploid parental populations, P1 and P2, vary at D biallelic loci.470

We can arbitrarily choose one allele at each locus to be the focal allele, denoted B, such that the other allele471

can be denoted b. Since loci are assumed to be independent, let us first specify the genetic model for a472

single locus, following the standard conventions of quantitative genetics (e.g. Lynch and Walsh, 1998, Ch.473

4). Accordingly, we define the contribution of the bb genotype to the trait j as 0, so that the point (0, 0, ..., 0)474

in n-dimensional trait space corresponds to the individual with only bb genotypes at each of the D loci. The475

contribution of the Bb genotype on locus i to the trait j is defined as aij + dij , and the contribution of the476

BB genotype on locus i to trait j is 2aij . This is summarized in Table 5.477

Table 5: The genotypic values for locus i and trait j

Locus i genotype Contribution to trait j
bb 0
Bb aij + dij
BB 2aij

18



Properties of the three focal populations478

Here we will specify properties of three key populations, namely the two parental populations, P1 and P2,479

and the initial F1 cross. Crucially, these populations correspond to the three possible ancestry states of any480

given locus in the hybrid, i.e. either both alleles are derived from P1, or both from P2, or there is mixed481

ancestry with one allele derived from each population. Table 6 gives a list of fundamental parameters in our482

model in each of these three populations.483
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Table 6 begins by defining the marginal frequency of the focal (B) allele at locus i as qP1,i and qP2,i484

in populations P1 and P2 respectively. The marginal frequency of the B allele in the F1 population is the485

mean of the marginal frequencies in P1 and P2, denoted q̄i. By assumption, the two parental populations486

are at Hardy-Weinberg equilibrium, but the F1 population will have an excess of heterozygotes, which can487

be parameterized by a negative coefficient of inbreeding, fi. The frequencies of the three possible genotypes488

at the locus, bb, Bb and BB, then follow from standard results (e.g., Lynch and Walsh, 1998, eqs. 4.21).489

The F1 genotype frequencies can also be written in terms of the parental allele frequencies (for example, the490

F1 bb frequency is the product of the marginal frequencies of the b allele in P1 and P2), which allows us491

to solve for the inbreeding coefficient, as shown in the Table. The next lines of the Table follow standard492

quantitative genetics (e.g. Fisher, 1930; Cockerham, 1954; Lynch and Walsh, 1998, Ch. 4) and define the493

average effects and dominance deviations of an allelic substitution at the locus in each of the populations494

(see, e.g., eqs. 4.10b and 4.22 in Lynch and Walsh, 1998).495

These are all of the results needed to derive eqs. 3-6. Let us begin with the contribution to the mean of496

trait j from locus i in populations P1 and P2. This is given by the sum of the three genotype frequencies in497

the population, weighted by their trait contributions, as given in Table 5.498

z̄P1,ij = 2aijq
2
P1,i + (aij + dij) · 2qP1,i(1− qP1,i) (27)

z̄P2,ij = 2aijq
2
P2,i + (aij + dij) · 2qP2,i(1− qP2,i) (28)

in populations P1 and P2 respectively. Equation 3 then follows immediately as499

Aij ≡ 1
2 (z̄P2,ij − z̄P1,ij) = 1

22aij (qP2,i − qP1,i) + 1
2dij (2qP2,i(1− qP2,i)− 2qP1,i(1− qP1,i)) (29)

= aij (qP2,i − qP1,i) + dij (qP2,i − qP1,i) (1− qP1,i − qP2,i)

= αij (qP2,i − qP1,i)

where the mean average effect is defined as500

αij ≡ 1
2 (αP1,ij + αP2,ij) = aij + dij(1− qP1,i − qP2,i) (30)

Similarly, to derive eq. 6, we use the genotype frequencies for the F1 as shown in Table 6, to yield the501

contribution of locus i to the mean of trait j in the F1502

z̄F1,ij = 2aijqP1,iqP2,i + (aij + dij)(qP1,i(1− qP2,i) + qP2,i(1− qP1,i)) (31)

and so it follows that503

4ij ≡ z̄F1,ij − 1
2 (z̄P2,ij + z̄P1,ij) = 2aij

(
1
2 (qP2,i + qP1,i)− 1

2 (qP2,i + qP1,i)
)

(32)

+ dij
(
qP2,i(1− qP1,i) + qP1,i(1− qP2,i)− 1

2 (2qP2,i(1− qP2,i) + 2qP1,i(1− qP1,i))
)

= dij (qP2,i − qP1,i)
2

= δij (qP2,i − qP1,i)
2

which is equation 6, and where the mean dominance deviation is simply504

δ̄ij = 1
2 (δP1,ij + δP2,ij) = dij (33)

Having defined the mean trait values of each population, let us now consider their variances. The505

contribution of locus i to the variance in trait j in population P1 is506
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Var (zP1,ij) = E(z2
P1,ij)− z̄2

P1,ij (34)

= (2aij)
2
q2
P1,i + (aij + dij)

2 · 2qP1,i(1− qP1,i)

− (2aijq
2
P1,i + (aij + dij) · 2qP1,i(1− qP1,i))

2

= α2
P1,ijqP1,i(1− qP1,i) + (2qP1,i(1− qP1,i)δij)

2

= σ2
α,ij(P1) + σ2

δ,ij(P1)

where we have partitioned the result into an additive variance and a dominance variance term, as listed507

in Table 6, and following eqs. 4.12 of Lynch and Walsh (1998). Similarly for P2,508

Var (zP2,ij) = α2
P2,ijqP2,i(1− qP2,i) + (2qP2,i(1− qP2,i)δij)

2 (35)

= σ2
α,ij(P2) + σ2

δ,ij(P2)

and for the F1509

Var(zF1,ij) = (2aij)
2qP1,iqP2,i + (aij + dij)

2(qP1,i(1− qP2,i) + qP2,i(1− qP1,i)) (36)

= σ2
α,ij(F1) + σ2

δ,ij(F1)

which all agree with results in Cockerham (1954). So far, we have given the contributions of a single locus510

to a single trait. The general results, found in Table 1, simply require summing over all loci i = 1, ..., D and511

all traits j = 1, ..., n. That is, we can write the sums of trait variances for P1, P2 and F1 as512

VP1 ≡
n∑
j=1

D∑
i=1

Var(zP1,ij) =

n∑
j=1

D∑
i=1

(
σ2
α,ij(P1) + σ2

δ,ij(P1)
)

(37)

VP2 ≡
n∑
j=1

D∑
i=1

Var(zP2,ij) =

n∑
j=1

D∑
i=1

(
σ2
α,ij(P2) + σ2

δ,ij(P2)
)

(38)

VF1 ≡
n∑
j=1

D∑
i=1

Var(zF1,ij) =

n∑
j=1

D∑
i=1

(
σ2
α,ij(F1) + σ2

δ,ij(F1)
)

(39)

Extension to an arbitrary hybrid513

Now, to derive the results found in Table 1 and eq. 13, let us consider an arbitrary hybrid. Let us begin by514

parameterizing the hybrid’s genome using the probabilities p1, p2 and p12, which are the probabilities that515

a randomly chosen locus in the hybrid is in each of the three possible ancestry states. That is, p1 is the516

probability that a randomly chosen locus in the hybrid inherits both alleles from the P1 population, p2 that517

it inherits both alleles from the P2 population, and p12 that it inherits one allele from each population (as518

with all loci in the F1). It therefore follows that519

p1 + p2 + p12 = 1 (40)

We also define the hybrid index520

h = p2 + 1
2p12 (41)
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as the probability that a randomly chosen single allele in the hybrid has P2 ancestry.521

Using results in Table 6, it then follows that the probabilities of the BB and Bb genotypes at a locus i522

in the hybrid are523

PBB,i = p1q
2
P1,i + p2q

2
P2,i + p12qP1,iqP1,2,i

:
(42)

= (1− h)q2
P1,i + hq2

P2,i − 1
2p12(qP2,i − qP21,i)

2

PBb,i = p12qP1,i(1− qP1,i) + p22qP2,i(1− qP2,i) + p12 (qP1,i(1− qP2,i) + qP2,i(1− qP1,i)) (43)

= 2(1− h)qP1,i(1− qP1,i) + 2hqP2,i(1− qP2,i) + p12(qP2,i − qP1,i)
2

so the overall marginal probability of the B allele is524

PB,i ≡ PBB,i + 1
2PBb,i (44)

= (1− h)qP1,i + hqP2,i

We can now derive Equation 13. First, the contribution to the mean trait value for the hybrid at locus i525

and trait j is526

z̄H,ij = E(zH,ij) = p1z̄P1,ij + p2z̄P2,ij + p12z̄F1,ij (45)

= z̄P1,ij + 2hAij + p12∆ij

which can be seen by substituting in equations 29 and 32. Summed over the D loci, we have527

E(zH,j) =

D∑
i=1

E(zH,ij) = z̄P1,j + 2h

D∑
i=1

Aij + p12

D∑
i=1

∆ij (46)

Let us now compute E(zH,j − oj)2, which appears in the first term of eq. 9. It will first be useful to528

define the intermediate variable529

Kj ≡ (1− h) (zP1,j − oj)2
+ h (zP2,j − oj)2

+ p12

(
(zF1,j − oj)2 − 1

2

(
(zP1,j − oj)2

+ (zP2,j − oj)2
))

(47)

= (zP1,j − oj)2
+ 4h(zP1,j − oj)

D∑
i=1

Aij + 2p12 (zP1,j − oj)

(
D∑
i=1

∆ij

)
+ 4h

(
D∑
i=1

Aij

)2

+ p12

( D∑
i=1

∆ij

)2

−

(
D∑
i=1

Aij

)2

+ 2

(
D∑
i=1

Aij

)(
D∑
i=1

∆ij

)
such that530

−
n∑
j=1

Kj = (1− h) lnw (z̄P1,o) + h lnw (z̄P2,o) + p12(lnw (z̄F1,o)− 1
2 (lnw (z̄P1,o) + lnw (z̄P2,o))) (48)

which corresponds to the sum of the top three rows for the squared mean term in Table 1.531

Then we find by Equation 46,532
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E2 (zH,j − oj) =

(
zP1,j − oj + 2h

D∑
i=1

Aij + p12

D∑
i=1

∆ij

)2

(49)

= (zP1,j − oj)2
+ 4h (zP1,j − oj)

D∑
i=1

Aij + 2p12 (zP1,j − oj)2
D∑
i=1

∆ij

+ 4h2

(
D∑
i=1

Aij

)2

+ p2
12

(
D∑
i=1

∆ij

)2

+ 4hp12

(
D∑
i=1

Aij

)(
D∑
i=1

∆ij

)

= Kj − (4h(1− h)− p12)

(
D∑
i=1

Aij

)2

− p12(1− p12)

(
D∑
i=1

∆ij

)2

(50)

− 2p12 (1− 2h)

(
D∑
i=1

Aij

)(
D∑
i=1

∆ij

)

Summing over traits and using the definition of the function m(·, ·) in eq. 11, we can see that533

−
n∑
j=1

E2 (zH,j − oj) = (1− h) lnw (z̄P1,o) + h lnw (z̄P2,o) + p12(lnw (z̄F1,o)− 1

2
(lnw (z̄P1,o) + lnw (z̄P2,o)))

+ (4h(1− h)− p12)m(A,A) + p12(1− p12)m(∆,∆) + 2p12(1− 2h)m(A,∆)

as given in the second column of Table 1.534

The calculation for the variance follows in the same way, but is much more involved algebraically. The535

result, as shown in the third column of Table 1, is536

n∑
j=1

Var(zH,j) =

n∑
j=1

D∑
i=1

(2aij)
2PBB,i + (aij + dij)

2PBb,i − (2aijPBB,i + (aij + dij)PBB,i)
2 (51)

= (1− h)VP1 + hVP2 + p12(VF1 +
1

2
(VP1 + VP2))

+ (4h(1− h)− p12)M(A,A) + p12(1− p12)M(∆,∆) + 2p12(1− 2h)M(A,∆)

where VP1, VP2 and VF1 are defined as in eqs. 34-36, and the function M(·, ·) is defined by eq. 12. The537

first equality follows from the definition of variance and the independence of loci. The second follows by538

substituting variables as per their definitions above. Because the full proof is rather lengthy, although539

straightforward, we provide a proof in the form of a Mathematica notebook instead of writing it out here,540

available at https://github.com/bdesanctis/mode-of-divergence.541

Simulations542

The illustrative simulations shown in Figures 2-4, calculated new quantities from runs reported previously by543

Schneemann et al. (2022) (and which were themselves based on the simulation methods reported in Schnee-544

mann et al., 2020). Simulations were individual-based, and used pairs of allopatric (i.e. independently545

simulated) populations. The populations followed the Wright-Fisher assumptions, and contained N simul-546

taneous hermaphrodites, with discrete non-overlapping generations. Every generation, parents were selected547

with a probability proportional to their fitness (as calculated from eq. 1) with n traits under selection. Ga-548

metes were generated from the parental genomes with free recombination among all sites, and mutation. For549

mutation, a Poisson-distributed number, with mean 2NU , of mutations were randomly assigned to unique550
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sites, and we set U = 0.01. The n homozygous effects for each new mutation were drawn from a multivariate551

normal distribution with zero mean and no covariances, and a common variance set such that the mean552

deleterious effects of a mutation in an optimal background was s̄mut = 0.01. The heterozygous effect of each553

mutation on each trait was set at its homozygous effect multiplied by a beta-distributed random number,554

with bounds at 0 and 1 (corresponding to complete recessivity or complete dominance), a mean µ = 1/2555

(implying additivity on average), and a variance of ν = 1/24 (Schneemann et al., 2022). After a total of D556

substitutions had fixed across both populations, the two parental genotypes were chosen as the genotypes557

containing only the fixed effects in each population. For Figures 2-3 one or both populations adapted to a558

optimum at a distance
√

1/2 from its ancestral phenotype. In scenarios I-III, both populations in this way,559

while for scenarios IV-VI, we re-analysed the same simulations, but we treated all substitutions as if they560

had occurred in P2 while P1 remained in their common ancestral state. This was done by the contrivance561

of combining the first 25 substitutions accrued in two simulated populations, ensuring, therefore, that the562

total amount of evolutionary change was identical across all six scenarios.563

Appendix 1: Results with homogeneous parental populations564

In this Appendix, we show (1) how our results apply to data where the ancestry proportions of the hybrid565

genome are known, and (2) how results can be expressed in terms of selective effects, rather than phenotypic566

changes. In both cases, for reasons explained below, we will rely on the additional assumption that parental567

populations are genetically homogeneous. In particular, we will assume that the focal B allele is fixed in P2568

but absent in P1, such that all qP2,i = (1 − qP1,i) = 1. It therefore follows from eqs. 29 and 32 that the569

between-population differences at each locus (eqs. 7-8) correspond directly to the genotypic effects at that570

locus (Table 5) i.e.571

Aij = aij , and ∆ij = dij if qP2,i = (1− qP1,i) = 1 (52)

It will also be useful to rearrange the results shown in Table 1 so that they are expressed in terms of the572

three probabilities p1, p2 and p12 rather than the two probabilities h and p12 (see eqs. 40-41). Accordingly,573

using eqs. 11-12 and 40-41, and substituting in eq. 52 to account for the genetic homogeneity of the parental574

lines, we have the result shown in Table S1.575

Table S1: Components of log hybrid fitness with homogeneous parental populations

Coefficient −
∑n
j=1E

2 (zH − o) −
∑n
j=1 Var (zH)

p1 lnw(zP1,o) 0
p2 lnw(zP2,o) 0
p12 lnw(zF1,o) 0

p1p12 m(a + d,a + d) −M(a + d,a + d)
p2p12 m(a− d,a− d) −M(a− d,a− d)
p1p2 m(2a, 2a) −M(2a, 2a)

Note that with homogenous populations, p1, p2 and p12 are now the probabilities of the three genotypes,576

bb, BB and Bb, as well as the ancestry states. Moreover, the arguments of the functions M(·, ·) and m(·, ·)577

now correspond to the phenotypic effects of inserting single alleles in either heterozygous or homozygous578

state into a fixed background.579

Results with known ancestry proportions580

In the main text, we treated the quantities h and p12 (or equivalently, p1, p2 and p12) as probabilities581

determined by the crossing scheme. However, for some data, the ancestries of hybrids can be estimated582
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directly from genome sequences. Moreover, if the parental populations are genetically homogeneous (as583

assumed in Table S1), then the ancestry proportions for divergent sites can be known with certainty. In this584

section, we show that our results also hold approximately for such data.585

If p1, p2 and p12 are known proportions, instead of probabilities, loci in the hybrid become non-586

independent, but in a simple way so that results can be derived with basic combinatorics. For example,587

given some D, p12 and p2, we can choose any Dp12 out of D sites to be heterozygous, and any Dp2 out of588

the remaining D(1−p12) sites to be homozygous for the allele from the second parental population, so there589

will be a total of590

(
D

Dp12

)(
D(1− p12)

Dp2

)
=

D!

(Dp1)!(Dp2)!(Dp12)!

possible hybrids, and by assumption, each has equal probability. In theory, one could write out the complete591

discrete probability distribution function for the hybrid fitness over all possible hybrids in a given situation.592

One can also compute arbitrary moments using the same indicator function approach as detailed below (see593

also Chevin et al., 2014).594

To calculate expected hybrid fitness, let J1 be the subset of the D loci in the hybrid that are homozygous595

for the P1 allele, J2 be the subset of the loci that are homozygous for the P2 allele, and J12 the subset of596

loci that are heterozygous. The sizes of these sets are then:597

|J1| /D ≡ p1

|J2| /D ≡ p2 (53)

|J12| /D ≡ p12 = (1− p1 − p2)

Since all divergent loci must be in one of these three states, any two of these sets can completely char-598

acterize the hybrid. We can therefore write the j-th trait value of an arbitrary hybrid as:599

zH,j = zP1,j +
∑
i∈J2

2aij +
∑
i∈J12

(aij + dij) (54)

Let us now drop the subscript j for brevity, and calculate the expected squared deviation of the trait600

value from its optimum:601

E((zH,j − oj)2) = E((zH − o)2) = E

(zP1 − o+ 2
∑
i∈J22

ai +
∑
k∈J12

(ak + dk)

)2


= E

(
(zP1 − o)2 + 4

(∑
i∈J22

ai

)2

+

(∑
i∈J12

ai

)2

+

(∑
i∈J12

di

)2

+ 2(zP1 − o)

(
2
∑
i∈J22

ai +
∑
k∈J12

(ak + dk)

)

+ 2
∑
i∈J12

ai
∑
k∈J12

dk + 4
∑
i∈J22

ai
∑
k∈J12

(ak + dk)

)
(55)

In these expressions, the expectations are not over the additive and dominance effects, but over the602

particular set of loci that are homozygous and heterozygous in the hybrid. That is, they are over the sets603

J22 and J12. To obtain expectations over these sets, we define indicator functions.604
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IJ(i) =

{
1 if i ∈ J
0 otherwise

Using x and y as placeholder variables, we can then use these functions as follows:605

E

(∑
i∈J

xi

)
= E

(
D∑
i=1

xiIJ(i)

)
=

D∑
i=1

xiE (IJ(i))

=

D∑
i=1

xiP (i ∈ J) =
|J |
D

D∑
i=1

xi

≡ |J |
D
Sx

where |J | is the size of the set. We have introduced the notation606

Sx,j ≡
D∑
i=1

xi,j

Let us also introduce607

Sxy,j ≡
D∑
i=1

xi,jyi,j

For both, we will again leave out the subscript j for brevity.608

For the square and cross-terms in eq. 55, we use the same approach.609

E

(∑
i∈J

xi
∑
k∈J

yk

)
= E

(
D∑
i=1

D∑
k=1

xiykIJ(i)IJ(k)

)

=

D∑
i=1

xiyiP (i ∈ J) +

D∑
i=1

D∑
k=1,k 6=i

xiykP (i ∈ J ∩ k ∈ J)

=
|J |
D

D∑
i=1

xiyi +
|J | (|J | − 1)

D(D − 1)

D∑
i=1

D∑
k=1,k 6=i

xiyk

=
|J |Sxy
D

+
|J | (|J | − 1)

D(D − 1)
(SxSy − Sxy)

=
|J | (D − |J |)
D(D − 1)

(Sxy − SxSy) +
|J |
D
SxSy

and similarly610

E

(∑
i∈J

xi
∑
k∈K

yk

)
=

D∑
i=1

D∑
k=1,k 6=i

xiykP (i ∈ J ∩ k ∈ K)

=
|J | |K|

D(D − 1)

D∑
i=1

D∑
k=1,k 6=i

xiyk

=
|J | |K|

D(D − 1)
(SxSy − Sxy)
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Now we can combine these results, with eqs. 53 and 55. After some algebra, we obtain611

E((zH − o)2) = (zP1 − o)2 + 2(zP1 − o)((2p2 + p12)Sa + p12Sd)

+ 4p2S
2
a + p12S

2
a + p12S

2
d + 2p12SaSd

+ (4p2(1− p2) + p12(1− p12)− 4p2p12)
D

D − 1

(
Saa − S2

a

)
+ p12(1− p12)

D

D − 1

(
Sdd − S2

d

)
+ (2p12(1− p12)− 4p2p12)

D

D − 1
(Sad − SaSd) (56)

Some rearranging, and summation over traits, yields612

E (lnwH) = p1 lnwP1 + p2 lnwP2 + p12 lnwF1

− D

D − 1
(p1p2 (m(2a)−M(2a)) − p12p1 (m (a + d)−M(a + d)) − p12p2 (m(a− d)−M(a− d)))

(57)

The sole difference between eq. 57 and the results summarized in Table S1 is that the functions m(·, ·)613

and M(·, ·) are now weighted by a new factor D/(D − 1) – which stems from the non-independence among614

loci when true ancestry proportions are known. Note too that D/(D− 1) ≈ 1 when the number of divergent615

sites is large. It follows, therefore, that the results in the main text apply approximately to data with known616

ancestry proportions.617

Results in terms of selective effects618

We will now follow Chevin et al. (2014) and show how results can be expressed in terms of the fitness effects619

of alleles, rather than their phenotypic effects. This implies that the quantities M(·, ·) and m(·, ·), which620

describe the total amount and net effect of evolutionary change, may have a simple interpretation, even when621

the phenotypic model cannot be interpreted literally (e.g. Martin, 2014). We use results in Table S1 rather622

than the more general Table 1, because selection coefficients apply to the heterozygous and homozygous623

effects of alleles in a given background, rather than to the average and dominance effects of substitutions in624

a population. Note also that the results below apply only with the quadratic fitness function of eq. 1, and625

not with other fitness functions with higher curvatures that would allow for complex epistasis (i.e. fitness626

interactions between three or more loci).627

To express the results in Table S1 in terms of fitness effects, let us first consider the net effect of evo-628

lutionary change – a quantity which corresponds to the fitness effects of whole genotypes. For example,629

m(2a, 2a) is simply the fitness of one parental genotype, measured in environmental conditions where the630

alternative parental genotype is optimal:631

m(2a, 2a) = − lnwP2, if lnwP1 = 0 (58)

= − lnwP1, if lnwP2 = 0 (59)

Similarly, m(a + d + d) and m(a− d,a− d) are the fitnesses of the F1 genotype measured in conditions632

where one or other of the parental genotypes is optimal.633

m(a + d,a + d) = − lnwF1, if lnwP1 = 0 (60)

m(a− d,a− d) = − lnwF1, if lnwP2 = 0 (61)
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The total amount of evolutionary change depends on the fitness effects of the individual divergent alleles,634

introgressed one at a time into an optimal background. To see this, let si denote the deleterious fitness635

effect of inserting a single homozygous substitution i into an otherwise optimal background. This selection636

coefficient is defined in the standard way, as s = (w′ − w)/w where w′ (w) is the fitness of the mutant637

(wild-type). For small selection coefficients, we also have si ≈ − ln(1 − si). If the wild-type genotype is638

phenotypically optimal, it follows that639

si ≈ − ln(1− si) =

n∑
j=1

(2aij)
2 (62)

and so, if s̄ denotes the mean selection coefficient across all D substitutions, the total amount of evolutionary640

change is641

M(2a, 2a) = −
D∑
i

ln(1− si) ≈ Ds̄ (63)

Equivalent results hold for M(a±d,a±d) for the heterozygous selection coefficients. It follows therefore642

that the total amount of evolutionary change will be large if the parental lines have fixed many mutations643

with (potentially) large fitness effects.644

We will now show that the difference between the total amount and net effect of change is a measure645

of fitness epistasis. Let us first note that, with the quadratic model of eq. 1, all epistatic interactions are646

pairwise (Martin et al., 2007). If we define sik as the fitness effect of inserting a given pair of substitutions647

into an optimal background, then the pairwise epistatic effect is the log fitness of the double mutant, minus648

the log fitnesses of the two single mutants:649

εik ≡ ln(1− sik)− ln(1− si)− ln(1− sk)

= −8

n∑
j=1

aijakj . (64)

(e.g. Martin et al., 2007). It then follows from eq. 22 that the key quantity for hybrids is650

m(2a, 2a)−M(2a, 2a) = 4

D∑
i=1

D∑
k=1,k 6=i

ai · ak

= − 1
2

D∑
i=1

D∑
k=1,k 6=i

εik

= − 1
2D(D − 1)ε̄ (65)

which agrees with results from Chevin et al. (2014). Equation 64 shows that the sign of the fitness epista-651

sis relates to the tendency of mutations to point in the same direction (Martin et al., 2007; Chevin et al.,652

2014; Fräısse and Welch, 2019). Deleterious mutations with positive epistasis will tend to be compensatory653

(pointing in opposite phenotypic directions), and those with negative epistasis will tend to be synergistic654

(pointing in the same phenoptypic
:::::::::
phenotypic

:
direction); epistasis will be maximally negative when all sub-655

stitutions have identical individual effects, in which case ε = −2s. Note also that m(2a, 2a)−M(2a, 2a) will656

vanish when there is no epistasis on average (ε̄ = 0), as would be the case if the populations accumulated657

randomly-orientated mutations (Martin et al., 2007; Simon et al., 2018; Fräısse and Welch, 2019). Evolu-658

tionary differences that show positive epistasis in an optimal background will tend to increase RI among659

hybrids.660

29



Appendix 2: Further simulations under stabilizing selection661

In this Appendix, we report the results of additional simulations, to explore how the key quantities that662

determine hybrid fitness (Table 1) behave under stabilizing selection.663

The effects of population genetic parameters under stabilizing selection with the664

additive model665

Let us first consider the effects of varying the population genetic parameters, which have also been explored666

in several previous studies (Hartl and Taubes, 1996; Poon and Otto, 2000; Welch and Waxman, 2003; Zhang667

and Hill, 2003; Tenaillon et al., 2007; Lourenço et al., 2011; Chevin et al., 2014; Roze and Blanckaert,668

2014; Barton, 2016), but here, we explicitly report the total amount (M(A,A)) and net effect (m(A,A)) of669

evolutionary change.670

To do this, we re-analysed simulation results from Schneemann et al. (2020) each comprised of 500671

substitutions accrued under stabilizing selection, with a stationary optimum. Overall, 128 conditions were672

simulated, using a fully crossed set of parameters. Here, dominance coefficients were drawn from a uni-673

form distribution bounded at 0 and 1, such that mutations were on average phenotypically additive. The674

parameters varied were (i) the population size (N = 1000, or N = 10), (ii) the mean selection coefficient675

of a new mutation in an optimal background (s̄mut=0.01 or s̄mut=0.0001), (iii) the genomic mutation rates676

(U ∈ {0.01, 0.001, 0.0001, 0.00001}), (iv) the number of traits under selection (n = 2 or n = 20), (v) the677

rate of recombination (either a single chromosome with map length one Morgan, and Haldane’s mapping678

function, such that the mean crossover fraction was c̄ ≈ 0.216; or free recombination among all loci, such679

that c̄ = 0.5), and (vi) the shape of the distribution of mutational effects (either “top down”, where the680

magnitudes of new mutations were drawn from an exponential distribution, with a random orientation in681

n-dimensional space; or “bottom up”, where the mutational effect on each trait was drawn independently682

from a normal distribution; Poon and Otto, 2000). Of these six parameters, four had appreciable effects on683

the results, and these are indicated visually in Figure S1.684

The results in Figure S1 show a few clear patterns. First, and unsurprisingly, populations fixed larger685

changes (larger M(A,A)) when the population size was smaller, and mutations were large (smaller N , larger686

s̄mut). Results for m(A,A) generally support eq. 26, whose value for the four values of n/N are shown by687

the vertical dashed lines (Barton, 2016). The sole exceptions are results with Ns̄mut = 0.001 (empty blue688

points in Fig. S1). In this case, selection was so ineffective that the populations had failed to reach their689

equilibrium level of maladaptation after D = 500 substitutions. In consequence, results fell on the line690

m(A,A) ≈ M(A,A), implying that the evolutionary changes were wandering erratically in phenotypic691

space, as under strict neutrality. In all other cases, the action of stabilizing selection was apparent from the692

fact that m(A,A)�M(A,A).693

We note finally that with higher mutation rates the dependencies on N and n can change (Roze and694

Blanckaert, 2014). This is due to accumulation of linkage disequilibria, not treated in the current work.695

Dominance effects under stabilizing selection696

This section explores stabilizing selection when mutations may be phenotypically dominant or recessive, with697

a particular focus on the evolution of the dominance effects. In all cases, this will involve modifying the698

model of mutational dominance reported in the Methods, to enhance the influence of dominance effects.699

Let us begin with the simulations reported in Figure 4C&D, which are also reported in greater detail700

in Figure S2. These simulations used a mutational model of Schneemann et al. (2022). Under this model,701

as with the standard simulations, the heterozygous effect of a new mutation on a given trait was set to its702

homozygous effect multiplied by a beta-distributed random number with mean µ and variance ν. But in703

this case, both µ and ν were set to vary with the size of the mutation, such that704

30



0.
00

2
0.

01
0

0.
05

0
0.

20
0

1.
00

0

m(A,A)  Net effect of evolutionary change

M
(A

,A
) 

 T
ot

al
 a

m
ou

nt
 o

f e
vo

lu
tio

na
ry

 c
ha

ng
e

10−4 10−3 10−2 10−1 100

(A) Multivariate normal distribution

N
10
103

smut

10−2

10−4

n
2
20

m
(A

,A
) =

 M
(A

,A
)

0.
00

2
0.

01
0

0.
05

0
0.

20
0

1.
00

0

m(A,A)  Net effect of evolutionary change
M

(A
,A

) 
 T

ot
al

 a
m

ou
nt

 o
f e

vo
lu

tio
na

ry
 c

ha
ng

e

10−4 10−3 10−2 10−1 100

(B) Exponential distribution

m
(A

,A
) =

 M
(A

,A
)

Properties of fixed differences under stabilizing selection

Figure S1: The value for the total amount and net effect of evolutionary change under stabilizing
selection depend on model parameters in predictable ways. Simulation results are shown pairs
of populations, diverging under stabilizing selection. Simulations used an additive phenotypic model,
and were halted after D = 500 substitutions have fixed. Each panel contains results from 64
population pairs, using a fully crossed set of population-genetic parameters. Varied were the
population size (N : red versus blue points), the mean selection coefficient of a new mutation in an
optimal background (s̄mut: filled versus unfilled points); and the number of phenotypic traits (n:
circular versus triangular points). Mutation and recombination rates also varied, but neither had a
qualitative effect in the parameter regimes simulated, and so are not indicated visually. (A) shows
results when the mutational effects on each trait were i.i.d. normal. (B) shows results when the
magnitudes of new mutations were drawn from an exponential distribution, with random orientations
in n-dimensional space; In both panels, vertical lines show the expected value of m(A,A) at stochastic
equilibrium (namely n/(8N); eq. 26). This equilibrium was not reached, however, when selection was
very ineffective (Ns̄mut = 10−3: empty blue points), and in this case evolutionary changes wandered
erratically in phenotypic space (such that M(A,A) ≈ m(A,A)).

µ = 1− 1

1 + exp
(
−2 |a|σa

)
ν = (2µ− 1)3 − (2µ− 1) (66)

where σa is the standard deviation in the additive effects of new mutations. The result is that small-effect705

mutations were additive on average (with µ ≈ 1/2), whereas larger effect mutations became increasingly706

recessive (Manna et al., 2011; Billiard et al., 2021). Figure S2G (red curve) shows clearly that, with this707

mutation model, populations evolving under stabilizing selection have a strong tendency to fix phenotypically708

recessive mutations (eq. 21). Now if P1 had fixed wholly recessive mutations (with no phenotypic effect709

in heterozygous form) then it would follow that aij = dij for all loci and traits (see Table 5). If we then710

consider genetically homogeneous parental populations (as in Appendix 1), it would follow trivially that711

m(A,A) = m(∆,∆) = m(A,∆) and that M(A,A) = M(∆,∆) = M(A,∆). In this way, the tendency for712
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highly recessive mutations to fix, explains the similarities of the red lines shown in Fig. S2C, F and I (which713

are plotted together in Figure 4D).714

Note, however, that the fixations were not wholly recessive, and so the red lines are similar, but not715

identical. In particular, a stochastic equilibrium is reached by the red curves in both Figure S2B (eq. 26)716

and Fig. S2H (where the recessive fixations in P1 imply that the F1 will closely resemble P2: eq. 18).717

However, from Figure S3E it is clear that the lack of coadaptation between the dominance effects means718

that their net effect, m(∆,∆), still wanders in phenotypic space, and increases steadily with divergence.719
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Figure S2: The net effect and total amount of evolutionary change predictably under stabilizing
selection, when mutations tend to be phenotypically recessive. The simulations reported
correspond to be shown in Figure 4C-D, and the curves in panels C, F and I replicate those in Figure
4C (blue curves), and Figure 4D (red curves). All simulations used the dominance model of
Schneemann et al. (2022), in which larger effect mutations were more likely to be phenotypically
recessive (eq. 66). All curves show the means across 100 replicate simulations, and shaded areas (often
barely visible) show the standard deviation. Other simulation parameters were N = 100, n = 20 and
U = s̄mut = 0.01.

.

While the results in Figures 4C-D and S2 assumed that mutations will tend to be phenotypically recessive,720

it is not clear that this will hold in nature. This is partly because the traits in Fisher’s model need not721
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correspond to real-world quantitative traits (Martin, 2014), and partly because, under the fitness function of722

eq. 1, mutations can be recessive for fitness, even if they are additive or weakly dominant for the phenotype723

(e.g. Manna et al., 2011).724

As such, we repeated our simulations of stabilizing selection, with no special tendency for mutations to725

be recessive, but also increasing the variance in the dominance effects. To do this, we simply set µ = 1/2726

and ν = 1/12 so that the heterozygous effect of a new mutant was its homozygous effect, multiplied by727

a uniformly-distributed random number. As with the main text simulations, we first assumed that each728

mutation had a unique dominance multiplier on each trait – so that we used n uniform random numbers per729

mutation. However, we also compared this “per-trait dominance” model, to a “per-mutation dominance”730

model, in which the effects on each trait shared a dominance multiplier – so that we used only a single731

uniform random number per mutation. The effect of both of these changes to the mutational model was to732

make it more likely that mutations with extreme levels of dominance would fix, but with no tendency for733

new mutations to be phenotypically recessive. The results of these simulations are shown Figure S3, with the734

“per-trait dominance” results as thinner lines, and the “per-mutation dominance” results as thicker lines.735

Consider first, results for the interaction terms (Figure S3G-I). Figure S3G shows that a tendency to736

fix phenotypically recessive mutations (an increasing M(A,∆)) can occur via a selective sieve without737

mutational bias, but only for some models of mutation – in this case, only for the “per-mutation” model738

(thicker red line), in which each mutation has the same level of dominance on all n traits. However, the739

corresponding negative trend in m(A,∆)−M(A,∆) (Figure S3I) is now very weak – both compared to its740

standard deviation between runs (so that the term will be positive for a substantial proportion of runs) –741

and compared to negative trend in the additive term (Fig. S3C).742

Consider finally results for the dominance effects (Figure S3D-F). Remarkably, the trend in Figure S3F743

is opposite of that shown in Figure S2F, with a weak tend for dominance effects to point in same phenotypic744

direction. This applies in all cases, including when the sole evolving population tended to fix phenotypically745

recessive alleles. Note, however, that this tendency is again weak - both compared to its standard deviation746

and the negative trend in the additive term (Fig. S3C). The upshot is, at least in the models we simu-747

lated, dominance terms will be difficult to interpret in the absence of a mutational bias towards phenotypic748

recessivity.749
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Figure S3: Dominance effects can show weak directionality under stabilizing selection, even without
a tendency for mutations to be phenotypically recessive. Simulation results under stabilizing
selection, with a stationary optimum. Compared to the main text simulations, the variance in the
dominance effects of mutations was increased (by drawing dominance multipliers for each mutation
from a uniform distribution with µ = 1/2 and ν = 1/12), and we also compared our standard model
(“per-trait dominance”) to a model in which each mutation was equally dominant or recessive on all n
traits (“per-mutation dominance”). Lines and shaded areas represent the mean and one standard
deviation across 200 replicate simulations. Other simulation parameters were N = 10, n = 20 and
U = s̄mut = 0.01

.
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