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ABSTRACT  12 

Domestication is a The process marked by of domestication involves a complex 13 

interactionsinterplay between concurrent demographic changes and selective pressures, which 14 

together shape genetic diversity.changes. While we can readily observe the phenotypic 15 

outcomeseffects of domestication are well documented, its , the genetic basis—particularly the 16 

dynamicsconsequences of domestication often remain elusive. Artificial selection—remain 17 

less well understood.  can alter the selection coefficients of both new and pre-existing genetic 18 

variation within domesticated populations. To investigate these dynamicsthis, we 19 

performedconducted simulations using a combination of population genomic parameters 20 

designed to approximatereflect the demographic history ofdomestication process observed in 21 

large domesticlivestock mammals. TheseOur study uses forward-in-time simulations used 22 

selection coefficients as a modeling tool to represent changes in selection pressures, 23 

recognizing that such coefficients are abstractions rather than direct representations of 24 

biological reality. Specifically, we analyzedexamine the 1D and 2D site frequency spectra 25 

(SFS) under varying distributionsof mutations in two populations that have diverged since the 26 

domestication split. In total, we examined eighteen different scenarios, varying the strength of 27 

selection acting on beneficial mutations and the proportion of mutations with altered selection 28 

coefficients post-domestication. First, we re-evaluate how linked selection and fluctuating 29 

selection coefficients affect the accuracy of inferred demographic histories. Second, we find 30 

that certain aspects of the full distribution of fitness effects (DFE) and proportions of mutations 31 

with divergent selective pressures. Our results show that the discretized), such as the shape and 32 

strength of the deleterious DFE, can be reliably inferred from the accurately estimated in both 33 

populations using only the 1D-SFS of a single population, but reconstructing. However, the 34 

accurate characterization of the beneficial DFE and demographic history remains challenginga 35 
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challenge, even when using the joint SFS of both populations. We further developed2D-SFS. 36 

Third, using a novel joint DFE model, we are able to quantify the fraction of mutations that 37 

have experienced a change in their selection coefficient (pc) during domestication. 38 

Interestingly, classic hard selective sweeps can mimic a substantial increase in pc, even when 39 

the simulated pc was initially zero. In summary, our work highlights the strengths and 40 

limitations of detecting changes in the DFE using a novel joint DFE inference model to estimate 41 

the proportion of mutations with divergent selection coefficients (pc), although we found that 42 

signals of classic hard sweeps can mimic increases in pc, complicating interpretation. These 43 

findings underscore both the utility and limitations of DFE inference and highlight the need for 44 

caution when model and emphasizes the risks of over-interpreting demographic histories in 45 

domesticated populations based on such modeling assumptions.across a range of realistic 46 

domestication scenarios.  47 

Keywords: Domestication, DFE, demography, selective sweeps, linked selection, 2D-SFS, 48 

forward-in-time simulations.  49 
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INTRODUCTION 51 

The increase in human population and the emergence of modern society are closely linked to 52 

the domestication of plants and animals (Purugganan and Fuller 2009; Driscoll et al. 2009; 53 

Larson and Burger 2013; Amills et al. 2017). Human civilization it was made possible 54 

throughby the domestication of surrounding life forms, where humans began to domesticate 55 

plants and animals such as wheat, dogs, pigs, or chickens were among the first to be 56 

domesticated (Dayan 1994; Zeder et al. 2006; Zeder 2012, 2015; Redding 2015; Avni et al. 57 

2017). Domestication is a process that fostersallows humans and other species to establish a 58 

long-term mutualistic relationship, providing that provides benefits to both humans and 59 

domesticated species (Zeder et al. 2006). This processHuman domestication of fauna and flora 60 

began approximatelyabout 10-15 thousand years ago and continues to this dayis still ongoing 61 

(Larson and Burger 2013; Zeder 2015).  62 

Despite its foundational role in Although human civilization, our is based on domestication, 63 

we still lack a complete genomic and evolutionary understanding of domestication remains 64 

incomplete.. Domestication occurs rapidlyis a rapid process on the evolutionary time scale, but 65 

it is not a discrete event; rather, it involves and implies the gradual refinementimprovement of 66 

domesticated traits. ArtificialIt is believed that human-induced artificial selection during 67 

domestication is often assumedcan be expected to be relatively stronger and therefore faster 68 

than natural selection. However, evidence from in plants suggestsit has been shown that the 69 

evolutionary rate of domesticated varieties can beis similar to that of wild plants, 70 

indicatingsuggesting a process more akinsimilar to natural selection (Purugannan and Fuller 71 

2010).  72 

Domestication is also commonly In addition, domestication tends to be associated with 73 

population bottlenecks; where only a small subsetnumber of individuals from athe wild 74 

population are domesticated, potentially reducingwhich is expected to reduce the efficiency of 75 

natural selection (Wright et al. 2005). An additional distinctionAnother important difference 76 

between natural and artificial selection is thethat modern breeders typically use of truncation 77 

selection by modern breeders -a method that selects, which is the selection of the top percentage 78 

of individuals for the desired traitstrait (Granleese et al. 2019). The prevalence of truncation 79 

selection in natural populations nature, or prior to industrialization remains, is unknown. 80 

Truncation selection is anknown to be a simple and efficient form of directional selection 81 

(Crow and Kimura 1979), and significant no severe accumulation of genetic load accumulation 82 
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is unlikelyexpected in outcrossing species (Kondrashov 1988; Ohta 1989) if the population 83 

sizes remain sufficiently size remains large enough (Marsden et al. 2016).  84 

A recent comprehensive meta-analysis of the genetic costs of domestication (Moyers et al. 85 

2018) revealedfound that domesticated populations generally carry more deleterious variants,  86 

are more numerous (or segregate at higher frequencies, ) in domesticated populations compared 87 

to their wild counterpartsrelatives. However, this pattern ismay not universalbe general, as 88 

evidenced by studiesseen in sorghum (Lozano et al. 2021). Such patterns are This pattern is 89 

likely driven by multiplea number of processes that collectively reduce the effectiveness of 90 

selection in domesticated populations, a conceptas first observedsuggested in rice genomes (Lu 91 

et al. 2006).  92 

Selection, both natural and artificial, can actoccur through either a few loci with strong effects 93 

or many loci with small effects, (Jain and Stephan 2017a; b), depending on the genetic 94 

architecture of the trait and the strength of selection (Jain and Stephan 2017a; b). These two 95 

selection models are expected to produce distincton it. Different patterns of genetic diversity 96 

around selected loci are expected in response to these two models of selection (Stephan and 97 

John 2020). Classic hard selective sweeps have been reported at a few candidate loci for 98 

keyamong important domesticated traits (reviewed by Andersson 2012), such as the IGF2 gene 99 

region associated with lean domesticated pigs (Van Laere et al. 2003), the thyroid-stimulating 100 

hormone receptor (TSHR) in domesticated chickens (Rubin et al. 2010), andor the sh4 and 101 

qSW5 loci related to seed shattering and grain width in rice ((Shomura et al. 2008; Li et al. 102 

2018; ) involved in the traits of seed shattering and grain width, respectively, in domesticated 103 

rice (Huang et al. 2012). These cases reflectexamples are consistent with a simple Mendelian 104 

genetic architecture, wherein which a small number offew loci explainaccount for most of the 105 

phenotypic variance (see Courtier-Orgogozo and Martin 2020 in the domesticated trait (for a 106 

comprehensive list of genes related to domestication). In short, genomic analyses of 107 

domestication have traditionally focused on identifying strong selection footprints, often driven 108 

by loci with large effects responsibleimportant for phenotypic differences (e.g. Groenen et al 109 

2012; Carneiro et al 2019; Qanbari et al 2019; Li et al 2020). However, Leno-Colorado et al. 110 

(2022) found that domesticated and wild pig populations did not differ in the number and type 111 

of non-synonymous fixed mutations, contradicting the idea that most domesticated traits follow 112 

a Mendelian genetic architecture. Thus, the hard selective sweep model may be the exception 113 

rather than the rule in pigs domestication. 114 
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In this study, we investigate the genomic consequences of domestication by modeling and, see 115 

Courtier-Orgogozo and Martin 2020).  116 

Polygenic adaptation, on the other hand, describes a process in which a constellation of small 117 

changes in allele frequencies modify differences in the trait under selection, where a trait is a 118 

phenotypic trait but also can be the fitness itself. A wide range of population genetic models 119 

and simulations have been examined to describe polygenic adaptation (e.g., de Vladar and 120 

Barton 2014; Stephan 2016). Some models analyze the polygenic response of a trait in the 121 

presence of mutation and stabilizing selection (de Vladar and Barton 2014; Stephan and John 122 

2020), while others capture the response of a trait under mutation and stabilizing or directional 123 

selection following an environmental change in a finite size population (Jain and Stephan 124 

2017a; Devi and Jain 2023). In practice, polygenic adaptation using genetic data is harder to 125 

detect than classic selective sweeps (Pritchard et al. 2010), but the combined use of phenotypic 126 

data together with genetic data can detect the selective effect of quantitative traits (e.g., Chen 127 

et al. 2021, Berg and Coop 2014). Polygenic adaptation has been detected in some specific 128 

studies in wild, domesticated and experimental evolution populations (Barghi et al. 2019; Reid 129 

et al. 2023; He et al. 2023).  130 

In this study, we ask to what extent we can detect a genomic signal of domestication using a 131 

different approach: comparing the full distribution of fitness effects (DFE) foron new and 132 

standing genetic variation. A change in the selection regime can be modeled in different ways: 133 

as shifts in selection coefficients, as done here, or alternatively, as changes in the optimal value 134 

of a quantitative trait determined by a set of loci whose effects on fitness depend on their 135 

contribution to the trait and the genetic background they are in. In our approach, we infer the 136 

joint DFE for To do this, we inferred the full DFE of new non-synonymous mutations in wild 137 

and domesticated populations using selection coefficients as abstractions to approximate the 138 

effects of selection. This allows us to quantify the proportion of shared genetic variants 139 

(modeled as) having diverging selection pressures, providing insights into how selective 140 

regimes may differ between these populations. We recognize that alternative frameworks, such 141 

as quantitative trait models, may offer complementary perspectives on the genetic 142 

consequences of domestication. 143 

Previous studies estimating the. The DFE have primarily relied on of new deleterious mutations 144 

has previously been estimated by contrasting the site frequency spectrum (SFS)1D-SFS of 145 

synonymous and non-synonymous mutations within a single population (1D-SFS). These 146 
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methods assumefrom a variety of species, assuming that beneficial mutations contribute only 147 

to divergence but not to polymorphism due to their rapid fixation in the population (Keightley 148 

and Eyre-Walker 2007; Boyko et al. 2009; Kim et al. 2017; Tataru et al. 2017; Barton and 149 

Zeng 2018). Tataru et al. (2017) developedproposed a model, polyDFE, to infer the full DFE 150 

and the proportion of adaptive substitutions (α) using only polymorphism data alone. They also 151 

proposed nested models to test whether the parameters of the DFEs are shared between 152 

populations.. Castellano et al. (2019) applied polyDFE to compare the full DFE of new amino 153 

acid mutations across great apes and found that the shape parameter of the gamma deleterious 154 

DFE is likely conservedconstant across thesethis set of closely related species. However, 155 

populations that have diverged much moreMore recently than great apes -such as domesticated 156 

and wild populations- tend to share a large number of genetic variants. To better leverage this 157 

shared variation, Huang et al. (2021), a new method using 2D-SFS has been proposed using 158 

the SFS of both populations simultaneously (2D-SFS) to jointly estimate the deleterious DFE. 159 

Traditional  between two populations that recently diverged and share many polymorphisms 160 

(Huang et al. 2021). Inference on 1D-SFS-based methods only provide access to the marginal 161 

DFE of the population without the need for shared variants, as they do not focus on the selection 162 

coefficients of individual mutations. In contrast, joint 2D indicates that the inference, while 163 

more limited in applicability due to its reliance on substantial shared genetic variation, offers 164 

the advantage of quantifying the stability of the direction and intensity of natural selection on 165 

individual mutations of the parameters for a given model are made considering the SFS of a 166 

single population. Instead, the joint inference on 2D-SFS indicates that the inference is made 167 

considering the joint SFS distribution of two populations together. Note that the inference of 168 

parameters in case considering two populations can also be performed separately (which 169 

implicates the inference of parameters for each separated population -that is, the marginal 170 

distribution-), which is less informative. 171 

Inferring the demographic history of domesticated populations is as important as inferring the 172 

change in the selection regime between domesticated and wild populations. Demographic 173 

processes associated with domestication have been studied across several species (Morell 174 

Miranda et al., 2023; Arnoux et al., 2020; Murray et al., 2010), with key events such as 175 

population splitsHowever, few studies have compared the DFE between domesticated and wild 176 

populations (Leno-Colorado et al. 2022). First, the analysis of differences between wild and 177 

domesticated individuals has been focused on finding large effects that determine the 178 

phenotypic differences between these two groups. Therefore, DFE does not appear to be an 179 
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adequate method for detecting candidate regions, as DFE considers the entire distribution of 180 

selective effects and appears to be blind to single events. Second, the split between wild and 181 

domesticated groupspopulations is very recent (expected to be no more than 10K years), 182 

suggesting that the DFE of these two populations would be very similar or identical. Third, 183 

methods to detect subtle differences in DFE between two closely related populations have not 184 

been developed. For example, polyDFE (Tataru et al. 2017) does not infer a joint DFE, but 185 

rather infers and tests the marginal DFEs.  186 

On the other hand, the study of the demographic processes involved in domestication has been 187 

addressed in several species (e.g., Morell Miranda et al. 2023, Arnoux et al. 2020, Murray et 188 

al. 2010), where the split between wild and domesticated populations, bottlenecks, and gene 189 

flow beingevents between these two populations have been inferred. These studies have , also 190 

considered the influence ofconsidering multiple selective sweeps (Caicedo et al.,. 2007). 191 

However, it has been demonstrated that ignoring background selection when analyzing 192 

demographic patterns can result in biased estimates It has also been shown (Torres et al.,. 2020; 193 

Comeron, 2017;) that ignoring deleterious selective effects in the study of demographic 194 

patterns, can lead to biased estimates of silent variability patterns (see also Comeron 2017, 195 

Beissinger et al., 2016). We will revisit this issue and provide broader context in the results and 196 

discussion. 2016). Thus, some efforts have been driven to infer the DFE and demography 197 

together to avoid deviations from the true value (Johri et al. 2020). 198 

Several studies have been focusing on the significant distortions in the DFE shape caused by 199 

the effect of linked selection (e.g., Gilbert et al. To gain insights into2021, Johri et al 2021, 200 

Shrider et al. 2016). Particularly, Johri et al. (2021) studied how direct and indirect negative 201 

selection affect the inference of complexpopulation demographic histories and the DFE in the 202 

context of domesticationhistory. Their results point out the bias caused by background selection 203 

even after masking functional genomic regions and propose an ABC method to jointly infer 204 

demography and the deleterious DFE. On the other hand, Gilbert et al. (2021), utilized SLiM 205 

simulations (Haller and Messer 2019) to evaluate the effect of linked selection and inbreeding. 206 

They observed a marked effect on the inference of demography and on DFE parameters caused 207 

by extreme inbreeding patterns, but more accurate inference on outbreeding populations. They 208 

also observed severe deviations of real parameters caused by linkage selection, especially in 209 

regions with low recombination or high gene density. In scenarios where they included 210 

beneficial mutations, the inferred negative DFE was significantly deviated to an excessive 211 
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proportion of mutations at moderate-low negative effects. In another interesting study Shrider 212 

et al. (2016) show that positive selection can lead to the mis-inference of parameters and even 213 

infer changes in the population size when no change occurred, pointing to the effect of linked 214 

selection as the cause of the misinference.   215 

Here, we employuse forward-in-time simulations of an idealizedthat consider the 216 

domestication process. These simulations explore various under different demographic and 217 

selective scenarios, enabling usmodels to evaluatestudy the abilitycapacity to detect the 218 

selective differences in selective pressures between these two (domesticated and wild) 219 

populations. We simulate a rangeSeveral combinations of genetic architectures and selective 220 

effects, including: (1) Models with  (both beneficial and deleterious) have been simulated, 221 

ranging from one that considers a relatively small number of loci undergoing changes in that 222 

change their selective effects and (2) models where numerousto another that considers 223 

polygenic adaptation (considering fitness as a trait) where many loci exhibithave divergent 224 

selective effects. We also play with the rate and mean effect of beneficial mutations to 225 

understand the role of selective sweeps. Importantly, we introducerelease a novelnew 226 

methodology based on Huang et al. (2021) that incorporatesthat includes an additional 227 

parameter critical for distinguishingthat is crucial to distinguish populations experiencingin 228 

processes of rapid selective change:; the selective effects of a fraction of the existing variants 229 

can change (e.g., from deleterious to beneficial to deleterious, orand vice versa) in the 230 

domesticated populationspopulation. This method jointly infers the full DFE parameters for 231 

bothof wild and domesticated populations, including shifts in the selective effects of shared 232 

variants. Finally, wethe inference of changes (i.e., beneficial to detrimental or vice versa) 233 

between them. We also describe and discuss how linked selection and changes inchanging the 234 

DFE impair our ability to accurately inferdeform the true simulatedrecovered demographic 235 

histories.  236 

 237 

 238 

  239 
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MATERIALS AND METHODS 240 

Simulation of the Domestication Process 241 

A simulation analysis of an idealizedthe domestication process is developed using the forward-242 

in-time simulator SLiM4 (Haller and Messer 2023). The general model of the domestication 243 

process is developed in the SLiM script available in github 244 

(https://github.com/CastellanoED/domesticationDFE) and Zenodo 245 

(https://zenodo.org/records/14277802). Twenty-four). Eighteen different domestication 246 

scenarios are analyzed, and the parameters for each scenario are shown in Table 1. All options 247 

(flags) used to run the SLiM script are also available in github 248 

(https://github.com/CastellanoED/domesticationDFE(https://github.com/CastellanoED/domes249 

ticationDFE/blob/main/slim_code_mod4_NEW.slim).). We aim to model a general 250 

domestication process that resembles the genomic configuration, generation time, mutation and 251 

recombination landscape relevant to large domesticated mammals used as livestock. Note that 252 

we are not considering the recent processes of genetic improvement performed by commercial 253 

companies in the last decades. The constructed model assumes a genome containing a single 254 

chromosomal "chunk" or window, with 10,000 loci/exons of 120 base pairs in length, and each 255 

locus/exon with one-third (4-fold) neutral synonymous positions and two-thirds (0-fold) 256 

selected non-synonymous positions scattered along the locus.  257 

The simulation parameters for each scenario (Figure 1A) are as follows: the initial population 258 

at time 0 run for 10*Ne generations to reach mutation-selection-drift equilibrium, 259 

then splits into the domesticated and wild populations. Hereafter we refer to the Wild and 260 

Domesticated populations. We aim to mimic a realistic but still general domestication process 261 

in large livestock mammals where ancestral Ne (Na) estimates are on average around 10,000 262 

(Murray et al. 2010; Groenen et al. 2012; Larson et al. 2014; Frantz et al. 2015; Yang et al. 263 

2016; Librado et al. 2021; Todd et al. 2022) and the domestication process, according to 264 

archeological records, started around 10,000 years ago (Ahmad et al. 2020). The average 265 

generation time in these large domesticated mammals is about 5 years per generation (Pacifici 266 

et al. 2013). Note that in this study we had to reduce the population size and related population 267 

parameters below from 10,000 diploid individuals to NaNe=5,000 diploid individuals for 268 

computational reasons.  269 
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Genomic parameters: The mutation rate per site (μ) and generation is 2.5x10-7, and the 270 

population size (NaNe) is 5,000 diploid individuals, thus the expected θ under neutrality is 271 

0.005. Each locus is separated from its neighbors by 3x10-6 recombination events per 272 

generation. The recombination rate per site and generation within the loci is fixed to a rate of 273 

1.5x10-7 recombination events per site. Note that the higher recombination between loci aims 274 

to mimic their real genetic distance separation (assuming a functional site density of 5%) - this 275 

greatly speeds up the simulation as non-coding sites do not need to be simulated. In other 276 

words, we simulate 120 Kb of coding sequence in each run, which is equivalent to simulating 277 

a 2.4 Mb chromosome window with 5% coding sites. We perform 100 independent runs for 278 

each of the twenty-foureighteen scenarios.  279 

Demographic parameters: The Domesticated populations of 5,000 diploid individuals suffer 280 

a bottleneck, reducing their population size temporarily to 200 diploid individuals, to recover 281 

again to 5,000 diploid individuals after the bottleneck. The bottleneck lasted 100 generations. 282 

The simulation finishes 900 generations after the bottleneck. In twelvenine of the twenty-283 

foureighteen simulated scenarios we allow that a ratio of 0.011% of the Wild individuals 284 

migrate to the Domesticated population during the 100 generations of the bottleneck. Thus, 285 

during the bottleneck 25% of the domesticated population comes from theis wild population 286 

every generation.. In the other twelvenine combinations there is no exchange of individuals 287 

between the Wild and Domesticated populations. This demographic history is equivalent to a 288 

1,000 years long bottleneck followed by a 9,000 years long recovery in an ancestral population 289 

with 10,000 diploid individuals and a generation time of 5 years.  290 

DFE parameters: the. The selective effects produced by domestication are modeled by 291 

changing the fitness values of a proportion (calculated with a probability of change called pc) 292 

of the existing and new mutations in the domesticated population (at the time of the split) (Table 293 

1). ThisWe call this probability of change pc and it can be 0% (our negative control), 0.055% 294 

or 0.25.%. Domesticated and Wild populations show different proportions of beneficial and 295 

deleterious new mutations depending on the scenario. SLiM defines ‘s’ as the selective 296 

coefficient for the homozygote, while the inference algorithms used estimate the selective 297 

coefficient for heterozygote. Here we have assumed co-dominance and we have scaled the 298 

coefficient of selection to the ancestral population to have comparative values, that is, we 299 

multiply the Na 4 times and divide the selective coefficient twice, 4Nas/2=2Nas). The negative 300 
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effects in all scenarios and populations follow a gamma distribution with a shape value of 0.3 301 

and a mean of SSd = -100 (S =2Nas2Nesd in the heterozygote, in which each mutation is 302 

assumed co-dominant, NaNe = 5,000 diploid individuals, considering the ancestral population 303 

size and s = -0.01),sd = -1%), which is in the range of values inferred using empirical data 304 

(Boyko et al. PLoS Genet 2008, Galtier PLoS Genet 2016), while variants with positive effects 305 

follow an exponential distribution. We investigate three combinations of parameters for the 306 

positive DFE plus one without positive selection: no positive selection (that is, pb = 0),: 307 

pervasive & nearly neutral (with mean selective effects Sb =of 1 and probability of being 308 

beneficial pb = 0.of 10),%), common & weak (Sb = 10 and pb = 0.01)1%) and rare & strong 309 

(Sb = 100 and pb = 0.001)1%) (Table 1).  310 

Types of Sites 311 

The sites are initially divided into seven different types (named m1 to m7), being m1 neutral 312 

(synonymous) and m2 to m7 functional (non-synonymous) sites having a different selective 313 

effect when mutated (see Table 2 and Figure 1C). Mutations at m5, m6 and m7 sites generate 314 

deleterious variants in the Wild population, and mutations at m2, m3 and m4 sites generate 315 

beneficial mutations in the Wild population. The selection coefficient of mutations generated 316 

at m2 (beneficial) or at m5 (deleterious) sites are invariant for the Wild and Domesticated 317 

populations. However, the mutations at m3, m4, m6 and m7 sites will change their selective 318 

effect in the Domesticated populations relative to the Wild populations. That is, the new 319 

selective effect is drawn from the corresponding DFE section (positive or negative), 320 

independently of their value in the wild population. The selection coefficient of a given 321 

beneficial mutation at m3 sites will remain beneficial in the Domesticated population, but it 322 

will be different from the original beneficial effect at Wild. A mutation at m4 sites will change 323 

its selection coefficient from beneficial in the Wild to deleterious in the Domesticated 324 

population. Equivalently, the selection coefficient of a deleterious mutation at m6 sites will 325 

remain negative in the Domesticated population but it will be different from that found at Wild. 326 

A mutation at m7 sites will change its selection coefficient from deleterious in the Wild to 327 

beneficial in the Domesticated population (see probabilities included in Table 2).. For each of 328 

the 24x10018x100 independent simulation runs, we randomly pre-calculate 329 

independentlyprecalculate the location of each site type (except for the permanent 330 

locationdisposition of two non-synonymous sites followed by a synonymous site within 331 
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codons) and their selective effect using an ad hoc R script 332 

(https://github.com/CastellanoED/domesticationDFE/blob/main/calculate_fitness_position_m333 

atrix.R).. This hard-coding of selective effects on different sites allows us to gain insight into 334 

the relative importance of each mutation type for the domestication process.  335 

Nucleotide variability estimates  336 

We have counted the number of polymorphic sites and estimated the Watterson variability 337 

estimate per nucleotide (Watterson 1975) for synonymous and non-synonymous sites for each 338 

of the 100 run simulations and for all the scenarios and populations. We have also calculated 339 

the ratio of synonymous versus non-synonymous polymorphic sites (Pn/Ps) as descriptive 340 

estimators of the observed variability at these sites 341 

(https://github.com/CastellanoED/domesticationDFE/blob/main/diversity_PnPs_slim.R). 342 

Distribution of fitness effects (DFE): Two complementary approaches  343 

polyDFE: 1D-SFS and 1D-DFE 344 

We use the polyDFEv2.0 framework (Tataru and Bataillon 2019) to estimate and compare the 345 

DFE across Wild-Domesticated population pairs by means of likelihood ratio tests (LRTs). We 346 

use the R function compareModels (from )https://github.com/paula-347 

tataru/polyDFE/blob/master/postprocessing.R) to compare pairs of models. The inference is 348 

performed only on the unfolded SFS data (divergence counts to the outgroup are not fitted), 349 

and unfolded SFS data are fitted using a DFE model comprising both deleterious (gamma 350 

distributed) and beneficial (exponentially distributed) mutations. The DFE of each Wild-351 

Domesticated population pair is inferred using the 1D-SFS of each population. DFE is 352 

calculated assuming S=4Nes, in which s is the selective effect in the heterozygote, and Ne is the 353 

effective population size. Note that for comparative analysis Ne will be equivalent to Na. We 354 

used S/2 to contrast the simulated value with SLiM and with the inferred value in dadi (see 355 

next section). polyDFE assumes that new mutations in a genomic region arise as a Poisson 356 

process with an intensity that is proportional to the length of the region and the mutation rate 357 

per nucleotide (μ). We assume that μ remains constant across simulations (as it is the case). 358 

Both an ancestral SNP misidentification error (ε) and distortion parameters (ri) are estimated. 359 

However, we notice that the exclusion of ε does not affect the rest of estimated parameters 360 

because under the simulation conditions used here no sites are expected to be misidentified. 361 



 13 

The ri parameters are fitted independently for each frequency bin (from in = 1 to in = 19), and 362 

they are able to correct any distortion that affects equally the SFS of synonymous and non-363 

synonymous variants (such as, in principle, demography or linked selection). Model averaging 364 

provides a way to obtain honest estimates that account for model uncertainty. To produce the 365 

model average estimates of the full DFE we weight each competing model according to their 366 

AIC following the equation 6.1 shown in the polyDFEv2 tutorial (“polyDFE/tutorial.pdf at 367 

master · paula-tataru/polyDFE”). We use the R function getAICweights (from 368 

https://github.com/paula-tataru/polyDFE/blob/master/postprocessing.R to do the model 369 

averaging R) to obtain the AIC values.  370 

dadi: 2D-SFS and 2D-DFE 371 

dadi (Gutenkunst et al. 2009) is employed to infer the joint distribution of fitness effects 372 

(Jerison et al. 2014; Ragsdale et al. 2016; Huang et al. 2021) and the demographic history of 373 

all simulated population pairs. Following Huang et al. (2021), our model is that any mutation 374 

may have different selection coefficients sw and sd in the wild and domesticated populations, 375 

respectively. The joint DFE is the two-dimensional probability distribution quantifying the 376 

probability that a new mutation has selection coefficients sw and sd. In Huang et al. 2021, joint 377 

DFEs with only deleterious mutations were considered. Here we extend that model to consider 378 

joint DFEs that include mutations that are beneficial in one or both populations.  379 

Our new model for the joint DFE between the two populations is a mixture of multiple 380 

components designed to mimic the selected mutation types in the simulations (Table 2; Figure 381 

1D). The major exception is that beneficial mutations are modeledmodelled to have a single 382 

fixed selection coefficient, rather than arising from an exponential distribution. Let pwbp+w be 383 

the fraction of mutations that are positively selected in the Wild population, pc be the fraction 384 

of mutations that change selection coefficient in the Domesticated population, and pcbpc+ be 385 

the fraction of those mutations that become beneficial in the Domesticated population (note in 386 

our simulations pwb = pcb).p+w = pc+). To model mutation types m2 and m3, a proportion pwb 387 

·p+w x (1-pc) + pwb ·p+w x pc · pcbx pc+ of mutations are assumed to have the same fixed 388 

positive selection coefficient in both populations. To model m4, a proportion pwb ·p+w x pc ·x 389 

(1-pcb)pc+) is assumed to have a fixed positive selection coefficient in the Wild population and 390 

a gamma-distributed negative selection coefficient in the Domesticated population. To model 391 

m5, a proportion (1-pwb) ·p+w) x (1-pc) of mutations are assumed to have equal negative 392 
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gamma-distributed selection coefficients in the two populations. To model m6, a proportion 393 

(1-pwb) ·p+w) x pc ·x (1-pcb)pc+) is assumed to have independent gamma-distributed selection 394 

coefficients in the two populations. To model m7, a proportion (1-pwb) ·p+w) x pc · pcbx pc+ 395 

mutations is assumed to have a gamma-distributed negative selection coefficient in the Wild 396 

population and a fixed positive selection coefficient in the Domesticated population. All 397 

gamma distributions are assumed to have the same shape and scale. This model is implemented 398 

in dadi as the function dadi.DFE.Vourlaki_mixture ().. Note in our simulations the marginal 399 

1D-DFEs of Wild and Domesticated populations are exactly the same; the difference is that in 400 

Domesticated populations a given fraction of sites (some already polymorphic, some still 401 

monomorphic) can change their selection coefficient relative to the Wild population.  402 

To infer the parameters of the joint DFE, we followed the procedure of Huang et. al (2021), 403 

but with this new DFE model. Briefly, assuming independence between mutations, the 404 

expected joint site frequency spectrum (SFS) for all mutations experiencing selection (here 405 

nonsynonymous sites) can be computed by integrating the joint SFS for each possible pair of 406 

population-size-scaled selection coefficients Sw and Sd over the joint DFE. Given that expected 407 

SFS, the composite likelihood of the nonsynonymous data can be computed by treating it as a 408 

Poisson Random Field, as in Gutenkunst et al. (2009). The parameters of the joint DFE model 409 

can then be inferred by maximizing that likelihood, using numerical optimization. For this 410 

study, we used the default in dadi, the BOBYQA optimization algorithm as implemented by 411 

the NLOpt library. For each selection coefficient pair (Sw , Sd ), the expected SFS was calculated 412 

from a single integration of the partial differential equation (PDE) implemented by Gutenkunst 413 

et. al (2009) in the dadi software. 414 

We integrate over our joint DFE model (Fig. 1D) by summing contributions for the discrete 415 

components of the DFE. The m2 + m3 component is simplest, being simply a weighting of the 416 

single SFS corresponding to the two positive selection coefficients assumed in the wild and 417 

domesticated populations. The m4 and m7 components are integrated over by holding sw or sd 418 

fixed and integrating over spectra calculated as the other selection coefficient is varied. The m5 419 

component is integrated over by considering spectra in which Sw = Sd . The m4, m7, and m5 420 

components are thus one-dimensional integrations and employ the numerical methods 421 

developed in Kim et al. (2017). The m6 component is a two-dimensional integration over 422 

independent gamma distributions and is carried out as in Huang et al. (2021). This complex 423 

summation over spectra to calculate the expected SFS under the DFE is much less 424 
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computationally expensive than calculating the spectra for each (Sw , Sd) pair, so those spectra 425 

are precomputed and cached. 426 

 427 

Figure 1: Joint demographic and DFE models simulated and fit. A: Illustration of the joint demographic model 428 
used in SLiM simulations. Na: Effective population size of the Ancestral population. New: Effective population 429 
size of the Wild population. Ne1d: Effective population size of the Domesticated population during the bottleneck. 430 
Ne2d: Effective population size of the Domesticated population after the bottleneck. T1: Number of generations 431 
in the bottleneck period. T2: Number of generations from the bottleneck to the present. m: Wild to Domesticated 432 
migration rate (migration occurs along T1). B: Illustration of a more general joint demographic model used in the 433 
dadi inferences. Na: Effective population size of the Ancestral population. Npre: Effective population size before 434 
the domestication split. N1div: Effective population size of the Wild population after the split. N1F: Effective 435 
population size of the Wild population at the end of the simulation. N2div: Effective population size of the 436 
Domesticated population after the split. N2F: Effective population size of the Domesticated population at the end 437 
of the simulation. Tpre: Number of generations before the domestication split. Tdiv: Number of generations after 438 
the bottleneck. T1F: Number of generations under N1F. T2F: Number of generations under N2F. Note that T1F 439 
and T2F are estimated independently and that T1F can be the same, longer or shorter than T2F. md: Wild to 440 
Domesticated migration rate. mw: Domesticated to Wild migration rate. Both migration rates occur after the 441 
domestication split. C: Illustration of the joint DFE model used in the SLiM simulations, with mutation types 442 
illustrated. D: Illustration of the joint DFE model used in the dadi inferences, in which a fixed positive selection 443 
coefficient is assumed.  444 

 445 

For inference, a new, more general demographic model with branch-independent population 446 

size changes is first fit to the synonymous mutations from each simulation, and then the newly 447 

proposed joint DFE model is fit to the non-synonymous mutations. This model (Fig 1D) is 448 

implemented as a custom model using the dadi software and evaluated using the approach of 449 

Gutenkunst et al. (2009). The one subtlety is that an if statement is used to enable flexibility as 450 

to whether T1F or T2F is larger (, function name: “Domestication_flexible_demography”). The 451 

parameters of the demographic model (Figure 1B) are estimated by running 100 optimizations 452 

per inference unit. The 2D-SFS for selected sites are precomputed conditional on the 453 

demography for 1042 values of Swγ1 and Sd (S =γ2 (2Nas, a population scaled selection 454 

coefficient for the heterozygote where Na is the ancestral population size), 102 negative and 2 455 

positives. For the negative part of the DFE, γ values were logarithmically equally spaced 456 

between -2000 and -10-4. The expected DFE for selected sites can then be computed as a 457 
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weighted sum over these cached spectra (Kim et al. 2017). The DFE parameters shape, scale, 458 

pwbp+w, pc, and pcbpc+ are then estimated by maximizing the Poisson likelihood of the 459 

simulated data, with the non-synonymous rate of mutation influx fixed to twice that inferred 460 

for neutral sites in the demographic history fit. For the DFE inference, optimization is repeated 461 

until the best three results are within 0.5 log-likelihood units. Ancestral state misidentification 462 

is modelled, however in our simulations no sites are expected to be misidentified.  463 

For the purpose of this work, dadi software is downloaded and installed according to the 464 

instructions provided at the following link: 465 

https://bitbucket.org/gutenkunstlab/dadi/src/master/. Since dadi operates as a module of 466 

Python, the Anaconda3 and Spyder (Python 3.7, Rossum and Drake 2009; Anaconda 2016; 467 

Raybaut 2009) versions are used in this study.  468 

Inference units, and confidence intervals in demographic and DFE parameters 469 

To obtain the sampling variance of parameter estimates and approximate confidence intervals, 470 

we use a bootstrap approach. We resample with replacement 100 times 20 independent 471 

simulation runs or chromosomal “chunks” (from a pool of 100 “chunks”) and concatenate 472 

them. Hence, each concatenated unit (or inference unit) is made of 24 Mb of coding sequence 473 

(as comparison, the human genome contains ~26 Mb of coding sequence). Uncertainties of 474 

DFE parameter inferences in polyDFE and dadi are calculated by this conventional 475 

bootstrapping, but in dadi we hold the demographic model fixed. In polyDFE the distortion 476 

introduced by demography (and linked selection) is not estimated but corrected with the ri 477 

parameters. Note that our procedure with dadi does not propagate uncertainty in demographic 478 

parameters through to the DFE parameters. To obtain the sampling variance of demographic 479 

parameter estimates with dadi we use the Godambe approach as described in Coffman et al. 480 

2016. A final consideration on the factor of two differences across simulation and inference 481 

tools. We adjusted the population scaled selection coefficients to 2Nas in polyDFE, dadi and 482 

SLiM4 to enable a comparative studyIn polyDFE, s is defined as the selection coefficient on 483 

the heterozygote (as in dadi), and the scaled selection coefficient is defined as 4Nes, while in 484 

dadi it is defined as 2Nas (in the ancestral population). In SLiM2, s is defined as the selection 485 

coefficient on the homozygote.  486 

  487 
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RESULTS AND DISCUSSION 488 

Studying the effect of domestication on the DFE of natural populations is particularlycan be 489 

very challenging, especially when available methods for inferring and comparing the DFE have 490 

not been evaluatedcompared using exactly the same dataset. In this studythe present work, we 491 

conduct simulationsa simulation study using different combinations of parameters relevant to 492 

the domestication process. A key distinctionNote that the main difference between the 493 

domestication demographic model used here and those commonly applieddemographic models 494 

used in speciation studies is the time scale since the split occurred. In our simulations, Our 495 

simulated domesticated populations experience eithera large or small changeschange in the 496 

number and selective effects of loci under domestication, following after a bottleneck period, 497 

with or without migration. Hereafter, we refer to these as the Wild and Domesticated 498 

populations.  499 

ThisIn this study focuses onwe are interested in the evolutionary process of domestication from 500 

the point of divergencesplit to the present domesticated lineages. We doare not account 501 

forconsidering the programs of genetic improvement programs implemented in recentthat 502 

have been performed in the last decades for some domesticated animals, which can 503 

significantlyhighly increase the levels of inbreeding levels (e.g., Makanjuola et al. 2020 504 

estimated up to 40% levels of inbreeding levels as high as 40% in certainin some cattle breeds 505 

subjectedsubmitted to intense genomic selection). The models simulated models in this work 506 

include strong selection and reductionsas well as reduction in population size, both of sizes, 507 

which cantogether could also moderately increase the level of inbreeding levels in our 508 

simulations. Howeverin populations. In any case, Gilbert et al. (2022) reported(2021) observed 509 

that only very high selfing levels of inbreeding (>80%) affected severely affect DFEthe 510 

inference of the DFE. 511 

The Wild populations have a constant DFE and constant population size, but limited 512 

recombination across loci to mimic a realistic recombination landscape. Beneficial mutations 513 

arise at Wild populations following an exponential distribution, while deleterious mutations 514 

are drawn from a gamma distribution with shape 0.3 and mean SSd = -100 (where S = 2NasSd 515 

= 2Nasd, the selection coefficient ssd in the heterozygote is -1%, and Na = 5,000 diploid 516 

individuals is the ancestral effective population size, see Material and Methods: Simulating the 517 

Domestication Process). As indicated in Materials and Methods section, allAll mutations, 518 
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beneficial and deleterious, are co-dominant. The Domesticated population originates from the 519 

Wild population through a bottleneck and a concomitant change in selective effects at a fraction 520 

of non-synonymous sites (Figure 1; Table 1). The recombination and mutation landscapes are 521 

drawn from the same distribution in the Domesticated and Wild populations.  522 

  523 
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Table 1 524 

Variable demographic and selective parameters across scenarios 525 

Positive DFE Migration 

Migration 

  (W>D) 

Positive DFE 

pc  Scenario ID  

 (W->D)    
     

0 

pb =0 0 1 
Absent 0.05 2 
  0.25 3 
pb =0.1 & Sb = 1 0 4 

pb =10%& Sb = 1  

Pervasive and nearly neutral  

0% Pervasive and nearly 

neutral 
0.05%  51  

  5%  2  

  25%  3  

 
1%  

0%  4  

 5%  5  

   0.25%  6  

pb = 1% & Sb = 10  

Common and weak  
pb = 0.01 & Sb = 100%  0%  7  

 Common and weak 0.055%  8  

   0.25%  9  

 pb = 0.001 & Sb = 1001%  0%  10  

 Rare and strong 0.055%  11  

   0.25%  12  

pb = 0.1% & Sb = 100  

Rare and strong0.01  

pb =0%  0%  13  

Absent 0.055%  14  

  0.25%  15  

pb =0.1 & Sb = 11%  0%  16  

Pervasive and nearly neutral 0.055%  17  
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  0.25%  18  

pb = 0.01 & Sb = 10 0 19 
Common and weak 0.05 20 
  0.25 21 
pb = 0.001 & Sb = 100 0 22 
Rare and strong 0.05 23 
  0.25 24 

 526 

The twenty-foureighteen simulated combinations of parameters in this study. The first column refers to the DFE 527 
of new beneficial mutations, the second column represents the migration rate from the Wild to the Domesticated 528 
population and the third column shows the probabilities to havepercentage of sites that change their selection 529 
coefficients in the Domesticated population (pc). Last column shows the ID we use to quickly label scenarios 530 
along the manuscript.  531 

 532 

The change in selective effects affects both new mutations that arise within the Domesticated 533 

population and existing variants that existed before the domestication event. Put simply, not 534 

only can mutations that were deleterious (or beneficial) before the population split become 535 

beneficial (or deleterious) within the domesticated population, but even if the direction of the 536 

selective effect remains the same, the intensity of selection can change. Table 2 shows all the 537 

combinations of changes in selective effects between Wild and Domesticated populations. Our 538 

simulated scenarios aim to cover a variety of possible changes in the genetic architecture 539 

(number of loci) and the strength of selection (selection coefficients) of the trait/s under 540 

domestication. Three DFEs for beneficial mutations are assumed: (i) pervasive and nearly 541 

neutral, where a large fraction of new mutations (10%) are on average nearly neutral (Sb = 1), 542 

(ii) common and weak, where beneficial mutations are still fairly common (1%) but weakly 543 

selected (Sb = 10) and (iii) rare and strong, where very few mutations (0.1%) are strongly 544 

beneficial (Sb = 100). To better understand the role of selective sweeps on downstream 545 

inference, we also include simulations without a positive DFE. Depending on the scenario, a 546 

selective change occurs only at a small (0.05)5%) or at a substantial proportion (0.25)%) of 547 

sites in the Domesticated population (Table 1, “pc” column). We leave eightsix scenarios as 548 

negative controls; the selection coefficients of new and standing variation in the Domesticated 549 

and Wild populations are exactly the same. Finally, demographic changes affect only the 550 
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Domesticated population; the Wild population evolves under a constant population size. Two 551 

versions of the same demographic model (Figure 1A) are simulated: (i) one with migration, 552 

and (ii) another without migration. When there is migration, it only occurs from the Wild to 553 

the Domesticated population during the domestication bottleneck.  554 

 555 

Table 2 556 

Types of sites in simulated scenarios 557 

Site  Wild  Domesticated  Probability1 

m1  Neutral  No change, remain Neutral  All synonymous 

m2  Beneficial  No change, remain Beneficial  pwb·(1-pc) 

m3  Beneficial  Change to a different Beneficial Effect   pwb·pc·pcb 

m4  Beneficial  Change to Deleterious   pwb·pc·(1- pcb) 

m5  Deleterious  No change, remain Deleterious  (1- pwb)·(1-pc) 

m6  Deleterious  Change to a different Deleterious Effect  (1- pwb)·pc·(1-pcb) 

m7  Deleterious  Change to Beneficial  (1- pwb)·pc·pcb 

1 m1 are only defined at synonymous sites (1/3 of the total sites analyzed). m2 to m7 probabilities 558 

consider only non-synonymous sites (2/3 of the total sites analyzed). pwb is the fraction of 559 

mutations that are positively selected in the Wild population, pc is the fraction of mutations that 560 

change selection coefficient in the Domesticated population, and pcb is the fraction of those 561 

mutations that become beneficial in the Domesticated population (note in our simulations pwb 562 

= pcb).Note that in simulated scenarios pcb=pwb. 563 

 564 

Estimation of demographic parameters in Wild and Domesticated populations 565 

In this study, we investigate the effects of natural selection—, both broadlyin a general sense 566 

and in terms of howspecifically the change in selection coefficient in shared variation due to 567 

artificial selection alters the selective pressures acting, on new and shared genetic variation—568 

onour ability to reconstruct the inference of demographic history and DFE during of 569 

domestication and the DFE. We do this using two commonly used inference tools (polyDFE 570 

and dadi) that assume free recombination across loci. Note that dadi first infers the 571 

demographic history and then infers the DFE assuming those inferred demographic parameters, 572 

whereas polyDFE operates independently of specific demographic histories and is designed to 573 

Inserted Cells
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correct for distortions that affect both synonymous and non-synonymous site frequency spectra 574 

equally (Tataru and Bataillon 2019). Figure 1 A and B show the simulated joint demographic 575 

model and the joint demographic model used in the dadi inferences, respectively. We have 576 

increased the complexity of the inference model by introducing additional parameters, allowing 577 

it to account not only for "simulated" or true demographic changes, but also for more complex 578 

and unknown demographic histories and the potential influence of linked selection on 579 

synonymous SFS. The diagnostic plots can be found in Supplementary Figure 1; there is good 580 

agreement between the model fits and the data.  581 

Our findings indicate that when positive selection is absent or relatively weak (Sb = 0, Sb = 1 582 

or Sb = 10), the estimated onset of domestication tends to be approximately twice as old as the 583 

actual simulated starting point. Additionally, the inferred bottleneck appears slightly shallower 584 

but considerably longer than the simulated value (see Figure 2 and Supplementary Table 1 for 585 

the confidence intervals). This suggests that the influence of linked selection, likely driven 586 

primarily by background selection when Sb <= 10, has the effect of elongating the inferred 587 

timeline. Consequently, it makes the inferred domestication divergence and bottleneck appear 588 

more ancient and extended, respectively. For the Wild populations we always inferdetect a 589 

larger population expansion than for the Domesticated populations, but without a bottleneck. 590 

This signal of a recent expansion in the Wild population is expected because when we consider 591 

how linked selection affects the SFS, there are more rare synonymous polymorphisms 592 

compared to what we would expect if there was free recombination under a constant population 593 

size (Charlesworth et al. 1993, 1995, Nielsen 2005, Zeng and Charleswoth 2011, Messer and 594 

Petrov 2013, Nicolaisen and Desai 2013, Ewing and Jensen, 2016).). Remarkably, when 595 

positive selection is rare and strong (Sb = 100), the inferred temporal stretch becomes even 596 

more pronounced, and the inferred demographic history of both populations overlap 597 

extensively. The inferred domestication divergence shifts to approximately 50,000 years ago, 598 

whereas the actual simulated split occurred 10,000 years ago. Additionally, the inferred 599 

bottleneck appears significantly longer and less severe, while there is an inferred large 600 

population expansion in both Wild and Domesticated populations. Although in Figure 2 there 601 

appears to be a change in population size before the domestication split, only fivethree 602 

scenarios (with IDs 3, 7, 15, 175, 6, and 187) are statistically significant (Supplementary Table 603 

1 and Supplementary Figure 2). Interestingly, we find the migration rate from Wild to 604 

Domesticated (mw2d) and from Domesticated to Wild (md2w) are overestimated in mostall 605 
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scenarios (Supplementary Table 1 and Supplementary Figure 3). We observe that neither 606 

migration nor an increase in pc appears to significantly change the inferred demographic 607 

histories that we have just described.  608 

In summary, it wasTorres et al. (2020) and Johri et al. (2022) detected a distortion in the 609 

patterns of diversity due to deleterious effects. Instead, we detected a distortion in the 610 

demographic inference that differs depending on positive selective effects. This distortion has 611 

been already described by Shrider et al. (2016) using a single population simulation study that 612 

included strong beneficial selection, indicating the important role of linked selection. Our 613 

findings indicate that when linked selection is at play, the reconstructed demographic history 614 

captures certain elements of the actual simulated history. For instance, if positive selection is 615 

not strong, it successfully identifies a bottleneck in Domesticated populations compared to 616 

Wild populations. However, when positive selection is strong (Sb = 100), it tends to “erase” 617 

the demographic history through indirect selection effects and recreate large recent population 618 

expansions in both populations. Nevertheless, and more importantly, in all scenarios it is not 619 

possible to accurately determine the timing of the onset of domestication, the duration of the 620 

domestication bottleneck, or to distinguish between the presence and absence of migration 621 

between populations. We believe that these aspects are crucial for contextualizing the role of 622 

domestication in human history, and vice versa.. Unfortunately, either the 2D-SFS or our “free 623 

recombination” modeling assumptions (or both) do not seem to be useful in this context.  624 

Beyond domestication, the signal interference between selective and demographic processes 625 

has been widely studied. Linked selection significantly distorts the SFS, leading to biases in 626 

inferred demographic parameters. For example, Schrider et al. (2016) found that positive 627 

selection can mislead demographic inference, even inferring population size changes where 628 

none occurred, with selective sweeps as the primary cause. Gilbert et al. (2022) used forward 629 

simulations to report that large population expansions are inferred due to linked selection, 630 

particularly in regions of low recombination or high gene density. Finally, Johri et al. (2021) 631 

demonstrated biases due to background selection even after masking functional regions. 632 

Together with these other findings, our work underscores the persistent difficulty of accurately 633 

inferring demographic histories in the presence of linked selection using population genomic 634 

data, even when using ancestral recombination graph based approaches (Marsh and Johri 635 

2024). 636 
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Thus, the next question is to what extent can the nuisance ri parameters from polyDFE or this 637 

distorted inferred demography from dadi help to recover the simulated DFE parameters?  638 

 639 

Figure 2. Solid lines showing the inferred demographic histories for the eighteen simulated scenarios. In salmon 640 
the Wild population and in light-blue the Domesticated population. The dashed line shows the true simulated 641 
demography in Domesticated populations. The true Wild population is not shown but it is a constant population 642 
size with relative Ne = 1. The 95% confidence intervals calculated using the Godambe approximation can be 643 
found in Supplementary Table 1.  644 

Is it possible to detect 645 

Can domestication be detected as an artificial change in the marginal full DFE between 646 

the two populations? No. 647 

Next, we investigate whether polyDFE captures differences in the marginal (or 1D) full DFE 648 

of Domesticated and Wild populations across the twenty-foureighteen domestication scenarios 649 

(Table 1). We run five nested models (Table 3) and compare them using likelihood ratio tests 650 

(LRTs) (Supplementary Table 2). It is important to note that in all our simulations, the marginal 651 

full DFE for new mutations in both Domesticated and Wild populations is the same within a 652 

given scenario (as detailed in Table 1). This means that the selection coefficients for sites, 653 

whether they are monomorphic or polymorphic, are drawn from the same full DFE. In simpler 654 

terms, the proportion of new mutations that are advantageous or detrimental is identical for 655 

both Domesticated and Wild populations within a given scenario. The key distinction lies in 656 

the fact that when pc > 0%, Domesticated populations might have a higher number of 657 

advantageous mutations as polymorphisms. This is because some of these beneficial mutations 658 

were already present at intermediate or high frequencies as nearly neutral polymorphisms in 659 

the ancestral population, and we expect that migration after the domestication split can also re-660 

introduce beneficial mutations from the Wild to the Domesticated population.  661 

Table 3 662 

List of nested polyDFE models and (co)estimated parameters. 663 

 664 

 665 
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Model ID  
Negative DFE  Positive DFE  

shape  SSd  pb  Sb  

M1 Var  Var  -  -  

M10  Fix  Var  -  -  

M2  Var  Var  Var  Var  

M20  Fix  Var  Var  Var  

M30  Fix  Var  Fix  Fix  

Independently estimated parameters for the Domesticated and Wild populations (Var). Jointly estimated 666 
parameters for the Domesticated and Wild populations (Fix). SSd is always independently estimated to 667 
accommodate potential changes in Ne between populations. The population mutation rate (Ө), the nuisance 668 
parameters (ri) and the mispolarization parameter (ε) are all independently estimated across Wild and 669 
Domesticated populations.  670 

LRTs between different nested models allow us to address important questions about the DFE, 671 

without assuming any prior knowledge of our datasets. First, we assess whether the inferred 672 

shape of the negative DFE is similar in both populations while also examining if the estimation 673 

of the shape parameter is influenced by the presence of advantageous mutations. When 674 

comparing models that do not consider beneficial mutations (models M1 versus M10 in the 675 

second column of Supplementary Table 2), the model with a distinct shape for Domesticated 676 

and Wild populations is accepted only in two, rather unrelated, scenarios (scenarios 7 and 677 

1114). This indicates that an artificial alteration in the shape of the deleterious DFE between 678 

Domesticated and Wild populations can be inferred. Fortunately, when comparing models that 679 

take into account beneficial mutations (models M2 vs M20, third column in Supplementary 680 

Table 2), all scenarios show a shared shape of the deleterious DFE, which is expected based 681 

on the simulation parameters. These findings suggest that disregarding beneficial mutations 682 

can cause an artificial change in the inferred shape of the marginal deleterious DFE between 683 

populations, as noted previously by Tataru et al. in 2017. Second, when we contrast models 684 

with and without consideringincorporating the positive DFE (that is, testing the nested models 685 

M1 vs M2 and M10 vs M20), yields statistically significant results in all scenarios (see 686 

Supplementary Table 2, fourth and fifth columns). Hence, polyDFE appears to effectively 687 

detect beneficial mutations, regardless of the true presence and strength of positive selection. 688 

Third, we investigate whether Domesticated and Wild populations could exhibit an artificial 689 

change in the beneficial DFEs as a consequence of domestication. When comparing the M20 690 
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and M30 models (refer to the last column in Supplementary Table 2), polyDFE invokes 691 

changes in the positive DFE between populations in most scenarios without migration (with 692 

IDs 1, 2, 5, 7, 8, 11 and 12). Below we characterize this putative change in the marginal DFEs 693 

between populationssome scenarios. This is applicable when there is no migration between the 694 

populations and only a minimal amount (5%) or when none of the sites change their selection 695 

coefficient, regardless of the mean strength of positive selection. These artificial changes occur 696 

in scenarios 2, 7, 8, 13, and 14, with a marginal p-value in scenario 1. It is noteworthy that the 697 

polyDFE analysis shows no significant difference in the positive DFE between populations 698 

with the presence of migration and when pc equals 25%. Our initial expectation was that in 699 

scenarios with a large fraction of sites changing selection coefficients and migration from the 700 

Wild population, would result in an increase in the load of advantageous polymorphisms in the 701 

Domesticated population (due to the re-introduction of beneficial mutations from the Wild to 702 

the Domesticated population), leading to a higher inferred rate of new advantageous mutations 703 

(pb) compared to the Wild population. We do not observe this result. We suspect that the 704 

absence of this result could be due to linkage between selected mutations and synonymous 705 

mutations, which may lead to an overcorrection of the excess of non-synonymous 706 

polymorphisms at high frequency via the ri parameters.  707 

  708 

Tartaru et al. (2016) polyDFE suggests that specific domestication scenarios, particularly those 709 

lacking migration and featuring minimal changes in selection coefficients, may artificially alter 710 

the marginal full DFE between populations, particularly in its positive side. In the next section, 711 

we find that the artificial change in the marginal full DFE is due to the detection of a higher 712 

proportion of new, effectively neutral, advantageous mutations (>10%) in Domesticated 713 

populations compared to Wild populations. Hence, this finding has no significant impact on 714 

the marginal full DFE differences between the populations when the DFE is represented in 715 

discrete intervals. We demonstrate that domestication does not significantly impact polyDFE's 716 

ability to detect a false difference in the marginal full DFE among populations. We conclude 717 

that if a significant change is detected in the discretized marginal full DFE, it must be 718 

considered valid.  719 

Estimation of DFE parameters in Wild and Domesticated populations 720 
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Under the polyDFE framework, we begin by extracting the Akaike Information Criterion (AIC) 721 

from every model (Table 3) and then computing the AIC-weighted parameters for all models 722 

(Tataru and Bataillon 2019; Castellano et al. 2019). This approach is used because the true 723 

model generating real data in both Wild and Domesticated populations is unknown. Instead, 724 

under dadi's framework, we adopt an alternative methodology that utilizes very general, 725 

parameter rich and versatile joint demographic and DFE models to fit the 2D-SFS. The 726 

diagnostic plots of the new joint DFE model is shown in Supplementary Figure 1, again there 727 

is good agreement between the model fits and the data.  728 

Inferred parameters related to the deleterious DFE: Supplementary Figure 4 and 5 729 

Figure 3. Sampling distributions of estimated parameters for the deleterious DFE are obtained using 100 bootstrap 730 
replicates. Dotted vertical lines indicate the actual simulated parameter values. A) Shape parameter estimated with 731 
polyDFE in dark gray the Wild population and in light gray the Domesticated population, B) shape parameter 732 
estimated with dadi, C) mean sd estimated with polyDFE in dark gray the Wild population and in light gray the 733 
Domesticated population and D) mean sd estimated with dadi. To calculate sd from inferred Sd values, we divided 734 
Sd by 4 times the Ne estimate in polyDFE and by 2 times the Na estimate in dadi. To obtain the Ne (and Na) we 735 

divide π at synonymous sites by the true simulated mutation rate (2.5x10-7 per site and generation). Note that dadi 736 
uses the joint demographic model parameters to compute π at synonymous sites, while polyDFE assumes a 737 
constant population size.  738 

 739 

Figure 3 depicts the distribution of parameters related to the deleterious DFE that are estimated 740 

by performing bootstrap analysis using polyDFE and dadi. We observe that both tools have a 741 

tendency to marginally overestimate the shape parameter of the gamma distribution employed 742 

to model the deleterious DFE (Supplementary Figure 4).. The overestimation is particularly 743 

significant in polyDFE, when positive selection is rare and strong. In such scenarios, dadi's 744 

shape estimation is sometimes rather noisy. Regarding the mean of the deleterious DFE (s) 745 

(Supplementary Figure 5), we observe that the inferred mean values across bootstrap replicates 746 

vary by up to 20% higher or lower, depending on the population, scenario, and inference tool. 747 

The largest misinference occurs when positive selection is strong and dadi is used and in the 748 

Domesticated population when polyDFE is used(sd), we observe quite accurate inferences with 749 

both tools across domestication scenarios. This finding indicates that regardless of the inference 750 

method used, the estimation of the deleterious DFE is resilient to demographic and selective 751 

changes, as well as the pervasive impact of linked selection. In contrast, our previous inference 752 
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with dadi on the demographic parameters concluded that linked selection significantly 753 

complicates the process of obtaining accurate demographic histories. Therefore, although it is 754 

generally believed that demographic changes should be considered to infer the underlying DFE, 755 

we found that inferring the deleterious DFE is “easier” than inferring the true demographic 756 

history. We conclude that correcting the non-synonymous SFS through nuisance ri parameters 757 

or using a demographic history that fits the data well, even if it is incorrect, appears sufficient 758 

for obtaining an accurate depiction of the deleterious DFE.  759 

Inferred parameters related to the beneficial DFE: The distribution of parameters associated 760 

with the beneficial DFE, estimated by bootstrap analysis using polyDFE and dadi, is shown in 761 

Supplementary Figure 64 and Supplementary Table 3 (only dadi).. Depending on the scenario, 762 

we simulate an average increase in relative fitness (sb) of 1%, 0.010, 0.001,1%, and 763 

0.0001.01%. Positive selection's strength is usually substantially underestimated by polyDFE 764 

and dadi, but only polyDFE consistently overestimates the proportion of new advantageous 765 

mutations (pb), regardless of the true simulated value. Supplementary Figure 5 displays the 766 

discretized full DFE. Given the distribution of inferred values of pb and sb, we reason that a 767 

peak of effectively neutral advantageous mutations is being measured by polyDFE. The overall 768 

excess of effectively neutral advantageous mutations measured by polyDFE is generally 769 

balanced by the defect of effectively neutral deleterious mutations. Consequently, polyDFE 770 

seems to have limited power in identifying effectively beneficial mutations on the 1D-SFS 771 

(under these simulation conditions). More importantlyAs suggested before, the apparent 772 

spurious differenceri parameters might be overcorrecting for the increase in the marginal full 773 

DFE between populations detected by polyDFE disappears when the full DFE is discretized. 774 

We conclude that if a significant change is detectedhigh-frequency non-synonymous 775 

polymorphisms in the discretized marginal full DFE, it must be considered valid.  776 

It is noteworthy that both polyDFE and dadi tools typically produce comparable and reasonably 777 

accurate discretized deleterious DFEs (Figure 3), despite polyDFE’s tendency to infer a peak 778 

of effectively neutralSFS expected from beneficial mutations. This suggests that, regardless of 779 

the inference method used, the estimation of the “effective” discretized deleterious DFE 780 

remains robust toBy the same logic, dadi’s inferred demographic and selective changes, as well 781 

as the pervasive effects of linked selection. In contrast, recent studies indicate thathistory might 782 

be operating in highly selfing species, the deleterious DFE is often misestimateda similar way 783 

to explain the uptick of synonymous polymorphisms at high frequency due to the influence of 784 
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linked selection (Gilbert et al. 2022), particularly strong Hill-Robertson interference (Daigle 785 

and Johri 2024). These findings highlight that the accuracy of inferring the deleterious DFE is 786 

not universal but instead depends on factors such as the degree of selfing and inbreeding. 787 

linkage to beneficial mutations. Thus, we conclude that both tools struggle to infer the positive 788 

DFE and tend to be overconservative and identify weaker positive selection than what has been 789 

simulated. We suspect this arises from linkage betweenHowever, it is noteworthy that both 790 

tools typically yield comparable (and reasonably accurate) discretized deleterious DFEs upon 791 

considering the tendency of polyDFE to infer a peak of effectively neutral beneficial and 792 

synonymous mutations, which may lead to an excess of high-frequency synonymous mutations 793 

and an overcorrection of the excess non-synonymous polymorphisms at high frequency, either 794 

through polyDFE’s ri parameters or dadi’s inferred demographic history. Notably, these 795 

findings are consistent. Noteworthy that this finding is in agreement with what was already 796 

pointed outpoint our by Tataru et al. (2017) and Booker et al (2020) using a single population. 797 

They drawfocus attention toon the challenge of inferringto infer parameters of positive 798 

selection when counting for weaklyweak and stronglystrong selected mutations. Indeed, 799 

Booker et al. (2020) emphasizeenphasizes that, in the case of having rare and strong positive 800 

selection, the SFSstudy of the site frequency spectrum can be very noisy, withwhere linked 801 

sites playingplay an important role, making it difficult to infer  that hinders the 802 

positiveinference of the full DFE.  803 

 804 

Estimation of the fraction of mutations with divergent selective effects (pc) between 805 

Domesticated and Wild populations  806 

One of the main goals of this study is to determine the proportion of new and standing non-807 

synonymous mutations with differing selection coefficients in Wild and Domesticated 808 

populations. The usage of our new joint DFE model is not limited to the current study. Our 809 

new model, created by mixing multiple distributions to mimic mutation types in our 810 

simulations (Table 2; Figure 1C-D), is suitable for usage in any recently diverged populations. 811 

Hence, while we acknowledge that our simulation and inference pipeline has the potential to 812 

provide insights into recent parapatric and allopatric speciation events, our primary focus in 813 

this work is on assessing our ability to identify the impact of domestication on the full DFE 814 
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within domesticated populations. This emphasis is due to the availability of independent 815 

archaeological evidence that can be used to determine the timing of domestication onset.  816 

Figure 4 displays the distribution of the inferred pc for three different positive DFEs, along 817 

with simulated pc values. When positive selection is not strong, it becomes apparent that 818 

scenarios with a significant fraction of mutations with dissimilar selective effects (pc = 0.25)%) 819 

can readily be differentiated from those where a small (pc = 0.05)5%) or nonexistent (pc = 820 

0)%) number of sites alter their selection coefficient. However, differentiating our negative 821 

control from a positive control proves difficult when only 0.055% of the sites show a difference 822 

in their selection coefficients. Notably, we overestimate pc significantly in cases of strong 823 

positive selection, indicating that classic hard selective sweeps may mimic divergent selection 824 

in a substantial amount of non-synonymous mutations. We observe no major impact of 825 

migration on the inferred pc values across scenarios.  826 

 827 

Figure 4. Sampling distributions of inferred pc are obtained using 100 bootstrap replicates. In 828 

light green scenarios without migration and in dark green scenarios with migration.  829 

The overestimation of pc when positive selection is strong is not surprising, since non-830 

synonymous mutations with stable selection coefficients between populations may be in close 831 

recombinational proximity and can hitchhike with strongly beneficial mutations that are 832 

population-specific. This will exacerbate the apparent fraction of mutations with divergent 833 

selective effects. In contrast, if positive selection is weaker, recombination will be able to 834 

disentangle beneficial mutations from the rest of mutation types and simplify our estimation of 835 

pc. One way to ameliorate this problem would be to remove genomic windows with evidence 836 

of recent population-specific, complete or partial, selective sweeps and rerun our inference 837 

pipeline. For example, these could be regions with low neutral genetic diversity. However, we 838 

find this heuristic solution might be difficult to implement in practice.  839 

Supplementary Figure 76 shows the observed level of neutral genetic diversity (measured using 840 

Watterson’s theta (Watterson 1975) and synonymous sites, θs) and the selective constraint (i.e., 841 

the ratio of non-synonymous polymorphisms to synonymous polymorphisms per site, Pn/Ps) 842 

for each independent simulation run. Note the large decrease in the observed θs, driven entirely 843 
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by linked selection in Wild populations, relative to the expected level of neutral genetic 844 

diversity (expected θs = 0.005 under free recombination). Particularly important is the 845 

reduction in the average θs across independent simulation runs in Wild populations when 846 

positive selection is rare and strong (θs is ~20% of the expected value), whereas when positive 847 

selection is weaker or(and perhaps absent if Sb = 1) the observed level of genetic diversity is 848 

~40% of the expected value. In strong positive selection scenarios, there may be no heuristic 849 

correction or genomic region that escapes genetic draft (Gillespie 2000), and our current 850 

definition and interpretation of pc would be misleading. We also observe that when positive 851 

selection is strong, genetic diversity and Pn/PsWe also observe that although synonymous 852 

genetic diversity and the selective constraint is higher in Wild populations than in Domesticated 853 

populations, Wild populations show more variability in θs and Pn/Ps across independent 854 

simulation runs. This is likely explained by both the higher chance of sampling strongly 855 

beneficial mutations and the greater selection efficacy expected in the constant population size 856 

of Wild populations. Moreover, relative to Domesticated populations, we find that a higher pc 857 

always corresponds to a lower θs and selective constraint (all else being equal). The largest 858 

difference in the level of genetic diversity and Pn/Ps between Domesticated and Wild 859 

populations occurs when the simulated pc is substantial (25%), and Sb is less than 100. Thus, 860 

for a given joint demographic history, there appears to be a positive relationship between the 861 

simulated pc and the difference in genetic diversity and selective constraint between Wild and 862 

Domesticated populations. This observation only applies when positive selection is not strong. 863 

When positive selection is strong, genetic diversity and selective pressure are significantly 864 

further reduced in both Domesticated and Wild populations, causing the two distributions to 865 

largely overlap. As described above for the reconstruction of demographic history, when 866 

selective sweeps are strong, the recovered demographic history also tends to overlap between 867 

Wild and Domesticated populations. The overlap of demographic histories, and neutral genetic 868 

diversity and Pn/Ps distributions could be used as a caution signal and as an indicator of strong 869 

positive selection and widespread genetic draft. Finally, migration appears to cause a minor 870 

reduction in Pn/Ps and increase genetic diversity within Domesticated populations. Thus, 871 

migration acts slightly diminishing the Pn/Ps discrepancy between Wild and Domesticated 872 

populations.  873 

Implications for empirical analysis of populations  874 
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A scenario involving divergent populations, with one undergoing a bottleneckAlthough the 875 

time of separation between wild and a shiftdomesticated is recent, the external environments 876 

in the selection regime,which they live are very different. This means that an unspecified 877 

proportion of environmentally influenced variants may also be relevanthave changed their 878 

fitness effect in other contexts beyond domestication, such as invasive species, island 879 

colonization or recent parapatric and allopatric speciation events.the domesticated population, 880 

which may have altered their frequencies. In this work, we simulated differential effects 881 

between wild and domesticated populations, and we observed that selective effects affect the 882 

inference of demographic parameters by linked selection, but to different extents depending on 883 

the DFE. Background selection contributes to the misinference of domestication divergence 884 

time and the duration of the bottleneck, making them appear more ancient and extended than 885 

in our simulations. WhenLinked selection caused by positive effects is responsible for strong 886 

selective sweeps are combined with background selection, the inferred temporal stretch 887 

becomesdifferences from the true parameters, even more pronounced, and the inferred 888 

demographic history of both populations overlaps extensively. These demographic distortions 889 

in the inference must be considered when interpreting real data using these methods or any 890 

other methods that make similar assumptions.if they are very rare but strong. Nevertheless, 891 

under the assumptions used in this work, we believe that the discretized deleterious the DFE 892 

iscan be estimated with reasonable accuracy. This suggests quite accurately, suggesting that 893 

methods that methods designed to infer the entire DFE couldcan be appliedused first, followed 894 

by and then estimate the estimation of demographic parameters using this information. 895 

Interestingly, Johri et al. (2021), using a different approach based on a single population and 896 

considering four classes of deleterious mutations, found that while DFE classes were accurately 897 

estimated, demographic parameters were not. They proposed a method to jointly infer both 898 

demography and deleterious mutations using an ABC framework. Although computationally 899 

intensive, this approach may help address some of the inference challenges highlighted in this 900 

work. 901 

  902 

Another point of interest for empirical geneticists is the development of a new method to jointly 903 

infer the DFE between wild and domesticated and their differences in the positive part of the 904 

distribution. The 2D dadi extension algorithm allows to infer differences in pwbp+w (the 905 

fraction of mutations that are positively selected in the wild population), pc (the fraction of 906 
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mutations that change the coefficient of selection in the domesticated population), pcbpc+ (the 907 

fraction of those mutations that become beneficial in the domesticated population). 908 

  909 
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CONCLUSIONS  910 

In summary, our use of forward-in-time simulations has provided valuable insights into the 911 

inference of complex genetic demographic history and distribution of fitness effects (DFE) for 912 

both new and standing amino acid mutations in the context of domestication. Through a 913 

comparative analysis of two methods, polyDFE and dadi, and the new implementation of a full 914 

2D-SFS full inference of DFE, we have uncovered the impact of linked selection on the 915 

reconstructed demographic history of both wild and domesticated populations. Despite biases 916 

in the timelines of domestication events and bottleneck characteristics, the estimation of 917 

discretized deleterious DFE remains remarkably reliable, demonstrating the robustness of these 918 

analytical approaches in the studied conditions. In particular, the underestimation of effectively 919 

beneficial mutations in the DFE highlights the influence of linkage between beneficial and 920 

neutral mutations, which requires furthercareful consideration in model design and 921 

interpretation. In addition, our results shed light on distinguishing scenarios of divergent 922 

selective effects between populations under weak and strong positive selection, providing a 923 

nuanced understanding of the interplay of evolutionary forces. Nevertheless, we must approach 924 

the results of this work with caution, as the simulated demographic and selective patterns are 925 

based on specific models/idealizations that may not fully capture the complexities of 926 

domestication. On the other hand, asAs we navigate the complex landscape of domestication, 927 

these methodological approaches contribute significantly to unraveling the evolutionary 928 

dynamics and adaptive processes that shape the genomes of domesticated organisms, and 929 

provide a foundation for future research in this critical area of study.  930 

  931 
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 932 

Supplementary Information 933 

We have added the Diagnostic plots 2D-SFS for synonymous and Nonsynonymous positions 934 

obtained with dadi for all the scenarios analyzed, plus sevensix additional Figures and three 935 

additional Tables in the Supplementary Material. This Supplementary Information is available  936 

Github at Zenodo:  , as well 937 

ashttps://github.com/CastellanoED/domesticationDFE/blob/main/Supp_Material.zip, and the 938 

scripts used in the analyses of this work are available at the link 939 

https://github.com/CastellanoED/domesticationDFE940 
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Figure Legends 1227 

Figure 1: Joint demographic and DFE models simulated and fit. A: Illustration of the joint demographic model 1228 
used in SLiM simulations. Na: Effective population size of the Ancestral population. New: Effective population 1229 
size of the Wild population. Ne1d: Effective population size of the Domesticated population during the bottleneck. 1230 
Ne2d: Effective population size of the Domesticated population after the bottleneck. T1: Number of generations 1231 
in the bottleneck period. T2: Number of generations from the bottleneck to the present. m: Wild to Domesticated 1232 
migration rate (migration occurs along T1). B: Illustration of a more general joint demographic model used in the 1233 
dadi inferences. Na: Effective population size of the Ancestral population. Npre: Effective population size before 1234 
the domestication split. N1div: Effective population size of the Wild population after the split. N1F: Effective 1235 
population size of the Wild population at the end of the simulation. N2div: Effective population size of the 1236 
Domesticated population after the split. N2F: Effective population size of the Domesticated population at the end 1237 
of the simulation. Tpre: Number of generations before the domestication split. Tdiv: Number of generations after 1238 
the bottleneck. T1F: Number of generations under N1F. T2F: Number of generations under N2F. Note that T1F 1239 
and T2F are estimated independently and that T1F can be the same, longer or shorter than T2F. md: Wild to 1240 
Domesticated migration rate. mw: Domesticated to Wild migration rate. Both migration rates occur after the 1241 
domestication split. C: Illustration of the joint DFE model used in the SLiM simulations, with mutation types 1242 

illustrated. In the illustration, the shadow blue regions in the plot represent the possible different 1243 

types of mutations considering the selection coefficient values in each of the two populations 1244 

(from gamma and exponential distributions in wild and domestic and from the proportions of 1245 

pwb, pc and pcb, see Table 1 and 2). For example, a point in the left-upper region of the 1246 

illustration represents a mutation with positive s in the Domestic population but negative in 1247 

Wild population (type m7). D: Illustration of the joint DFE model used in the dadi inferences 1248 

and the inferred associated parameters, in which a fixed positive selection coefficient is 1249 

assumed.  1250 

Figure 2. Lines showing the inferred demographic histories for the twenty-four simulated 1251 

scenarios. In salmon-orange color is represented the Wild population and in turquoise-green 1252 

color the Domesticated population. The dark grey line shows the true simulated demography in 1253 
Domesticated populations. The true Wild population is not shown but it is a constant population size with relative 1254 

Ne = 1. The x-axis indicates the number of generations in relation to the ancestral population 1255 

size Na, while the y-axis show the population size at each time in relation to Na (that is, Ne/Na, 1256 

where 1 means that Ne=Na). The 95% confidence intervals calculated using the Godambe approximation 1257 

can be found in Supplementary Table 1.  1258 

Figure 3. Sampling distributions of estimated discretized full DFE obtained using 100 1259 

bootstrap replicates.  1260 



 50 

Figure 4. Sampling distributions of inferred pc (dadi) are obtained using 100 bootstrap 1261 

replicates. In light green are shown the scenarios without migration and in dark green the 1262 

scenarios with migration.  1263 
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