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Abstract 11 
 12 
One of the goals of population genetics is to understand how evolutionary forces shape patterns 13 
of genetic variation over time. However, because populations evolve across both time and space, 14 
most evolutionary processes also have an important spatial component, acting through 15 
phenomena such as isolation by distance, local mate choice, or uneven distribution of resources. 16 
This spatial dimension is often neglected, partly due to the lack of tools specifically designed for 17 
building and evaluating complex spatio-temporal population genetic models. To address this 18 
methodological gap, we present a new framework for simulating spatially-explicit genomic data, 19 
implemented in a new R package called slendr (www.slendr.net), which leverages a SLiM 20 
simulation back-end script bundled with the package. With this framework, the users can 21 
programmatically and visually encode spatial population ranges and their temporal dynamics (i.e., 22 
population displacements, expansions, and contractions) either on real Earth landscapes or on 23 
abstract custom maps, and schedule splits and gene-flow events between populations using a 24 
straightforward declarative language. Additionally, slendr can simulate data from traditional, non-25 
spatial models, either with SLiM or using an alternative built-in coalescent msprime back end. 26 
Together with its R-idiomatic interface to the tskit library for tree-sequence processing and 27 
analysis, slendr opens up the possibility of performing efficient, reproducible simulations of spatio-28 
temporal genomic data entirely within the R environment, leveraging its wealth of libraries for 29 
geospatial data analysis, statistics, and visualization. Here, we present the design of the slendr R 30 
package and demonstrate its features on several practical example workflows. 31 
 32 
 33 
 34 

Introduction 35 
 36 
Most evolutionary processes in nature have a spatial dimension. Indeed, since its beginnings, the 37 
field of population genetics has aspired to build interpretable models of spatial population 38 
dynamics (Guillot et al., 2009; Barton, Etheridge and Véber, 2013). These include classic 39 
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theoretical models such as Fisher’s wave-of-advance model (Fisher, 1937), Wright's isolation-by-40 
distance model (Wright, 1943), Kimura’s stepping-stone model (Kimura, 1953; Kimura and Weiss, 41 
1964), and Malecot’s lattice model (Malécot, 1951; Nagylaki, 1976; Rousset, 1997). The field also 42 
has a long history of modeling continuous spatial genetic variation (Levene, 1953; Slatkin, 1973; 43 
Barton, 1979; Beerli and Felsenstein, 2001; McRae, 2006; Duforet-Frebourg and Blum, 2014; 44 
Bradburd, Coop and Ralph, 2018), inferring spatial covariates associated with genetic patterns 45 
(Hanks and Hooten, 2013) and detecting spatial barriers to migration (Safner et al., 2011; 46 
Petkova, Novembre and Stephens, 2016; Ringbauer et al., 2018; Al-Asadi et al., 2019; Marcus et 47 
al., 2021). However, these latter efforts are hampered by a lack of good theoretical predictions for 48 
continuous, two-dimensional models (Felsenstein, 1975; Barton, Depaulis and Etheridge, 2002), 49 
and simulations can provide a valuable tool in the absence of analytical theory. 50 
 51 
The dramatic increase in the number of published whole-genome sequences in the last 20 years 52 
(1000 Genomes Project, 2010; Mallick et al., 2016; Palkopoulou et al., 2018; Feuerborn et al., 53 
2021), and the advent of ancient genomics (Green et al., 2010; Rasmussen et al., 2010), have 54 
revealed previously unknown migration events in the history of several species, such as dogs 55 
(Bergström et al., 2020), horses (Librado et al., 2021), elephantids (Meyer et al., 2017), and 56 
humans (Lazaridis et al., 2014; Fu et al., 2016). Since migration of populations involves spatial 57 
displacement, populations trace their ancestry to different geographic locations (Ralph and Coop, 58 
2013; Osmond and Coop, 2021; Wohns et al., 2022). In the context of human history, processes 59 
including past migration, gene flow, and population turnovers have been shown to have had a 60 
major influence on the present-day distribution of genomic variation (Pickrell and Reich, 2014; 61 
Slatkin and Racimo, 2016). Properly anchoring these past demographic events in both time and 62 
space has been a focus for new modeling approaches (Racimo et al., 2020; Osmond and Coop, 63 
2021; Wohns et al., 2022), and is a question of high interest not only in genetics (Bradburd and 64 
Ralph, 2019) but also in ecology (Frachetti et al., 2017; Loog et al., 2017; Crabtree et al., 2021; 65 
Delser et al., 2021). 66 
 67 
Despite the key role of geography in population genetics, tools specifically designed for describing 68 
and simulating complex spatio-temporal processes are still lacking. Spatial simulations are 69 
important not just for rigorous testing and evaluation of existing inference tools and facilitating the 70 
development of new inference methods (Liu et al., 2006; Currat and Excoffier, 2011; Delser et al., 71 
2021; Osmond and Coop, 2021; Wohns et al., 2022), but also for gaining intuition about the 72 
expected behavior of the processes influencing the patterns of genetic variation under various 73 
scenarios of spatial population dynamics (Felsenstein, 1975; Slatkin and Excoffier, 2012). While 74 
powerful simulation approaches based on coalescent theory have been developed (Hudson, 75 
2002; Ewing and Hermisson, 2010; Staab et al., 2015; Kelleher, Etheridge and McVean, 2016), 76 
these have little or no notion of spatiality due to fundamental obstacles to incorporating space into 77 
the coalescent framework (Barton, Depaulis and Etheridge, 2002; Barton, Etheridge and Véber, 78 
2010, 2013), although recent algorithmic advances are promising (Kelleher, Etheridge and 79 
Barton, 2014). The first pioneering attempt at simulating spatial population genetic data was the 80 
software package SPLATCHE (Currat, Ray and Excoffier, 2004; Currat et al., 2019). However, 81 
SPLATCHE’s simulation engine is limited to discrete demes based on the stepping-stone model, 82 
allows simulation of no more than two populations co-existing at a time, and is not suitable for 83 
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simulating sequence data at a whole-genomic scale (Currat et al., 2019). The most advanced 84 
simulator with spatial capabilities is currently the forward population genetic simulation framework 85 
SLiM (Haller and Messer, 2017, 2019). Highly popular in the population genetics community, SLiM 86 
contains a vast library of features for simulating individuals in continuous space (as opposed to 87 
older approaches based on discrete demes), including spatial interactions between individuals, 88 
neighborhood-based mate selection, and customisable offspring dispersal (Haller and Messer, 89 
2019). Moreover, the recent implementation of tree-sequence recording in SLiM has opened up 90 
the possibility of efficient simulation of massive genome-scale and population-scale datasets 91 
(Haller et al., 2019). 92 
 93 
Despite these advances in population genetic simulations, geospatial data analysis remains a 94 
complex field with a steep learning curve. Performing even basic manipulations of spatial 95 
cartographic objects, handling diverse data formats, and transforming data between different 96 
projections and coordinate reference systems (CRS) requires a non-trivial amount of domain-97 
specific knowledge (Lovelace, Nowosad and Muenchow, 2019). Moreover, because the 98 
technicalities of geospatial computation are generally not within the scope of population genetic 99 
software, available tools do not provide dedicated functionality for building complex and dynamic 100 
spatial population models in a straightforward manner. Developing such models and simulating 101 
data from them currently requires hundreds of lines of custom code, which is error-prone and 102 
hinders reproducibility. Additionally, the lack of specific frameworks for analyzing and visualizing 103 
spatially-explicit genomic data further hinders the methodological and empirical progress in spatial 104 
population genetics. A flexible and easy-to-use simulation framework specifically designed for 105 
developing spatio-temporal population models and analyzing spatial genomic data would expand 106 
the horizons of the field, allowing researchers to evaluate the accuracy of novel spatial methods, 107 
to test detailed hypotheses about demography and selection, and to answer entirely new kinds of 108 
questions about the interactions between organisms across space and time. For instance, many 109 
conceptual models and visualizations of past migration events involve depictions of movements 110 
of large population ranges across a map as various environmental or cultural conditions change; 111 
however, there is currently no easy way to simulate these movements and generate realistic 112 
spatio-temporal genomic data. 113 
 114 
To address these issues, we have developed a new programming framework, called slendr, 115 
designed for simulating and analyzing spatially-explicit genomic data (available at www.slendr.net 116 
with extensive documentation and tutorials). The core component of this framework is an R 117 
package which leverages real Earth cartographic data (or, alternatively, an abstract user-defined 118 
spatial landscape) to programmatically and visually encode spatial population boundaries and 119 
their temporal dynamics across time and space, including expansions, migrations, population 120 
splits, and gene flow. Because of the challenges involved in testing and validating complex 121 
models, slendr encourages an interactive workflow in which each component of the model can be 122 
inspected and visualized as the model is incrementally constructed in a “bottom-up” fashion. 123 
Spatio-temporal models programmed in slendr can then be executed using a SLiM back-end 124 
script which is bundled with the package and can be controlled by a dedicated R function without 125 
leaving the R environment. Additionally, traditional, random-mating, discrete-deme, non-spatial 126 
population models can also be simulated, either in forward time using the aforementioned SLiM 127 
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script or using an alternative coalescent msprime (Baumdicker et al., 2022) back-end script which 128 
is also bundled with the R package and can provide a more efficient simulation engine for non-129 
spatial models. Both simulation engines of slendr save genomic outputs in the form of an efficient 130 
tree-sequence data structure (Kelleher et al., 2018), and the slendr R package provides a set of 131 
functions for loading and processing tree-sequence output files and computing population 132 
statistics on them by seamlessly integrating the tskit tree-sequence analysis Python module into 133 
its R interface. Additional functionality includes conversion of individual trees to a standard R ape 134 
phylogenetic format (Paradis and Schliep, 2019), and automatic transformation of spatial tree-135 
sequence table data to the standardized sf format for geospatial data analysis in R (Pebesma, 136 
2018). 137 

Overall, the slendr R package facilitates reproducibility by providing a unified framework 138 
for writing complete spatial simulation and analysis pipelines entirely in R, which we demonstrate 139 
with several concrete examples.  140 

Overview of the slendr design and typical workflow 141 

From a software design perspective, the slendr R package represents a tight integration of three 142 
distinct parts. First, it implements an interactive and visually-focused R interface for encoding 143 
spatio-temporal population dynamics focused on building arbitrarily complex models from small 144 
individual components (i.e., simple R objects), designed to require only a minimum amount of 145 
code. Second, slendr includes two back-end simulation scripts implemented in SLiM (Haller and 146 
Messer, 2019) and msprime (Baumdicker et al., 2022). These scripts are bundled with slendr, are 147 
specifically tailored to interpret slendr demographic models, and produce tree-sequence files as 148 
output (Haller et al., 2019). Lastly, slendr provides an interface to the tskit tree-sequence analysis 149 
library (Kelleher et al., 2018). Although this library is written in C and Python, slendr exposes its 150 
functionality to the R environment in an R-idiomatic way, blending it naturally with the popular 151 
“tidyverse” philosophy of data analysis (Wickham et al., 2019). 152 

Although these three parts operate at fundamentally different levels under the hood, this 153 
integrated approach allows all steps of a slendr workflow—from specifying spatio-temporal 154 
demographic models, to executing simulations and analyzing simulation results—to be performed 155 
without leaving the R environment (Figure 1). This allows the user to leverage R’s features for 156 
visualization and interactive data analysis at every step of the analytic pipeline, and facilitates 157 
reproducibility by eliminating the need to manually integrate disparate software tools and 158 
programming languages (Sandve et al., 2013). In this way, slendr follows the footsteps of the 159 
original design of the S (and later R) languages: to present a consistent and convenient data-160 
analysis–focused domain-specific front end to more efficient and faster tools written in other 161 
languages and frameworks (in this case SLiM and msprime) (Chambers, 2020). 162 

 163 
In the remainder of this section we outline the individual steps of a typical slendr simulation and 164 
analysis workflow, as well as describe the individual building blocks of the three main components 165 
of the slendr framework mentioned above. 166 
 167 
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 168 
 169 

Figure 1. Schematic overview of a hypothetical slendr simulation and analysis workflow. 170 
The colored rectangles on the left indicate individual steps of a hypothetical slendr workflow. Short 171 
code snippets in matching colors on the right show examples of slendr’s declarative interface used 172 
in each step, focusing only on a selected few relevant functions and their most important arguments 173 
(additional optional arguments are replaced by the “...” ellipsis symbol). The full function reference 174 
index can be found at slendr.net/reference. Note that regardless of whether a spatial or non-spatial 175 
slendr model is being defined and simulated, the workflow remains identical: the same functions 176 
are used for both types of models, and the spatial or non-spatial nature of a model is automatically 177 
detected by slendr. 178 

Defining the world 179 

At the beginning of a slendr workflow, the user defines the parameters of the world that the 180 
simulation will occupy using the function world() (Figure 1). If the simulated world represents 181 
a region on Earth, the appropriate set of vectorised spatial features will be automatically 182 
downloaded from a public-domain cartographic database (www.naturalearthdata.com). The user 183 
can also specify a dedicated coordinate reference system (CRS) appropriate for the projection of 184 
the geographic region of interest in order to minimize the distortion of distances and shapes 185 
inherent to transforming geometries (in this case population ranges and landscape features) from 186 
the three-dimensional Earth surface to its two-dimensional representation on a map. Alternatively, 187 
the world can be represented by an abstract landscape, optionally with custom features such as 188 
islands, barriers, or corridors. If a non-spatial deme-based model is to be simulated, this step can 189 
be omitted and no changes to the downstream steps described below are needed. 190 
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Creating populations and scheduling demographic events 191 

Populations in slendr are created with the  population() function which creates a simple R 192 
object containing the parameters of the population that was created (Figure 1). In addition to 193 
specifying the name, time of appearance, and initial number of individuals for the new population, 194 
the user can also specify a world object and, if desired, a set of coordinates for the spatial range 195 
that the population will occupy. For convenience, the coordinates of all spatial objects in slendr 196 
(maps, geographic regions, population ranges) are always specified in the global geographical 197 
CRS (i.e., degrees of longitude and latitude) but are then automatically internally transformed into 198 
the chosen projected CRS (which uses units of meters) if it was specified when creating the 199 
world (Figure 1). This way, users can encode spatial coordinates in familiar units of longitude 200 
and latitude while slendr internally maintains the proper shapes and distances of spatial features 201 
by performing all spatial transformations in the projected CRS. 202 
 All slendr spatial objects are internally represented using a data type implemented by the 203 
R package sf (Pebesma, 2018), which has emerged as the de facto standard for geospatial data 204 
analysis in R (Lovelace, Nowosad and Muenchow, 2019). Despite the convenience of the sf 205 
framework, manipulation of geospatial objects in sf still requires writing a non-trivial amount of 206 
code dealing with low-level technical details (manipulating and transforming the coordinates of 207 
points, lines and polygons). Because most of these technical details are not relevant for specifying 208 
population genetic models, we designed a set of domain-specific functions for encoding spatial 209 
population dynamics which are expressed in terms of population genetics concepts rather than 210 
geometric transformations (Figure 1). For instance, the move() function accepts a slendr 211 
population object (i.e., internally an sf object, encapsulating the low-level geometric coordinates 212 
of the population), a trajectory given as a list of coordinates in longitude and latitude, and a 213 
timespan over which the population displacement should occur (Example 3 and Figure 4). Other 214 
kinds of dynamic spatial events (population range expansions and contractions, for example) are 215 
implemented in an analogous manner. Other demographic events, such as population size 216 
changes and gene flow, can be scheduled similarly with another set of straightforward functions 217 
(Figure 1). 218 

For spatial models, the user has the option to fine-tune the within-population individual 219 
dispersal and mating dynamics (described in detail in Example 2 and Figure 3) using a set of 220 
parameters such as the maximum mating distance between individuals, the dispersal distance of 221 
offspring from their parents (and the kernel function of this dispersal), or the parameter influencing 222 
the uniformity of the dispersal of individuals within their population’s spatial boundary. These can 223 
be assigned for each population separately or kept at their default values given in the 224 
compile_model() step (as we show in Example 2). The competition parameter determines 225 
the maximum neighborhood distance in which individuals in a SLiM simulation compete with each 226 
other for space. If this distance is small, then individuals with nearby neighbors have much lower 227 
fitness. If the distance is larger, then the effects of crowding are more diffuse. However, if this 228 
distance is larger than the dispersal distance (as in Example 2), populations tend to self-organize 229 
into an evenly-spaced grid of patches. (Figure 3C). Using the competition parameter, within-230 
population dynamics can thus be fine-tuned to represent various levels of individual clustering 231 
into sub-groups (Figure 3C). In addition to the competition parameter, a mating parameter 232 
determines the maximum distance to which an individual will look for a mate to produce offspring.  233 
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Finally, a dispersal parameter determines how far an offspring can end up from its parent, and 234 
a related dispersal_fun argument characterizes the density function for this dispersal: 235 
"normal" (default), "uniform", "cauchy", "exponential", or "brownian"; more details are available in 236 
the slendr R package documentation at slendr.net/reference. We note that changes in all three 237 
spatial interaction and dispersal parameters can be also scheduled dynamically at specific times 238 
throughout the run of a model with a slendr function set_dispersal(). 239 
 240 
A standard feature of many population genetic frameworks is the specification of the times of 241 
various demographic events in terms of generations, either forwards in time starting from 242 
generation 1 (as is the case with SLiM) or backwards in time starting from time 0 “in the present'' 243 
(as is the case with coalescent frameworks such as msprime). This can be cumbersome in cases 244 
when the events or samples of interest are traditionally specified in times of “years before present” 245 
(such as dated ancient DNA samples), or in situations in which it would be desirable to simulate 246 
future outcomes, as in ecological predictive modeling. Moreover, because these standard times 247 
often need to be converted into generations by a factor specifying the length of the generation 248 
time of the species of interest, this can easily lead to frustrating bugs in simulation scripts. To 249 
ameliorate this situation, slendr allows the users to specify times in whichever time units they 250 
would prefer, in either the forward or backward direction. The time direction is automatically 251 
detected by slendr from the sequence of demographic events specified for a model (but can also 252 
be set explicitly), and the conversion of event times into generations is performed in the 253 
compilation step via the provided generation_time argument to compile_model() 254 
(described below). Similarly, times of the tree-sequence nodes in slendr’s outputs (which are 255 
specified by most simulation software in terms of generations backwards in time) are 256 
automatically converted by slendr back into the units of time used by the user during model 257 
specification.  258 
 259 
Because every slendr demographic event function returns a modified population object which can 260 
be further used as an input to other slendr functions, the R interface encourages a workflow in 261 
which complex models are composed incrementally from smaller components (Figure 1, 262 
Examples 1-3). Importantly, because each slendr function assures the consistency of the model 263 
by enforcing appropriate constraints during the model definition process (e.g., a population cannot 264 
be moved or participate in a gene-flow event at a time when it would not yet exist), this workflow 265 
facilitates the early discovery of bugs before the simulation (which can be extremely 266 
computationally costly) is even executed. This is further facilitated by a convenient set of plotting 267 
functions, such as plot_map() and plot_model(), which can visualize the spatio-temporal 268 
dynamics of the specified model (or its individual components) as the model is being incrementally 269 
developed.  270 

Model compilation 271 

Having defined all the individual components of a population model (i.e., created all the necessary 272 
population and gene-flow events), the user calls the function compile_model() to compile the 273 
model configuration to a single R object (Figure 1)—a step in which slendr performs additional 274 
checks for model consistency and correctness. Furthermore, this operation also transforms the 275 
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model components from their R representation into a set of files on disk, written in a format 276 
interpretable by the built-in SLiM and msprime simulation back-end scripts which are used to 277 
execute slendr models in the next phase, as described below. The compiled model object can 278 
also be used as input for a built-in R-based interactive browser app built using the shiny R 279 
package (Chang et al., 2021) which allows the user to “play” the defined spatial model dynamics 280 
over time and explore the “admixture graph” implied by the model (Patterson et al., 2012) for 281 
additional verification of the model’s correctness. The functions plot_map() and 282 
plot_model() mentioned above also accept a compiled model object as their input and produce 283 
a static visualization of the model. 284 

Scheduling sampling events and simulation 285 

The slendr package comes bundled with two simulation back-end scripts which were tailored to 286 
interpret the configuration files produced by the compile_model() function and simulate the 287 
model, triggering all of the encoded population dynamics in the course of the simulation run. 288 

The first back-end script is written in SLiM’s programming language Eidos (Haller and 289 
Messer, 2019), and can execute both spatial and non-spatial slendr models in a Wright–Fisher 290 
setting by calling slendr’s slim() function. The second back-end script is implemented using 291 
msprime (Baumdicker et al., 2022) and is designed to interpret the compiled slendr model in a 292 
non-spatial setting as a standard coalescent simulation by calling slendr’s msprime() function. 293 
Both simulation engines can interpret the same slendr model without a need to make any 294 
changes. For instance, a spatial model can be run with the msprime back end, in which case the 295 
spatial component of the model is simply ignored. Because coalescent simulations are generally 296 
much more computationally efficient than their forward-time counterparts, the msprime back end 297 
of slendr can be useful for R users who would like to run a large number of traditional, non-spatial 298 
simulation replicates efficiently without having to write custom Python msprime code or use its 299 
ms-like command-line interface (Hudson, 2002). Importantly, the correctness of both slendr 300 
simulation engines is validated using a set of automatic statistical tests on non-spatial models 301 
which ensure that when a slendr model is run in both SLiM and msprime, the demographic events 302 
specified by the model (population splits, population size changes, and gene-flow events) result 303 
in equivalent site-frequency spectra and f-statistics (Patterson et al., 2012) between both back 304 
ends. 305 

Leveraging the ability to save simulation outputs as a tree sequence  (Kelleher et al., 2019; 306 
Speidel et al., 2019) from both SLiM (Haller et al., 2019) and msprime (Baumdicker et al., 2022), 307 
slendr embraces the tree sequence as its primary output format. This is powerful not only because 308 
the tree sequence represents an extremely efficient representation of even large-scale population 309 
genomic data, but also because it provides an elegant way to calculate many population genetic 310 
statistics of interest, a feature which we describe in more detail in the next section. To specify 311 
which simulated individuals should be recorded in the output tree sequence, slendr provides two 312 
alternative approaches. First, if no explicit sampling schedule is specified, all individuals living at 313 
the very end of a SLiM simulation run are explicitly sampled (i.e., “remembered”) in the tree 314 
sequence output, matching the default behavior of SLiM. If a slendr model is simulated with the 315 
msprime back end, the number of recorded individuals will be equal to the population size of each 316 
population at the start of the coalescent process looking backwards in time (i.e., in “the present”). 317 
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Alternatively, slendr provides a flexible way to trigger sampling events via its 318 
schedule_sampling() function, which allows one to specify the time (and, optionally, the 319 
location) at which a sample comprising a given number of individuals from a given population 320 
should be taken and recorded in the tree sequence (Example 3). To improve readability and 321 
interpretation of slendr analysis code, every sampled individual can be referred to using its 322 
readable name during tree-sequence processing and computation of statistics (Examples 1, 2, 323 
and 4) rather than just by numeric identifiers as is the case with the default tree-sequence analysis 324 
workflow with tskit (Kelleher et al., 2018). 325 

Data analysis 326 

The default output of a slendr simulation is a tree sequence. However, because processing and 327 
analysis of tree-sequence files requires a non-trivial knowledge of Python or C (Kelleher et al., 328 
2018) which many R users might not have, slendr provides an R-idiomatic interface to the most 329 
commonly used tskit tree-sequence methods such as the allele frequency spectrum, Patterson’s 330 
f-statistics, and various summary statistics of population diversity (Patterson et al., 2012; Ralph, 331 
Thornton and Kelleher, 2020). This way, users can design population genetic models in R, 332 
execute them from R using the built-in slim() or msprime() functions, and analyze the 333 
resulting tree sequence data without having to leave the R environment for downstream statistical 334 
analyses and plotting, and without the need to convert outputs to other bioinformatic or population 335 
genetic file formats. Although primarily designed for analysis of tree sequences generated from 336 
slendr models, the R-tskit interface can operate also on tree sequences without slendr-specific 337 
metadata. Therefore, users who would prefer to run simulations with standard msprime or SLiM 338 
scripts but are interested in analyzing their tree-sequence results in R will still find the slendr R 339 
package useful. The reference manual at slendr.net/reference contains a complete list of tskit 340 
tree-sequence methods that have been integrated into slendr’s R interface. If integration with 341 
traditional tools such as PLINK (Purcell et al., 2007) or ADMIXTOOLS (Patterson et al., 2012) is 342 
required, functions for exporting to VCF (Danecek et al., 2011) and EIGENSTRAT (Patterson et 343 
al., 2012) are also provided. 344 

During a spatial simulation in SLiM, each sampled individual’s location on the simulated 345 
landscape is tracked and recorded in the tree sequence, encapsulating the full spatio-temporal 346 
genealogical history that has been simulated. When the tree-sequence output file is then loaded 347 
by slendr, slendr processes the spatial locations of nodes in the tree sequence (which represent 348 
chromosomes of past and present individuals), and transforms them back into the original 349 
coordinate system of the simulated world, adding additional annotation data such as readable 350 
names of sampled individuals, population assignments of each individual and node, etc. 351 
Furthermore, this information is exposed in an sf-compatible format, meaning that the spatio-352 
temporal information about ancestral relationships between simulated samples can be processed, 353 
analyzed, and visualized using a wide range of R packages including sf, ggplot2, and dplyr 354 
(Pebesma, 2018; Wickham et al., 2019). Additionally, individual trees in the tree sequence can 355 
be extracted by a slendr function, ts_phylo(), which converts tskit-formatted tree objects into 356 
the format defined by the R phylogenetics package ape, which has been the standard for 357 
phylogenetics in the R ecosystem for nearly two decades (Paradis and Schliep, 2019). This gives 358 
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slendr users even more options to analyze tree-sequence results with a large array of standard 359 
phylogenetics tools available for the R environment (Paradis, 2011). 360 

Installation and software dependencies 361 

slendr is currently developed for macOS and Linux. It is available on the CRAN R package 362 
repository at https://CRAN.R-project.org/package=slendr, and can be installed from the 363 
interactive R console with the standard command install.packages("slendr"). 364 
Development versions of slendr which contain latest bug fixes and new experimental features can 365 
be installed from its GitHub repository using the R package devtools with the R command 366 
devtools::install_github("bodkan/slendr"). 367 

Two external software dependencies must be present on a user’s system to leverage the 368 
full functionality of slendr: a forward population genetic simulator SLiM (Haller and Messer, 2019) 369 
(which is required for running spatial simulations and non-spatial simulations in the forward-time 370 
setting) and a trio of Python modules msprime (Baumdicker et al., 2022), tskit (Kelleher et al., 371 
2018) and pyslim (github.com/tskit-dev/pyslim) (which are needed to run slendr models as 372 
coalescent simulations and to analyze tree-sequence data). 373 

The SLiM software is available for all major operating systems and its installation 374 
instructions can be found at messerlab.org/slim. Importantly, the current version of slendr requires 375 
the latest release of SLiM 4.0. In order to use SLiM for simulations in slendr, the R session needs 376 
to be aware of the path to the directory containing the SLiM binary. Calling library(slendr) 377 
for the first time provides an informative message for the user on how this can be accomplished 378 
by modifying the $PATH variable by editing the ~/.Renviron file. 379 

Because some users might find the experience of setting up a dedicated Python 380 
environment with the necessary Python modules challenging (especially users who exclusively 381 
work with R), slendr provides an R function setup_env() which automatically downloads a 382 
completely separate Python distribution and installs the required versions of tskit, msprime, and 383 
pyslim Python modules in their correct required versions into a dedicated virtual environment 384 
without any need for user intervention. Moreover, this Python installation and virtual environment 385 
are isolated from other Python configurations that might be already present on the user's system, 386 
thus avoiding potential conflicts with the versions of Python and Python modules required by 387 
slendr. Once this isolated Python environment is created by setup_env(), users can activate it 388 
in future R sessions by calling a helper function init_env() after loading slendr via 389 
library(slendr). Therefore, although slendr uses Python modules for internal handling of 390 
tree-sequence data and coalescent simulation, direct interaction with Python is not necessary. 391 
 392 

Relationship of slendr to SLiM and msprime 393 

Given that slendr’s simulation engines are implemented in SLiM and msprime, it is worth 394 
elaborating on its relationship to these simulation frameworks, particularly in terms of the features 395 
supported by slendr. First, it is important to note that slendr is not simply a wrapper for SLiM and 396 
msprime in the strict sense of the word, since slendr does not provide an R equivalent of every 397 
function and method provided by SLiM and msprime. Instead, slendr aims to provide a user-398 

Deleted: After a dedicated Python environment is 399 
created by setup_env(), calling library(slendr) 400 
at any later point will activate this environment 401 
automatically. …402 
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friendly, R-idiomatic way to encode a particular class of “traditional” Wright-Fisher population 403 
genetic models frequently used in evolutionary biology and population genetics, allowing users to 404 
employ such models with a minimal amount of coding. Most importantly, slendr models currently 405 
assume that populations evolve via random mating, and that the genomes of individuals evolve 406 
neutrally, with mutations overlaid on top of the simulated genealogies after each simulation run. 407 
This applies also to spatial slendr demographic models, with the caveat that interaction and 408 
dispersal distance parameters can—depending on the exact parametrization of each spatial 409 
slendr model—cause individuals to only mate locally, which can have interesting implications for 410 
the behavior of standard population genetic statistics (as shown in Example 2). 411 

The complete set of models supported by slendr is likely to slightly expand over time as 412 
new features are implemented. Details of new features, such as customized recombination maps 413 
and non-neutral mutation types, are being discussed with the community on the GitHub page of 414 
slendr (https://github.com/bodkan/slendr), and users are encouraged to provide feedback there. 415 
The four practical examples (Examples 1–4 below) have been designed to demonstrate the full 416 
range of slendr’s features at the time of writing. 417 

Finally, because slendr’s forward and coalescent simulation back ends are implemented 418 
as fairly standard SLiM and msprime scripts, the performance of slendr simulations and tree-419 
sequence analyses can be assessed using already-existing benchmarks and guidelines provided 420 
by publications describing SLiM and msprime (Haller et al., 2019; Baumdicker et al., 2022; Haller 421 
and Messer, 2022). 422 

Practical examples 423 

In the following sections, we present the features of the slendr R package with several practical 424 
examples, each of which focuses on a different aspect of the slendr simulation framework. We 425 
start by showing how traditional, non-spatial, random-mating models can be specified with a 426 
minimum amount of R code (Example 1). We then proceed with two examples of spatial models: 427 
first, a model showing how the degree of the spatial spread of a population can be adjusted by 428 
setting the within-population individual-based dispersal dynamics (Example 2); second, a model 429 
which schedules the movements of entire population ranges across a landscape (Example 3). 430 
These examples are intended to demonstrate slendr’s ability to define complex spatio-temporal 431 
models incrementally, building them from simpler components. We also emphasize how slendr 432 
model configuration and simulation steps naturally flow into data analysis, all within the R 433 
environment. In the final demonstration (Example 4), we tap into the rich information embedded 434 
in spatial tree sequences to visualize individual trees on a landscape, tracing the complex spatio-435 
temporal ancestry of an individual on the simulated map. Extended versions of these and many 436 
other examples with complete reproducible code for simulation, analysis, and plotting can be 437 
found as standard R package vignettes at slendr’s website (www.slendr.net). 438 
 439 

Example 1: Traditional non-spatial model 440 

Regardless of whether a spatial or non-spatial model is defined and simulated, the slendr 441 
workflow remains the same. Therefore, before we explore spatial models, we begin by showing 442 
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how a traditional, non-spatial population genetic model can be constructed with slendr and how 443 
users can compute population genetic statistics on simulated tree-sequence outputs using 444 
slendr’s R interface to the tskit tree-sequence analysis library (Kelleher et al., 2018)  (represented 445 
by functions with the ts_*() prefix, Figure 1).  446 

First, we define an abstract demographic model similar to that which is commonly used in 447 
teaching the principles behind the 𝑓!-ratio ancestry proportion estimator (Patterson et al., 2012). 448 
In slendr, we define the model with a straightforward sequence of population() calls that 449 
schedule the order of splits for several populations, taking care of parent–daughter population 450 
relationships by providing the appropriate population object as a parent argument when creating 451 
each daughter population (Figure 2A). We then schedule a single gene-flow event between the 452 
populations “b” and “x1” by calling the gene_flow() function. After compiling the model with 453 
compile_model(), we verify its correctness by visualizing the embedded population 454 
relationships with plot_model() (Figure 2B). Although only a single gene_flow() event is 455 
featured in this example, more complex gene-flow networks can be specified with slendr. 456 
Conveniently, strict consistency checks validate each encoded gene-flow event before the 457 
computationally costly simulation is run. Examples of complex models with dozens or hundreds 458 
of gene-flow events can be found in the documentation available on the slendr website 459 
(www.slendr.net). 460 

As stated before, slendr provides two simulation back ends; here we use the coalescent 461 
msprime back end to simulate the model, since SLiM's spatial capabilities are not required for this 462 
simple non-spatial model. However, we note that the function slim() could be used in place of 463 
the msprime() call to perform the equivalent forward-time simulation just as easily. By default,  464 
slendr automatically loads the simulated tree-sequence object which can be immediately used for 465 
analysis. In this example, we compute the pairwise divergence between random samples of 100 466 
individuals from each population with the function ts_divergence() (Figure 2C). Finally, we 467 
use the function ts_f4ratio() to compute the values of the  𝑓!-ratio estimate of “b” ancestry in 468 
populations “x1” and “x2”, which differ in whether or not they experienced gene flow from “b” 469 
(Figure 2D). All other tree sequence analysis functions of slendr (Figure 1) can be accessed in 470 
the same way. We note that because slendr assigns symbolic, permanent names to individuals 471 
during sampling, the users can refer to them with these names during tree-sequence operations 472 
such as simplification and when computing tree-sequence statistics. 473 
 474 

 475 
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 476 
 477 

Figure 2. Example 1: specifying a non-spatial model and computing statistics on tree-478 
sequence output. (A) A script which defines a model of a simple demographic history of six 479 
populations, simulates it with the msprime back end by calling the function msprime(), and 480 
performs analyses shown in B–D. (B) A visual overview of the compiled slendr model produced by 481 
plot_model() prior to simulation. (C) Visualization of the data frame produced by 482 
ts_divergence() on the output tree sequence simulated. (D) Ancestry proportions estimated 483 
with ts_f4ratio() directly from the tree sequence output. As expected from the model definition, 484 
the 𝑓!-ratio statistic estimates indicate ~10% ancestry from “b” in the population “x1”, but 0% 485 
ancestry in population “x2”; this agrees with the model overview shown in panel B. Full ggplot2 486 
visualization code for the figures can be found in a vignette dedicated to this paper at 487 
www.slendr.net. The runtime for the simulation and analysis shown in A was ~5 minutes, as 488 
measured on a 16’’ MacBook Pro (2021) equipped with the Apple M1 Pro chip, 32 GB RAM, and 489 
running macOS Ventura 13.1. 490 

Example 2: Model with population dispersal dynamics 491 

 492 
In our second example, we move from a non-spatial, random-mating model to a model which is 493 
explicitly spatial. First, we create an abstract, circular world map using the function world(), 494 
producing a completely featureless landscape (see Example 3 for a more elaborate world map). 495 
We then create a series of eight populations which all occupy that map, as specified by the map 496 
argument to population(), but do not interact with each other. For simplicity, each population 497 
forms its own evolutionary lineage without additional splits or gene-flow events. Importantly, we 498 
set the competition parameter of each population to a value which forces the individuals to 499 



14 

assume an increasing degree of spatial subdivision which, in turn, affects the amount of diversity 500 
expected in each population. Finally, we compile the model to a single object with 501 
compile_model() and run it with the slim() back end, simulating 16.000 diploid genomes of 502 
10 megabases each (Figure 3A). After the simulation finishes, we simplify the produced tree 503 
sequence, overlay mutations on the simulated genealogies, and use the slendr function 504 
ts_diversity() to compute the expected heterozygosity in a sample of 100 individuals from 505 
each population, inspecting how heterozygosity is affected by the emergent spatial arrangement 506 
of each population (Figure 3B, C). We note that some of the values of the spatial competition 507 
distance parameter used in this example are quite large, especially compared to the much shorter 508 
maximum distance of individual dispersal and mating. Although biologically rather unrealistic, the 509 
competition distances have been chosen to give rise to very different degrees of spatial 510 
subdivision and, consequently, to varying levels of population genetic diversity, with the intention 511 
to demonstrate the ease with which a wide range of model dynamics can be configured by the 512 
user. 513 

 514 
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 515 
 516 

Figure 3. Example 2: a spatial model which involves the parametrization of within-population 517 
dispersal dynamics. (A) A complete script which defines eight populations as independent 518 
lineages or species, each with constant size and each defined with a different value of slendr’s 519 
spatial competition parameter, with analysis code to produce panels B–C. The simulation is run 520 
with slendr’s SLiM back end for 5000 generations, after which a tree sequence recording the 521 
genealogical history of 2000×8 diploid individuals is loaded, simplified, and mutated. 522 
Heterozygosity is then computed for 100 individuals randomly sampled from each population at the 523 
end of simulation. (B) Distribution of heterozygosities of individuals observed in all eight 524 
populations. (C) A snapshot of the spatial distributions which emerged as a result of the 525 
competition parameter value set for each population. Full visualization code for the figures can 526 
be found in a vignette dedicated to this paper at www.slendr.net. The runtime for the simulation 527 
and analysis shown in A was ~12 minutes, as measured on a 16’’ MacBook Pro (2021) equipped 528 
with the Apple M1 Pro chip, 32 GB RAM, and running macOS Ventura 13.1. 529 
  530 
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Example 3: A toy model of movements and expansions of human 531 
populations in West Eurasia over the last 50,000 years 532 

 533 
In this example we further expand on the slendr functionality demonstrated in the first two 534 
examples, introducing programming of expansions and migrations of entire population ranges 535 
across a realistic landscape—perhaps the most distinctive feature of slendr. The model we 536 
implemented here is inspired by large-scale population migrations and turnover events inferred 537 
from ancient DNA analyses of human remains from across West Eurasia (Lazaridis et al., 2014; 538 
Allentoft et al., 2015; Haak et al., 2015), although we caution that it is simplified and intended only 539 
as an illustrative example. 540 

Similarly to Example 2, we begin by defining a world map for the simulation (Figure 4A), 541 
in this case using realistic Earth cartographic data provided by the Natural Earth project 542 
(naturalearthdata.com). Because we focus on the broad region of West Eurasia, we select the 543 
most appropriate coordinate reference system (CRS) for projecting this region on a two 544 
dimensional map which is EPSG:3035. We then define a series of populations, specifying their 545 
approximate geographic ranges using simple polygons. We then use the functions move() and 546 
expand_range() to schedule when and where populations should migrate, and by what 547 
distance and how quickly their population ranges should expand across the landscape during 548 
simulation. We again use plot_model() to visualize the demographic history embedded in the 549 
slendr model as a non-spatial tree-like structure with gene-flow edges (Figure 4B); here, we also 550 
use plot_map() to get a “compressed” overview of the spatio-temporal population range 551 
dynamics on the simulated map (Figure 4C). We note that unlike in the two previous examples, 552 
which were specified in forward time units, this example expresses the timing of demographic 553 
events in units of “years before present” which is more natural to this model. 554 
 In the previous two code examples (Figure 2A, 3A) we used the default tree-sequence 555 
sampling of slendr, which implicitly records the genomes of all the diploid individuals alive at the 556 
end of a simulation. In this example, we instead use schedule_sampling() to specify a series 557 
of sampling events from each population every 1,000 years. We then execute the compiled model 558 
and the sampling schedule specified using the slim() back-end, which records only the 559 
scheduled set of sampled individuals in the tree-sequence output file. 560 
 561 
 562 

 563 
 564 
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 565 
 566 

Figure 4. Example 3: a demographic model on a real Earth landscape. (A) A slendr script which 567 
defines a toy spatio-temporal model of human prehistory in West Eurasia, with analysis code that 568 
produces panels B–C. For brevity, we do not specify the full set of coordinates for each spatial 569 
demographic event or population range polygon, instead indicating them as ”...”; the complete 570 
reproducible code can be found in a vignette dedicated to this paper at www.slendr.net. (B) Visual 571 
summary of the non-spatial component of the demographic model, produced by plot_model() 572 
with arrows indicating gene flow events. (C) A “compressed” view of spatio-temporal snapshots of 573 
population ranges throughout the course of the model prior to the simulation, produced by 574 
plot_map(). The runtime for the simulation shown in A was ~3 minutes, as measured on a 16’’ 575 
MacBook Pro (2021) equipped with the Apple M1 Pro chip, 32 GB RAM, and running macOS 576 
Ventura 13.1. 577 

 578 

Example 4: Visualization of individual trees and spatio-temporal ancestral 579 
lineages across a landscape 580 

 581 
In our final example (Figure 5), we return to the abstract toy model of West Eurasian prehistory 582 
developed in Example 3. To leverage slendr’s power to simulate genomic data from complex 583 
spatial demographic models, slendr makes it easy to tap into the large library of geospatial data 584 
science packages available for R (Lovelace, Nowosad and Muenchow, 2019) by automatically 585 
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converting simulated spatial locations to an sf-compatible tabular format (Pebesma, 2018), as we 586 
will see here. 587 

To demonstrate the richness of the spatio-temporal information recorded in the tree 588 
sequence, we use the full tree sequence produced by the code in Figure 4A and simplify it so 589 
that it contains only the history of a small subset of the thousands of individuals sampled during 590 
the spatio-temporal simulation (Figure 5A). We then extract the 20th tree in the tree sequence 591 
with slendr’s function ts_phylo(), which converts a tree from the tskit tree sequence into an R 592 
phylo format defined by the ape R package, a standard tool for phylogenetics in R (Paradis and 593 
Schliep, 2019). Such tree objects can be analyzed by any of the dozens of R packages which 594 
operate on ape’s phylo trees—for instance, in Figure 5B we show a visualization of this tree 595 
using the R package ggtree (Yu et al., 2017). Furthermore, because the tree was generated from 596 
a spatially-annotated tree sequence, the user can extract information about the location of each 597 
individual (or node) in the tree across space and time, as well as ancestral relationships between 598 
nodes in the tree, using ts_nodes() and ts_edges() respectively. Crucially, because these 599 
functions automatically convert locations into sf’s geospatial representation (including the 600 
appropriate CRS projection), the results can be immediately plotted on a map with ggplot2, which 601 
has built-in support for sf data (Figure 5C). 602 

In addition to extracting and visualizing single trees representing a genealogy of a set of 603 
sampled genomes descending from a common ancestor (spatial or non-spatial), slendr also 604 
provides a way to extract the complete spatio-temporal ancestry of a single sample going back in 605 
time across the entire tree sequence, potentially spanning many trees with thousands of the 606 
sample’s ancestors. This can be accomplished with the function ts_ancestors() which, in an 607 
analogous way to ts_nodes() and ts_edges(), exposes the spatio-temporal information in 608 
the tree sequence as an sf object which can be visualized on a map with ggplot2. In this example, 609 
we use ts_ancestors() to reconstruct the spatio-temporal ancestry distribution for a single 610 
simulated European individual (“EUR_578”, represented by the black dot in Figure 5D). Because 611 
this individual is diploid, we can trace the ancestry carried by its one chromosome through an 612 
expansion from Anatolia (Figure 5D, right panel), while its other chromosome clearly traces its 613 
ancestry to a population which migrated to central Europe from an eastern population (Figure 614 
5D, left panel).  615 

Note that by default, the tree sequence output of a slendr simulation only contains 616 
information about ancestors which are represented by coalescent nodes in some marginal tree—617 
i.e., nodes which are a most recent common ancestor of some pair of sampled nodes. In this 618 
example, in Figure 5B and C we can see that the most immediate ancestor (node number 9) of 619 
one chromosome of the sampled individual “EUR_578” lived in the region of Anatolia, but the 620 
ancestor of its second chromosome lived in Europe (node number 8); but we do not know where 621 
all the ancestors along the edges between nodes 9-7 and 8-6, since they were simplified away. 622 
Similarly, Figure 5D shows the distributions of locations of most recent common ancestors, not 623 
all ancestors. The distribution of ancestors at a particular point in time could be obtained by adding 624 
an appropriate sampling event to slendr’s sampling schedule and then extracting ancestors from 625 
that time. 626 
 627 
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 628 
 629 
Figure 5. Example 4: accessing and visualizing spatio-temporal information encoded in 630 
trees and tree sequences simulated with the slendr. (A) A continuation of the script from 631 
Example 3, showing how a (potentially very large) tree sequence generated from a slendr model 632 
can be simplified to a subset of individuals with ts_simplify(). A single tree from the tree 633 
sequence is then extracted with ts_phylo(), the tables of spatio-temporal locations of nodes and 634 
branches of the tree are extracted by ts_nodes() and ts_edges(), and ancestry information 635 
for one individual across the entire tree sequence is extracted with ts_ancestors(), in order to 636 
produce the data plotted in B–D. (B) A visualization of the tree extracted by ts_phylo() using 637 
standard visualization features of the ggplot2 and ggtree R packages. Dotted lines indicate 638 
shortened branches of ancient samples. (C) Visualization of the tree from panel B as a network 639 
across the original spatial simulation landscape, with each node indicating the location of a 640 
particular individual who lived at some point during the simulation. Labels with two numbers 641 
correspond to the locations of sampled individuals, each carrying two chromosomes which are 642 
represented by two nodes in the tree sequence. All node numbers correspond to those shown in 643 
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the tree in panel B. The plot was generated with ggplot2 using the sf-formatted data extracted by 644 
ts_nodes() and ts_edges(). (D) A visualization of the spatio-temporal ancestry of a single 645 
simulated European individual, “EUR_578”, using the information from the entire tree sequence. 646 
Each sub-panel shows the spatial ancestry distribution of one of the two chromosomes carried by 647 
this individual (the location of whom is indicated by a black dot), tracing its ancestry through different 648 
lineages all the way back to a population in Africa. For easier reference, the same black dots 649 
indicate the two chromosomes of this individual also in the tree in panel B. The ggplot2 code for 650 
the figures is omitted for brevity. Full reproducible code examples including the visualization code 651 
can be found in a vignette dedicated to this paper at www.slendr.net. The runtime for the code 652 
shown in A was ~1 second, as measured on a 16’’ MacBook Pro (2021) equipped with the Apple 653 
M1 Pro chip and 32 GB RAM, running macOS Ventura Version 13.1. 654 

Discussion 655 

The slendr R package provides a new programmable framework for simulating complex spatio-656 
temporal genomic data. The package implements a set of features for defining spatial population 657 
range dynamics with a declarative and visually-focused R interface and uses a tailor-made SLiM 658 
script as an efficient population genetic simulation engine. Additionally, slendr provides a 659 
convenient new way to simulate and analyze large-scale genomic data sets even from traditional, 660 
non-spatial demographic models using msprime entirely within the R environment. 661 

Owing to its declarative interface, which requires little code even for complex models, the 662 
slendr package is highly accessible even to researchers or students with little or no prior 663 
experience in programming. One of the major challenges for novice population geneticists is 664 
having to learn how to integrate multiple different software tools and programming frameworks. R 665 
(R Core Team, 2021) is often the first language that biology and bioinformatics students learn, 666 
since it offers a large number of libraries for data analysis, statistics, and plotting (Wickham and 667 
Grolemund, 2016). For these users, slendr provides the opportunity to explore population genetic 668 
concepts and simulate realistic population genomic data as soon as they learn the most basic 669 
principles of R (i.e., how to call R functions and work with data frames), without first having to 670 
learn Python for msprime simulations (Baumdicker et al., 2022), shell scripting for simulators from 671 
the ms family (Hudson, 2002; Staab et al., 2015), or Eidos for SLiM (Haller and Messer, 2019). 672 

Tree sequences provide an efficient way to compute many commonly used population 673 
genetic statistics directly on the simulated genealogies (Ralph, Thornton and Kelleher, 2020); 674 
because slendr uses the tree sequence as its default output format (Kelleher et al., 2018; Haller 675 
et al., 2019), in many cases users do not need to convert simulation outputs to external file formats 676 
such as VCF or EIGENSTRAT for analysis in other software. This way, slendr simulations can be 677 
readily used in model fitting and population genetic analyses in situations which have traditionally 678 
required converting simulated data to genotype files before analyzing them with population 679 
genetics tools such as PLINK (Purcell et al., 2007) or ADMIXTOOLS (Patterson et al., 2012). That 680 
said, export to VCF and EIGENSTRAT genotype file formats is supported with a single function 681 
call (ts_vcf() and ts_eigenstrat()) if needed. 682 

A key principle in the design of slendr has been reproducibility (Sandve et al., 2013): a 683 
complete slendr simulation and analysis workflow can be written as a single R script. Additionally, 684 
the compilation of any slendr module produces a self-contained “bundle directory” containing all 685 
model configuration files and simulation back-end scripts required to execute the model from the 686 
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command-line. Although accessing this directory is not necessary for standard workflows because 687 
slendr operates entirely from R, these bundles can be checked into a git history and provided as 688 
supplementary files along with a publication, allowing independent replication even without relying 689 
on slendr itself.   690 

Moving forward, we expect that the slendr framework will become a useful tool to produce 691 
ground-truth data for comparing and benchmarking inference methods for modeling spatial 692 
genomic processes (Peter and Slatkin, 2013; Petkova, Novembre and Stephens, 2016; Marcus 693 
et al., 2021; Muktupavela et al., 2021), as well as for the development of new approaches to 694 
spatial problems in population genomics. There is great potential for deploying slendr in 695 
simulation-based inference methods, like Approximate Bayesian Computation (ABC) (Beaumont, 696 
Zhang and Balding, 2002; Csilléry et al., 2010), thanks to its tight integration with the rest of the 697 
R modeling landscape. A major challenge in ABC is the significant amount of coding needed to 698 
program simulations of demographic history and integrate them with software for computing 699 
population genetic statistics. slendr can program complex models and compute relevant statistics 700 
using its tree-sequence interface with a relatively small amount of code, all within a single R 701 
workflow. Furthermore, although slendr does not currently include features for implicit, automated 702 
parallelism (an important aspect of computation-heavy modeling approaches such as ABC), users 703 
can rely on numerous R packages providing a wide range of parallelization techniques 704 
(Eddelbuettel, 2021). 705 

Nonetheless, inference of spatial dynamics from genetic data remains an open research 706 
problem with many potential pitfalls, and we strongly caution users to avoid overinterpretation. 707 
For instance, slendr models retain a notion of discretely delineated populations, but even a 708 
reasonable fit of such a model to real data does not erase the reality that such groupings are 709 
rarely, if ever, as stable and cleanly distinguished as in idealized models. Indeed, confounding 710 
the simple models used in population genetics with reality can be actively harmful (Coop, 2022; 711 
Khan et al., 2022). Furthermore, population genetic modeling in general is notoriously challenging 712 
due to the many parameters involved (Gravel et al., 2011; Pickrell and Pritchard, 2012; Kamm et 713 
al., 2020). In this respect, advanced, explicitly spatial models of the kind unlocked by slendr 714 
present an even bigger challenge. For instance, how can we best do model comparison, and 715 
among what set of models? What would constitute a good “null hypothesis” when modeling 716 
potentially complex spatial population dynamics? Furthermore, even relatively simple models can 717 
be ill-posed or even nonidentifiable: many combinations of spatial parameters (such as individual 718 
dispersal or mating distances) may give rise to similar genetic patterns. Every demographic 719 
inference study makes assumptions about the process which generated the data, sometimes 720 
explicitly and sometimes implicitly, and awareness of these assumptions is vital for interpretation 721 
of the results (Loog, 2021). We hope that the ease with which slendr allows one to explore the 722 
impact of spatio-temporal parameters on population dynamics—and the fact that slendr forces 723 
the researcher to state those parameters explicitly—will help guide researchers in establishing 724 
guidelines for good practice, to delineate the limits of what can be learned and, consequently, 725 
avoid overinterpretation (or misinterpretation) of such parameters. 726 

In its current version (v0.5.0 as available on the CRAN repository), slendr’s spatial 727 
simulation maps are limited to landscapes that exhibit binary habitability—i.e., any given location 728 
either is or is not habitable by individuals. A more ecologically realistic simulation could allow for 729 
varying degrees of habitability at different locations, which would affect the size of the simulated 730 
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population. Future extensions of the slendr framework could include the incorporation of fine-751 
scaled geographic maps storing individual habitability values for each pixel of the raster, allowing 752 
for dynamic changes of such maps over time. This would effectively make the size of the 753 
population an emergent consequence of the habitability metric aggregated across the map. This 754 
extension would require significant changes to the slendr back-end code, moving to modeling 755 
population densities per unit of landscape area using non-Wright–Fisher dynamics, but the 756 
necessary software building blocks are already supported by SLiM and examples of these types 757 
of simulations are discussed in the SLiM manual (Haller and Messer, 2022). A recently published 758 
Python module Geonomics provides an interface for simulating genetic data on arbitrary 759 
landscape rasters (Terasaki Hart, Bishop and Wang, 2021). Implementing such functionality in 760 
slendr would have the advantage of using a much more efficient SLiM simulation engine and a 761 
greater ease of use due to slendr’s emphasis on visually-focused interactive model design in R. 762 
The main challenge would therefore lie in making sure that the additional complexity involved in 763 
making the slendr’s SLiM back end more flexible does not compromise the current simplicity of 764 
its declarative interface. The benefits of this extension would be numerous, including for genomic 765 
forecasting and predicting species ranges in the face of climate change and ecological breakdown 766 
(Fitzpatrick and Keller, 2015; Exposito-Alonso et al., 2019; Theodoridis et al., 2020), and for 767 
constructing models of species distribution dynamics in the ancient past (Wang et al., 2021). 768 
Implementation of this extension of slendr is still in the planning stages, in collaboration with the 769 
community on the project’s GitHub page. 770 

At the moment, slendr can only produce genome sequences from a single species 771 
(although with an arbitrary number and spatial arrangement of population groups) due to the 772 
restrictions imposed by its simulation back end. However, many types of genomic resources 773 
distributed across space and time are represented by fragmentary mixtures of genomes from 774 
multiple species. This includes ancient microbiomes from human remains (Rasmussen et al., 775 
2015), sedimentary DNA from permafrost, caves, or lake and marine cores (Willerslev et al., 2003; 776 
Parducci et al., 2017; Armbrecht et al., 2019; Vernot et al., 2021), and environmental DNA from 777 
water, soil, or air samples (Taberlet et al., 2012; Stat et al., 2017; Lynggaard et al., 2022). Recent 778 
developments in SLiM would allow slendr to perform multi-species simulations, which would 779 
facilitate ecological modeling of species distributions (Fordham et al., 2021) or of past epidemics 780 
(Duchene et al., 2020) from a fully genomic perspective. 781 

Finally, at the time of writing, slendr models are limited to neutral simulations, and this 782 
restriction applies even to simulations performed via its SLiM back end. In particular, slendr does 783 
not currently provide built-in support for specifying mutation types, genomic element types, 784 
recombination maps, or custom SLiM callbacks. Providing an R equivalent for SLiM’s complete 785 
functionality would be a daunting task of limited utility, and would substantially complicate slendr’s 786 
intuitive R syntax for encoding demographic models (Figure 1). An attractive alternative for 787 
supporting more advanced, customized models could be to retain the behavior of slendr described 788 
in this manuscript as the default, but provide the possibility of overriding different aspects of this 789 
behavior by injecting user-defined SLiM snippets at appropriate locations in slendr’s SLiM back-790 
end code. We are exploring this possibility for future versions of the software. 791 

Ultimately, we hope that our new simulation framework will help generate new ideas about 792 
the insights that can be gleaned from the rich spatio-temporal information hidden within DNA 793 
sequences. Furthermore, we aspire to help budding researchers in population genetics get started 794 
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with simulations and build their intuition about population genetic concepts by developing models 796 
using more traditional non-spatial methods and statistics, and we believe that slendr could be a 797 
useful tool for teaching population genetics to students. We hope that by easily generating and 798 
visualizing genomic models on real landscapes, we can spark new ways of thinking about how 799 
organisms evolve (Bradburd and Ralph, 2019) and enable clearer discussions about the 800 
fundamental interconnectedness of genomes across space and time (Mathieson and Scally, 801 
2020). 802 
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