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Abstract1

Many [..1 ]traits show plastic phenotypic variation across environments, [..2 ]captured by their norms2

of reaction. These reaction norms may be discrete or continuous, and can substantially vary in shape3

across organisms and traits, making it difficult to compare amounts and types of plasticity among ([..34

]or even within) studies. In addition, the evolutionary potential of phenotypic traits and their plasticity5

in heterogeneous environments critically depends on how reaction norms vary genetically, but there is6

no consensus on how this should be quantified. Here, we propose a partitioning of phenotypic variance7

across genotypes and environments that jointly address these challenges. We start by distinguishing the8

components of phenotypic variance arising from the average reaction norm across genotypes, [..4 ]genetic9

variation in reaction norms (with additive and non-additive components), and a residual that cannot be10

predicted from the genotype and the environment. We then further partition the [..5 ]genetic variance of11

the trait [..6 ](additive or not) into an environment-blind component and a component [..7 ]arising from12

genetic variance in plasticity[..8 ]. We show that the additive components can be expressed, and further13

decomposed according to the relative contributions from each parameter, using what we describe as the14

1removed: phenotypic traits vary in a predictable way
2removed: as
3removed: and sometimes
4removed: (additive)
5removed: (additive)
6removed: into a component related the marginal (additive ) genetic variance in the trait
7removed: due to (additive)
8removed: , including for complex, non-linear reaction norms. The last step involves estimating contributions from different

parameters of reaction norm shape to these variance components. This decomposition is general and we show how to apply it to
various modelling approaches,
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reaction norm gradient. This allows for a very general framework applicable from the character-state to15

curve-parameter approaches, including polynomial functions, or arbitrary non-linear models. To facilitate16

the use of this variance decomposition, we provide the Reacnorm R package, including a practical tutorial.17

Overall the toolbox we develop should serve as a [..9 ]basis for an unifying and deeper understanding of18

the variation and genetics of reaction norms and plasticity, as well as more robust comparative studies of19

plasticity across organisms and traits.20

Introduction21

The phenotype of a given genotype can vary in response to its environment of development or expression,22

through a phenomenon broadly described as phenotypic plasticity (Schlichting & Pigliucci 1998; Bradshaw23

1965). Phenotypic plasticity is currently attracting considerable interest in the context of rapidly changing24

natural environments (Gienapp et al. 2008; Chevin et al. 2010; Merilä & Hendry 2014). While the mere exis-25

tence (and even prevalence) of phenotypic plasticity is uncontroversial, its relative contribution to observed26

or predicted phenotypic change in the wild (Teplitsky et al. 2008; Gienapp et al. 2008; Merilä & Hendry 2014;27

Bonamour et al. 2019), as well as the extent of its interplay with population-level processes such as natural se-28

lection and population dynamics (Reed et al. 2010; Vedder et al. 2013; Schaum & Collins 2014; de Villemereuil29

et al. 2020), are very active research areas. Answering these questions requires [..10 ]biologists to be able30

to dissect and compare phenotypic plasticity in detail in a wide range of traits, environmental contexts and31

species. This requires a methodology that is appropriate for each context, while being general enough to be32

comparable across [..11 ]contexts.33

The relationship between the phenotype and the environment is captured by the reaction norm (or norm34

of reaction), which is defined at the level of genotypes (Woltereck 1909; Schlichting & Pigliucci 1998). Reaction35

norms encompass phenotypic responses to both continuous environments (such as temperature, salinity, etc.)36

and categorical/discrete ones (such as host plant for a phytophagous insect). Within a simplemodel of reaction37

norm, quantifying plasticity may be straightforward. For instance, both empirical (Charmantier et al. 2008;38

Nussey et al. 2005) and theoretical (Gavrilets & Scheiner 1993a; Lande 2009) work have extensively relied39

on the assumption of a linear reaction norm, whose slope is used as a metric of plasticity, since it quantifies40

how much phenotypic change is induced per unit environmental change. However, regression slopes are41

signed and have units of trait per environment, so even in this simple case some [..12 ]standardisation is42

needed in order to compare the magnitude of plasticity among studies. Beyond this simple scenario, drawing43

robust conclusions about phenotypic plasticity requires being able to quantify and compare its magnitude44

9removed: base
10removed: for
11removed: context
12removed: standardization
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across organisms, traits and environments, in a way that is applicable across the statistical frameworks used45

to study plasticity.46

Beyond how much phenotypes change with the environment, how they change can also be of importance.47

First, different reaction norm shapes may come with different biological interpretations. For instance, a bell-48

shaped (eg quadratic, Gaussian) reaction norm may indicate that some mechanism underlying a measured49

trait is maximized at an intermediate value of the environment. This is often expected for traits that are direct50

components of fitness, or that can be interpreted as proxys for performance, for which the reaction norms51

are generally termed tolerance or performance curves (Lynch & Gabriel 1987; Deutsch et al. 2008; Angilletta52

2009). A sigmoid shape, on the other hand, may indicate that plasticity is directional but that the range of53

possible phenotypes is constrained, or that selection favors discrete-like variation (Moczek & Emlen 1999;54

Suzuki & Nijhout 2006; Hammill et al. 2008; Chevin et al. 2013). Second, most theoretical models on the55

evolution of plasticity, especially those based on quantitative genetics which are most directly comparable to56

empirical data, assume a given reaction norm shape - often linear for simplicity (Scheiner 1993b; Tufto 2000;57

Lande 2009). The extent to which theoretical predictions on the evolution of plasticity apply to any particular58

empirical system thus depends on how well the reaction norm shape assumed in the models conforms to59

observations in this system. In other words, we need some metric for whether a reaction norm is ”mostly60

linear” or ”mostly curved”, for instance. In addition, when fitting a particular model of reaction norm shape61

to an empirical dataset, we would like to know how well this model captures the overall plastic variation of62

the trait across environments.63

A third crucial question regarding reaction norms is how (and how much) they vary genetically. It has64

long been recognized that plasticity can evolve if reaction norms vary genetically (Bradshaw 1965), and theory65

has predicted how different aspects of reaction norm shape are expected to respond to selection in a variable66

environment (de Jong 1990; Gomulkiewicz & Kirkpatrick 1992; Gavrilets & Scheiner 1993a). However this67

theory has been little applied empirically, except for predictions about the slope of linear reaction norms (or68

phenotypic differences between two environments). But beyond this, it should also be of interest to identify69

which aspects of reaction norm shape are more likely to evolve, based on how they vary genetically. For70

instance, a reaction norm may be highly curved (e.g. quadratic) but have little genetic variability in curvature,71

instead mostly varying in position, height, or local slope. Distinguishing between the genetic variance of the72

trait, marginalised across environments, and the genetic variance of plasticity itself, can also be a conceptual73

and methodological challenge. There is thus a need to compare genetic variation in different components of74

reaction norm, but previous attempts to do so (in a meta-analysis) were limited by methodological obstacles75

(Murren et al. 2014, see the Appendix). In fact, comparing genetic variation in the slope versus curvature76

of a reaction norm, for instance, is not straightforward, as these parameters have different scales and even77
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units (trait per environment, vs trait per squared environment). [..13 ]Moreover, even the notion of average78

slope and curvature can have different meanings depending on the assumed distribution for the environment.79

Genetic variation in reaction reaction norm shape can be analyzed by estimating variation in the parameters80

of a continuous function of the environment, as done by the flexible framework of function-valued traits81

(Kirkpatrick & Heckman 1989; Gomulkiewicz & Kirkpatrick 1992; Stinchcombe et al. 2012). In addition, it82

would be useful to be able to compare the relative contributions of variation in different aspects of reaction83

norm shape to the overall variance [..14 ]arising from plasticity of a trait.84

We herein propose a theoretically justified and generally applicable framework to estimate and partition85

the phenotypic variance of reaction norms, towards threemain goals: (i) quantify the contribution of plasticity86

to the total phenotypic variance in reaction norms; (ii) evaluate the contribution of different aspects of reaction87

norm shape, and of the full assumed reaction norm model, to overall plastic phenotypic variation; and (iii)88

quantify heritable variation in the trait and its [..15 ]plastic component, due to the different aspects of the89

reaction norm. We provide this framework as a new R package Reacnorm, including a tutorial to guide users90

in applying it. Our hope is that this will stimulate more quantitative investigations of the ways in which91

phenotypic plasticity contributes to phenotypic variation and evolutionary change.92

Reaction norm models93

In the broadest sense, a reaction norm is a decomposition of phenotypic variation among known (often con-94

trolled) versus unknown sources of environmental variation. In this sense, we can start by decomposing the95

phenotypic trait 𝑧 into two components:96

𝑧 = 𝑧 + 𝑧. (1)

The first term 𝑧 is the reaction norm, that is, the component of phenotypic variation that can be predicted97

(hence the hat notation) from knowing both the genotype (which we will note 𝑔 throughout) of an individual98

and the environment (whichwewill note 𝜀 throughout) in which it developed. Note that by “environment”, we99

mean either an experimentally controlled environmental variable, or a focal variable (e.g. temperature) within100

a naturally occurring environmental context. The second term 𝑧 is the component of the measured phenotype101

that cannot be predicted from genotype and environment, and arises from unknown environmental factors102

(usually described as micro-environmental variation), developmental noise, and measurement error.103

Types of reaction norms 𝑧 can be further categorised according to the type of environmental variation.104

The environment may be inherently categorical and unordered, such as host plant for a herbivore insect. It105

13removed: More
14removed: in
15removed: plasticity
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Table 1: List of the main notations, as well as their source of variation. We here distinguish the “focal” environment,
which only concerns the environmental variable used to parametrise the reaction norm, from other putative sources
of environmental variation that may influence the phenotypic trait (sometimes described as micro-environmental vari-
ation). “Everything” in the table thus includes all (focal and other) sources of environmental and genetic variation,
developmental noise and measurement error.

Notation Explanation Varies over

𝑧 Phenotypic value for the trait Everything
𝑧 Phenotype as predicted from the environment and the genotype Focal environment,

genotypes
𝜀 Environmental variable —
𝝁 Vector of the average value of the phenotypic in each environment Focal environment

G𝑧 Additive genetic variance-covariance matrix of trait values across en-
vironments (character states)

—

𝜽𝑔 Vector of parameter values of the reaction norm for genotype 𝑔 Genotypes

𝜽 Vector of mean values of the reaction parameters over the genotypes —
G𝜃 Additive genetic variance-covariance matrix of the reaction norm pa-

rameters
—

𝝍𝜀 Reaction norm gradient, the vector of partial derivatives of the pheno-
type 𝑧 against reaction norm parameters 𝜽𝑔, averaged over the geno-
types at environment 𝜀

Focal environment

Ψ Variance-covariance matrix of 𝝍𝜀 across environments —
𝑉P Total phenotypic variance in the trait 𝑧 —

𝑉Res Residual variance, not explained by the reaction norm —
𝑉Plas, 𝑃2RN Phenotypic variance arising from changes in the mean reaction norm

across environments; divided by 𝑉P for 𝑃2RN

—

𝑉Gen, 𝐻2
RN Total genetic variance in the trait across environments; divided by 𝑉P

for 𝐻2
RN

—

𝑉Add, ℎ2RN Total additive genetic variance in the trait across environments; di-
vided by 𝑉P for ℎ2RN

—

𝑉A, ℎ2
[..a ]Environment-blind additive genetic variance of the trait, i.e. based
on the mean breeding values across environments, divided by 𝑉P for
ℎ2

—

𝑉A×E, ℎ2I Additive genetic variance [..b ]arising from plasticity, i.e variance of
the mean-centred breeding values, divided by 𝑉P for ℎ2I

—

𝜋Sl, 𝜋Cv Proportion of 𝑉Plas explained by the average slope (𝜋Sl) or curvature
(𝜋Cv) of the average reaction norm

—

𝜑𝑖 , 𝜑𝑖 𝑗 Proportion of𝑉Plas explained by parameter 𝑖 , or by covariation between
parameter 𝑖 and 𝑗 for a polynomial reaction norm

—

𝛾𝑖 , 𝛾𝑖 𝑗 Proportion of 𝑉Add explained by the additive genetic (co)variation in
parameter 𝑖 (and 𝑗 )

—

𝜄𝑖 , 𝜄𝑖 𝑗 Proportion of 𝑉A×E explained by the additive genetic (co)variation in
parameter 𝑖 (and 𝑗 )

—

aremoved: Marginal
bremoved: in

may be ordered but with no (or unknown) quantitative value, such as low, medium, and high treatments. Or106

it may be ordered quantitatively, with values that are either intrinsically discrete, such as habitat quality, or107

continuous, such as temperature or salinity.108

When environments are categorical, the reaction norm can be studied by treating phenotypic values in109

different environments as alternative ’character states’, considered as different traits in a multivariate frame-110
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work (Via & Lande 1985; Falconer 1952). The mean character state may differ among [..16 ]environments if111

the trait is plastic; phenotypic and genetic variation may be larger in some environments; and phenotypes112

may be more or less correlated across environments (Via & Lande 1985; Falconer 1952). Such a modelling113

framework is readily described by Equation 1 for a genotype 𝑔 and environment 𝜀𝑘 (where the index 𝑘 is used114

to reflect the discrete aspect of the environmental variable). In practice, such an approach would correspond115

to an ANOVA (or a mixed model) with discrete environment and genotype-within-environment as (random)116

effects of the model. In its most compact form, such a statistical model can be framed as a multivariate Gaus-117

sian distribution, with [..17 ]the number of dimensions corresponding to the number of categories in the118

environment,119

�̂� ∼ N (𝝁,G𝑧) , (2)

where 𝝁 is the vector of expected phenotypic values (across genotypes) within each environment, and G𝑧 is120

the genetic variance-covariance matrix of trait values within and across environments. [..18 ][..19 ]121

For quantitative environments (both discrete and continuous), the most common approach is to model122

the reaction norm as a function of environment and genotype:123

𝑧 = 𝑓 (𝜀, 𝜽𝑔), (3)

where 𝜀 is the environmental value, and 𝜽𝑔 is a vector that contains the parameters of the function (e.g. coeffi-124

cients associated to each exponent for a polynomial) for each genotype𝑔; these parameters are thus genetically125

variable. The parameters 𝜽𝑔 are generally assumed to be polygenic and thus follow a multivariate Gaussian126

distribution,127

𝜽𝑔 ∼ N(𝜽 ,G𝜃 ), (4)

where 𝜽 is the vector of average parameter values across genotypes and G𝜃 is the additive genetic variance-128

covariance matrix of the parameters 𝜽𝑔. This approach has been described alternatively as the “reaction129

norm” approach, the “polynomial approach”, or a parametric version of function-valued traits. To keep it130

general here and avoid confusion with the general concept of reaction norm as defined in Equation 1 (which131

applies even to categorical environments), we will describe it as the “curve-parameter” approach. Note that132

Equation 4 assumes that the only source of variation in reaction norm parameters 𝜽 is genetic. In cases where133

reaction norms can bemeasured in individuals using repeatedmeasurements across environments (individual134

16removed: environment
17removed: a
18removed: Note that when the environment is quantitative but discrete, one may still use the character-state approach, but

structuring correlations in G𝑧 by environmental distance, in effect treating the phenotype as a stochastic process characterized by
its autocovariance function across environments

19removed: .
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plasticity sensu Nussey et al. 2007) it can be necessary, or useful, to include other sources of variation in 𝜽 ,135

including confounding environmental effects, or permanent environmental effects. For the sake of simplicity,136

we will assume throughout that all variation in 𝜽 is genetic, but we show in Appendix C5 that relaxing this137

assumption only affects how non-genetic variances are computed.138

It can be shown that the character-state and curve-parameter approaches are equivalent, following the139

spirit of de Jong (1995), who showed that a polynomial curve of sufficient order is exactly equivalent to a140

character-state model. In particular, the character-state in Equation 2 can be expressed using Equation 3 and141

Equation 4 by letting 𝜽 = 𝝁, G𝜃 = G𝑧 and 𝑓 a function that outputs the 𝑘th value of 𝜽𝑔 when evaluated at142

𝜀𝑘 environment (see Appendix A). In the following, we will derive general results using the more general143

formalism of Equation 3 and Equation 4, and then express them for the particular case of the character-state144

approach when relevant.145

Partitioning variation in reaction norms146

Complete partition of the variation in reaction norms147

The total phenotypic variance in the reaction norm can be partitioned by isolating independent components148

of variation. The main reasoning will be summarised here, with more mathematical details provided in the149

Appendix A to Appendix D. For a start, the terms in Equation 1 are assumed to be independent, such that150

the total phenotypic variance V(𝑧) (usually noted 𝑉P) is the sum of the variance predicted by the genotype151

and the environment V(𝑧), plus a residual component of variance V(𝑧𝑖), which we will note 𝑉Res. Then, a152

second distinction can be made between the general, average shape of the reaction norm, and the genotype-153

specific variation surrounding such an average, as illustrated in Figure 1 using a quadratic reaction norm. The154

component of phenotypic variance arising from plastic responses to the environment by the mean reaction155

norm, i.e. after averaging across all genotypes (Figure 1), will be denoted𝑉Plas. This variance can be considered156

as fully ascribed to the environmental component of phenotypic variation. The component of phenotypic157

variation attributable to genetic variation in the reaction norm Figure 1 will be denoted 𝑉Gen. As these two158

components are independent by construction, denoting as E𝑔 |𝜀 (𝑧) the expected value of the reaction norm159

across genotypes at a given environmental value 𝜀, we have160

V(𝑧) = V
(
E𝑔 |𝜀 (𝑧)

)
+ V

(
𝑧 − E𝑔 |𝜀 (𝑧)

)
= 𝑉Plas +𝑉Gen, (5)

such that161

𝑉P = 𝑉Plas +𝑉Gen +𝑉Res. (6)
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Compared to the classical equation 𝑉P = 𝑉G + 𝑉E + 𝑉G×E (Falconer & Mackay 1996; Lynch & Walsh 1998;162

Des Marais et al. 2013), the correspondence is that𝑉E = 𝑉Plas +𝑉Res and𝑉Gen = 𝑉G +𝑉G×E. Also note that both163

decompositions make the same common assumption that genotypes and environments are not correlated.164

We have thus decomposed the environmental variance into a component due to phenotypic plasticity in165

response to 𝜀 (𝑉Plas) on the one hand, and any other residual source of phenotypic variation (𝑉Res) on the other166

hand, as commonly done in theory (Via & Lande 1985; Gavrilets & Scheiner 1993a) as well as in practice.167

Environment (ε)

R
ea

ct
io
n
no

rm
(ẑ
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Figure 1: Illustration of the full variance decomposition using quadratic reaction norms. We start from the reaction
norms (left graph, grey lines, the residual variance is not illustrated) and compute their average shape across all geno-
types (left graph, red line). The phenotypic variance arising from this average shape is 𝑉Plas. Centering the reaction
norms along this average shape directly yields the distribution of the breeding values along environments (middle
graph, purple lines), because in this quadratic case, the non-additive genetic variance is𝑉NonAdd = 0. The total variance
of the breeding values along the environment is 𝑉Add. The classical, environment-blind additive genetic variance 𝑉A is
the variance of the breeding values averaged across environments for each genotype (middle graph, green dots). The
𝑉A×E is the variance of the reminder of the breeding values after mean-centring (right graph, blue lines).

The genotypic variance 𝑉Gen accounts for all sources of genetic variation, including the genotype-by-168

environment interaction. Note that this contrasts with a view where the genotype-by-environment interac-169

tion is instead associated with the environmental component, e.g. as plastic variance (Scheiner & Lyman 1989;170

Scheiner 1993a; Falconer & Mackay 1996; Lynch & Walsh 1998).171

[..20 ]172

[..21 ]As seen above,𝑉Gen can be [..22 ]decomposed into the genetic variance of the trait, measured using its173

average genotypic value across environments (𝑉G), and the variance arising from genotype-by-environment174

interaction (𝑉G×E). Here, we will apply such decomposition at the level of the additive genetic variance (𝑉Add),175

20removed: Illustration of the full variance decomposition using quadratic reaction norms. We start from the reaction norms (left
graph, grey lines, the residual variance is not illustrated) and compute its average shape across all genotypes (left graph, red line). The
phenotypic variance arising from this average shape is𝑉Plas. Centring the reaction norms along this average shape directly yields the
distribution of the breeding values along environments (middle graph, purple lines), because in this quadratic case, the non-additive
genetic variance is 𝑉NonAdd = 0. The total variance of the breeding values along the environment is 𝑉Add. The classical, average
additive genetic variance𝑉A is the variance of the average of the breeding values across the environments for each genotype (middle
graph, green dots). The 𝑉A×E is the variance of the reminder of the breeding values after mean-centring (right graph, blue lines).

21removed: The genotypic variance
22removed: further decomposed in two steps. First, we can isolate the additive genetic variance (𝑉Add), from the non-additive
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relegating all the non-additive parts of𝑉G and𝑉G×E into a common𝑉NonAdd [..23 ]component (Figure 1), aris-176

ing from dominance and epistasis (Lynch & Walsh 1998; Falconer & Mackay 1996). Usually, models like177

Equation 2 or Equation 4 are defined using additive genetic variance-covariance matrices for their basic pa-178

rameters, meaning that 𝑉Add can be directly estimated from the models. As such, we will discard explicit179

inclusion of dominance or epistasis variance components in a theoretical or statistical model throughout, for180

the sake of simplicity. However, non-additive genetic variance can still arise from non-linearity in the (as-181

sumed) developmental system (Rice 2004; Morrissey 2015; de Villemereuil et al. 2016; de Villemereuil 2018),182

meaning that non-additive variance can be generated by the reaction norm itself. Looking at Equation 3 and183

Equation 4, the ultimate source of any additive genetic variation in the trait 𝑧 comes from the additive ge-184

netic variation in the parameters 𝜽 . As a result, non-additivity in the trait arises when the function 𝑓 (𝜀, 𝜽 )185

in Equation 3 is non-linear with regard to 𝜽 , a situation we will refer to as “non-linearity in the parameters”.186

Importantly, this means that polynomial (e.g. quadratic) functions, which are linear in their parameters, are187

such that 𝑉NonAdd = 0 and 𝑉Gen = 𝑉Add.188

When studying the evolution of plasticity, it proves useful to further decompose𝑉Add into two components.189

The first is the [..24 ]environment-blind additive genetic variance of the trait, arising from differences in190

average breeding values between genotypes, and typically equal to the classical𝑉A. In other words,𝑉A is the191

variance of the breeding values after averaging them across environments (Figure 1), as would be obtained192

if the genotype-by-environment interaction was ignored altogether. For example, it would be the output193

of a simple animal model analysis of repeated measurements of a plastic trait in a wild population. The194

second component of 𝑉Add is the additive genetic variance [..25 ]arising from plasticity, which we will note195

𝑉A×E (for additive genetic component due to genotype-by-environment interactions). 𝑉A×E is the remaining196

additive genetic variance in the reaction norm after removing the mean breeding value for each genotype197

(Figure 1). This definition is akin to the one used by Albecker et al. (2022), but here more directly expressed198

in terms of variance of breeding values, i.e. additive genetic variance. It measures the potential for evolution199

of plasticity in the trait. Notably, if 𝑉A×E = 0 but 𝑉Add > 0, then the additive genetic variation in the reaction200

norms is only due to average differences between genotypes, i.e. the reaction norms of different genotypes201

are parallel. The variances 𝑉A and 𝑉A×E are exactly equivalent to the classical decomposition using 𝑉G and202

𝑉G×E, only applied to the heritable part of the genetic variance. We show below that it is possible to express203

𝑉Add, 𝑉A and 𝑉A×E in a way that encompasses all approaches of reaction norm, from a character-state to a204

curve that is non-linear in its parameters, by computing reaction norm gradients of the trait 𝑧 with respect205

to its reaction norm parameters 𝜽 , in line with previous theoretical results for the quantitative genetics of206

23removed: )
24removed: marginal
25removed: of
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non-linear developmental systems and non-Gaussian traits (Morrissey 2015; de Villemereuil et al. 2016),.207

The complete partition of the phenotypic variance is thus:208

𝑉P = 𝑉Plas +𝑉A +𝑉A×E +𝑉NonAdd +𝑉Res. (7)

From this, it is possible to derive unitless quantities of interest, for instance by standardising by the pheno-209

typic variance, which is more widely applicable and appropriate than mean-standardisation in the context210

of reaction norms (Pélabon et al. 2020). In particular:211

𝑃2RN =
𝑉Plas
𝑉P

, (8)

is the proportion of the phenotypic variance arising from average plastic responses to environments (depend-212

ing on the average reaction norm shape). Variance-standardised additive genetic variances are heritabilities.213

In our case, we can use 𝑉Add, 𝑉A or 𝑉A×E as the numerator, yielding the following relationship:214

ℎ2RN =
𝑉Add
𝑉P

=
𝑉A
𝑉P

+ 𝑉A×E
𝑉P

= ℎ2 + ℎ2I . (9)

In other words, the heritability of the trait when fully accounting for its reaction norm (ℎ2RN) is equal to the215

[..26 ]environment-blind heritability of the trait (ℎ2, based on the [..27 ]breeding values averaged across envi-216

ronments) plus the heritability [..28 ]from plasticity ([..29 ]ℎ2I , based on the breeding values by environment217

interaction). If it is not possible to measure additive genetic variances due to limitations in the experimental218

design (e.g. when “genotypes” correspond to populations, accessions or clones), it is possible to perform the219

same decomposition using “broad-sense heritabilities”,220

𝐻2
RN =

𝑉Gen
𝑉P

=
𝑉G
𝑉P

+ 𝑉G×E
𝑉P

= 𝐻2 + 𝐻2
I . (10)

In all cases, the quantity:221

𝑇 2
RN =

𝑉Plas +𝑉Gen
𝑉P

= 𝑃2RN + 𝐻2
RN (11)

would measure the proportion of the phenotypic variance explained by the (possibly plastic and genetically222

variable) reaction norm, and thus our ability to predict the individual phenotype from the genotype and223

the environment. In a linear context with respect to the parameters, when the environment is considered a224

fixed quantity, the quantities 𝑃2RN and𝑇 2
RN are analogous to the (resp. marginal and conditional) coefficient of225

26removed: marginal
27removed: averaged breeding values
28removed: of plasticity , arising from interaction with the environment
29removed: ℎ2I
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determination of the reaction norm (Nakagawa & Schielzeth 2013; Johnson 2014), but their definition here is226

given beyond that simple context. Relaxing the assumption that the only source of variation in 𝜽 is of genetic227

origin (e.g. individual plasticity, Nussey et al. 2007), we show in Appendix C5 that only the computation of228

𝑉P and 𝑇 2
RN are slightly affected.229

Importantly, so far we are not making any statement about the actual reaction norm shape: 𝑃2RN captures230

the contribution of the average reaction norm regardless of its shape, and the broad- or narrow-sense heritabil-231

ities the contribution of various aspects the genetic variation to the phenotypic variance. The contribution232

of detailed aspects of reaction norms shape to phenotypic variation are obtained by further partitioning𝑉Plas233

and the additive genetic variances, as we do below.234

Contributions of reaction norm shape and parameters to the plastic235

variance236

As stated in Equation 5, the general definition of the variance arising from the average reaction norm is237

𝑉Plas = V
(
E𝑔 |𝜀 (𝑧)

)
. Important simplifications arise in more particular cases. For example, when the assumed238

curve is linear in its parameters, E𝑔 |𝜀 (𝑧) = 𝑓 (𝜀, 𝜽 ), where 𝜽 is the average value of the parameters across239

genotypes. In particular, in the case of a quadratic reaction norm (Scheiner 1993a; Gavrilets & Scheiner240

1993b; Morrissey & Liefting 2016):241

𝑓 (𝜀, 𝜃𝑔) = (𝑎 + 𝑎𝑔) + (𝑏 + 𝑏𝑔)𝜀 + (𝑐 + 𝑐𝑔)𝜀2, (12)

where 𝑎, 𝑏, 𝑐 are the average intercept, first- and second-order parameters of the model, and 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔 are242

genotype-specific deviation from these average values for the same parameters, we can express 𝑉Plas simply243

as:244

𝑉Plas = 𝑏
2V(𝜀) + 𝑐2V(𝜀2) + 2𝑏𝑐cov(𝜀, 𝜀2) . (13)

If the environmental variable 𝜀 has been mean-centred and is symmetrical, then cov(𝜀, 𝜀2) = 0 and the third245

term vanishes. Finally, in the case of a character-state model, the average phenotype in each environment246

𝜀𝑘 is readily provided by the 𝜇𝑘 in Equation 2, so that 𝑉Plas = V(𝜇). Once 𝑉Plas is computed, its standardised247

version 𝑃2RN follows by dividing by the total phenotypic variance.248

Pushing the analysis further, we aim to compute the contributions of different aspect of reaction norm249

shape to the overall environmental plastic variance of the trait, notably the contribution of its slope and250

curvature, which we will denote as 𝜋Sl and 𝜋Cv, respectively. For this, at least one of two of the following251

assumptions must be valid: (i) 𝜀 follows a normal distribution, or (ii) the true reaction norm is quadratic. In252

all cases, it also require that the environmental variable has been mean-centered. A last requirement is for 𝑓253
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to be at least twice differentiable with respect to 𝜀 (which excludes e.g. the character-state approach). In this254

case, these terms simply depend on the average first- and second-order derivative of E𝑔 |𝜀 (𝑧) and the variance255

of 𝜀 and 𝜀2 (see Appendix D1):256

𝜋Sl =
E

( dE𝑔 |𝜀
d𝜀 (𝑧)

)2
V(𝜀)

𝑉Plas
, 𝜋Cv =

1
4E

( d2E𝑔 |𝜀
d𝜀2 (𝑧)

)2
V(𝜀2)

𝑉Plas
. (14)

An important point arising from Equation 14 is that the relative importance of variation in the slope and cur-257

vature components of reaction norm depend on variation in the environment, respectively V(𝜀) and V
(
𝜀2

)
258

(note that V
(
𝜀2

)
= 2V (𝜀)2 if the environment is normally distributed). Crucially, we chose to express this259

partitioning using the mean environment as the reference environment (as commonly practiced, e.g. Morris-260

sey & Liefting 2016), but any other choice of a reference environment would result in a different 𝜋-partition,261

notably due to a non-null value for Cov(𝜀, 𝜀2). Fortunately, neither 𝑉Plas nor 𝑃2RN are impacted by this choice262

in the reference environment. Furthermore, if the reaction norm is linear [..30 ]in the parameters, the deriva-263

tives of E𝑔 |𝜀 (𝑧) can be directly taken as the derivatives of 𝑓 . In particular, for a quadratic reaction norm as in264

Equation 12, for a mean-centred environment, those quantities simply are:265

𝜋Sl =
𝑏2V(𝜀)
𝑉Plas

, 𝜋Cv =
𝑐2V

(
𝜀2

)
𝑉Plas

, (15)

consistent with the fact the first and second order coefficients of a quadratic polynomial correspond to its266

average slope and curvature, respectively. Only in this configuration do we have 𝜋Sl +𝜋Cv = 1. Unfortunately,267

this simple, geometric interpretation of the polynomial coefficients is lost above the second-order case (see268

Appendix D).269

Figure 2 shows the values of 𝜋Sl and 𝜋Cv for various quadratic reaction norms, assuming 𝜀 follows either270

a normal or uniform distribution, with same mean 0 and variance 1. The values for 𝜋Sl and 𝜋Cv translate well271

the perceived “trendiness” (for large 𝜋Sl) or “curviness” (for large 𝜋Cv) of reaction norms, but they may also272

strongly depend on the statistical distribution of the environmental variable 𝜀, as shown especially in the third273

example of Figure 2. In this example, the difference arises because the assumed environmental distributions274

have different kurtosis (the scaled fourth central moment, related to 𝑉 (𝜀2) in Equation 15). Because 𝑉 (𝜀2) is275

larger for the Gaussian, this distribution leads to larger 𝜋Cv than the uniform.276

When it is not possible to assume that 𝜀 is normally distributed (because it is discrete, or experimentally277

constrained) and a quadratic assumption is not a good fit to the reaction norm, it is always possible to use278

a higher-order polynomial model to approximate the true reaction norm, in line with theoretical work by279

de Jong (1990), Gavrilets & Scheiner (1993b), and de Jong (1995). In this case, we can conduct an alternative280

30removed: on
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Environment (𝜀)Ex
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𝜋Sl = 0.97, 𝜋Cv = 0.03Gauss.

𝜋Sl = 0.99, 𝜋Cv = 0.01Unif.

Environment (𝜀)Ex
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e
(
̂ 𝑧)

𝜋Sl = 0.03, 𝜋Cv = 0.97Gauss.

𝜋Sl = 0.07, 𝜋Cv = 0.93Unif.

Environment (𝜀)Ex
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ed

ph
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yp

e
(
̂ 𝑧)

𝜋Sl = 0.33, 𝜋Cv = 0.67Gauss.

𝜋Sl = 0.56, 𝜋Cv = 0.44Unif.

Figure 2: Computation of 𝜋Sl = 𝜋𝑏 and 𝜋Cv = 𝜋𝑐 , the relative contributions of linear and quadratic terms to pheno-
typic variation caused by the mean reaction norm, for different shapes of reaction norms, and two distributions of the
environmental variable 𝜀: a standard Gaussian (of mean 0 and variance 1), and a uniform distribution between −

√
3

and
√
3 (of mean 0 and variance 1).

decomposition based on the parameters of the polynomial (rather than the mean slope and curvature of the281

function), using the fact that a polynomial curve is linear in its parameters. To distinguish this parameter-282

based decomposition from the specific decomposition in terms of slope and curvature, we use a different283

notation. The relative contribution of a given exponent 𝑚 in the polynomial to the variance caused by the284

mean plasticity becomes (see Appendix D2)285

𝜑𝑚 =
𝜃2𝑚V(𝜀𝑚)
𝑉Plas

, (16)

and the contribution of the covariance between exponents 𝑙 and𝑚 is286

𝜑𝑙𝑚 =
2𝜃𝑙𝜃𝑚Cov(𝜀𝑙 , 𝜀𝑚)

𝑉Plas
. (17)

Note that even with a symmetrical and mean-centred environment, the covariance between higher-order287

exponents will not be zero in general, contrary to 𝜀 and 𝜀2 in the quadratic case. Using orthogonal polynomials288

would solve this issue of covariances, but at the cost of a more complex interpretation of the coefficients.289

More generally, this 𝜑-decomposition only relies on the assumption that the reaction norm is linear on its290

parameters, which includes polynomials as a particularly useful special case. We summarise the requirements291

and applications for the 𝜋- and 𝜑-decomposition depending on the context in Figure 3.292
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What is the type of
the environmental

variable?
Categorical
or Ordinal

Discrete
(e.g. controlled environment)

Is a quadratic
curve a good fit?

Continuous
(e.g. wild population)

Is the environment
normally

distributed?

No

Compute VPlas from
the character-state

Compute VPlas from the character-
state and use the φ-decomposition

on a polynomial curve
No

(Discrete)

Compute VPlas from a good
fit curve, optionnally use
the φ-decomposition

using a polynomial curve

No
(Continuous)

Compute VPlas from the
curve parameter and

use the π-decompositionYes

Yes

Figure 3: Decision tree summarising our suggested workflow for the computation and decomposition of𝑉Plas, depend-
ing on the nature of the environmental variable, its normality and the validity of a quadratic approximation of the
reaction norm shape.

Contributions of reaction norm parameters to the genetic variance293

We can expression the variance of the genotypic values of the reaction norms in Equation 5 in a slightly294

different, but more operational, manner:295

𝑉Gen = V
(
𝑧 − E𝑔 |𝜀 (𝑧)

)
= E

(
V𝑔 |𝜀 (𝑧)

)
, (18)

i.e. the total genotypic variance of the reaction norms is equal to the environment-specific genotypic variance296

averaged across environments. As explained above, this total genetic variance can be further decomposed into297

the genetic variance and the genotype-by-environment variance, i.e. 𝑉Gen = 𝑉G + 𝑉G×E (Falconer & Mackay298

1996; Lynch & Walsh 1998; Des Marais et al. 2013). From an evolutionary perspective, the component of299

main interest is rather the total additive genetic variance of the reaction norm 𝑉Add, which will be the main300

focus of this section. As a reminder, we here assume, that the experimental design allows for the inference of301

the additive genetic variance of the parameters of the reaction norm (G𝑧 or G𝜃 above), and that non-additive302

variance in the trait𝑉NonAdd only arises when the reaction norm is non-linear in the parameters (i.e. dominance303

and/or epistasis were not fitted in the statistical model). This assumption is for the sake of simplicity, as our304

framework can include such effects into 𝑉Gen if needed.305

A general way to relate the additive genetic variance of the trait to the additive genetic variances of the306

reaction norm parameters is through a vector that we describe as the reaction norm gradient, which we will307
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note 𝝍𝜀 (following notations in de Villemereuil et al. 2016),308

𝝍𝜀 = E𝑔
(
𝜕𝑧

𝜕𝜽

)
𝜀

, (19)

where the subscript 𝜀 makes it clear that 𝝍𝜀 will generally be a function of the environment. In the case of a309

quadratic curve, 𝝍𝜀 is the (1, 𝜀, 𝜀2)𝑇 vector (see Appendix C3 for a polynomial of arbitrary order). In the case310

of a character-state model, 𝝍𝜀𝑘 is a vector with 1 for the 𝑘th environmental level (or character state), and zero311

elsewhere. Whether or not the reaction norm is linear in its parameters, the additive genetic variance of the312

trait in a given environment 𝜀 is (Morrissey 2015; de Villemereuil et al. 2016, and see Appendix B),313

𝑉𝐴 |𝜀 = 𝝍𝑇𝜀 G𝜃𝝍𝜀, (20)

where superscript 𝑇 denotes matrix transposition, G𝜃 the genetic covariance matrix of reaction norm pa-314

rameters as defined in Equation 4 for the curve-parameter approach, and G𝜃 is G𝑧 from Equation 2 for the315

character-state approach. The total additive genetic variance in the reaction norm,𝑉Add, is the average of𝑉𝐴 |𝜀316

across environments (see Appendix C1):317

𝑉Add = E
(
𝝍𝑇𝜀 G𝜃𝝍𝜀

)
. (21)

The [..31 ]environment-blind additive genetic variance of the trait 𝑉A, based on breeding values averaged318

across environments, is (see Appendix C2)319

𝑉A = E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) . (22)

Although some elements of E(𝝍𝜀) and G𝜃 can be negative, the fact that G𝜃 is a variance-covariance matrix320

ensures that𝑉A ≥ 0 (see Appendix C2). The additive genetic variance [..32 ]arising from plasticity is thus (see321

Appendix C2):322

𝑉A×E = 𝑉Add −𝑉A = E
(
𝝍𝑇𝜀 G𝜃𝝍𝜀

)
− E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) . (23)

If we define Ψ = E
(
𝝍𝜀𝝍𝑇𝜀

)
− E (𝝍𝜀) E (𝝍𝜀)𝑇 , the variance-covariance matrix of the reaction norm gradients323

across environments, then a more intuitive way to express𝑉A×E is as a sum, for all pairs of parameters, of the324

(co)variance of their reaction norm gradient across environments (inΨ) and their additive genetic (co)variance325

31removed: marginal
32removed: in

15



(in G𝜃 ):326

𝑉A×E =
∑
𝑖, 𝑗

Ψ(𝑖, 𝑗 )G𝜃 (𝑖, 𝑗 ) = Tr(ΨG𝜃 ), (24)

where Tr is the trace of a matrix. All of the quantities above can be divided by 𝑉P to get the corresponding327

heritabilities.328

To illustrate with an example, for a quadratic reaction norm with mean-centred environment as shown329

in Figure 1, 𝝍𝜀 = (1, 𝜀, 𝜀2) and thus we have (see Appendix C3)330

𝑉Add = 𝑉𝑎 + (𝑉𝑏 + 2𝐶𝑎𝑐)E(𝜀2) +𝑉𝑐E(𝜀4),

𝑉A = 𝑉𝑎 + 2𝐶𝑎𝑐E(𝜀2) +𝑉𝑐E(𝜀2)2,

𝑉A×E = 𝑉𝑏V(𝜀) +𝑉𝑐V(𝜀2),

(25)

where 𝑉𝑎 , 𝑉𝑏 and 𝑉𝑐 are the additive genetic variances in the parameters 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔, and 𝐶𝑎𝑐 is the additive331

genetic covariance between the intercept 𝑎𝑔 and the second-order effect 𝑐𝑔. Those expressions are reminiscent332

of classical results from the theory of evolution of plasticity (e.g. de Jong 1990; Gavrilets & Scheiner 1993b),333

especially regarding the crucial role of𝐶𝑎𝑐 in the evolution of quadratic reaction norms, but here distinguish-334

ing three important components of the additive genetic variance of reaction norms. In particular, we see how335

the additive genetic variance [..33 ]arising from plasticity, 𝑉A×E, can be simply expressed as the sum of the336

products of the variances in the reaction norm gradients (here the environment and its squared value) and the337

corresponding additive genetic variance in the parameters (here 𝑏𝑔 and 𝑐𝑔 in Equation 12). This means that,338

in the quadratic case, genetic variances in slope and curvature directly translate into variance [..34 ]arising339

from plasticity, as they should. By contrast,𝑉A does not solely depend on the variance in the intercept𝑉𝑎 , but340

also on the quadratic coefficient, more specifically its covariance with the intercept.341

The expressions for these variance components in the character-state approach are best described directly342

from the G𝑧 matrix. The total additive genetic variance along the reaction norm, 𝑉Add, is the average of the343

additive genetic variance in each environment, i.e. the average of the diagonal elements of the G𝑧 . The [..35344

]environment-blind additive genetic variance of the trait, 𝑉A, is the average of all the elements of the G𝑧345

matrix. Finally, the variance 𝑉A×E is the sum of the products of the (co)variances in the frequency of each346

environment and the additive genetic (co)variances in G𝑧 . We illustrate in Appendix C4 the relationship347

between the structure in the G𝑧 matrix and the additive genetic variances, but a simplified statement is that348

𝑉A×E > 0 as soon as the correlation between environments are different from 1 and/or variances in the349

diagonal are not all equal.350

To further decompose genetic variation in the reaction norms, we first note that here, the reaction norm351

33removed: in
34removed: in
35removed: marginal
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parameters are the focus of the decomposition, rather than shape characteristics like the slope or curvature352

(with the exception of a quadratic reaction norm, the only case were they are formally linked). Because353

Equation 21 is a sum of products, and since𝐺𝜃 is a constant, we can isolate each term of the resulting sum as:354

𝛾𝑖 =
E𝜀

(
𝜓2
𝜀,𝑖

)
V𝑔 (𝜃𝑖)

𝑉Add
, 𝛾𝑖 𝑗 =

2E𝜀
(
𝜓𝜀,𝑖𝜓𝜀,𝑗

)
Cov𝑔 (𝜃𝑖 , 𝜃 𝑗 )

𝑉Add
,

∑
𝑖

𝛾𝑖 +
∑
𝑖< 𝑗

𝛾𝑖 𝑗 = 1. (26)

Here, 𝛾𝑖 provides the contribution of the 𝑖th parameter in the model to the total additive genetic variance355

𝑉Add, while 𝛾𝑖 𝑗 provides the contribution of the covariation between parameters 𝑖 and 𝑗 to 𝑉Add. As such,356

this “𝛾-decomposition” (where gamma refers to g for Genetics) measures the relative importance of genetic357

variances and covariances of the parameters to the evolvability of the plastic trait. Large values of 𝛾𝑖 indicate358

that genetic variation in the 𝑖th parameter translate into a large proportion of the genetic variation in the trait.359

Also, large positive or negative values for [..36 ]𝛾𝑖 𝑗 indicate that covariation between parameters 𝑖 and 𝑗 can360

have a large impact in increasing or reducing genetic variation in the trait.361

It is also possible to focus on the additive genetic variation [..37 ]arising from plasticity,𝑉A×E, [..38 ]which362

yields:363

𝜄𝑖 =
V

(
𝜓𝜀,𝑖

)
V𝑔 (𝜃𝑖)

𝑉A×E
, 𝜄𝑖 𝑗 =

2Cov𝜀
(
𝜓𝜀,𝑖 ,𝜓𝜀,𝑗

)
Cov𝑔 (𝜃𝑖 , 𝜃 𝑗 )

𝑉A×E
,

∑
𝑖

𝜄𝑖 +
∑
𝑖< 𝑗

𝜄𝑖 𝑗 = 1. (27)

This “𝜄-decomposition” (where iota refers to i for Interaction) highlights the fact that 𝑉A×E is the sum of the364

products of (co)variances in elements of the reaction norm gradient𝜓𝜀 and the additive genetic (co)variances365

in the parameters.366

For a quadratic reaction norm as in Equation 12 with a mean-centred environment, this yields:367

𝛾𝑎 =
𝑉𝑎
𝑉Add

, 𝛾𝑏 =
𝑉𝑏E(𝜀2)
𝑉Add

, 𝛾𝑐 =
𝑉𝑐E(𝜀2)2
𝑉Add

, 𝛾𝑎𝑐 =
2𝐶𝑎𝑐E(𝜀2)
𝑉Add

, 𝜄𝑏 =
𝑉𝑏V(𝜀)
𝑉A×E

, 𝜄𝑐 =
𝑉𝑐V(𝜀2)
𝑉A×E

. (28)

Note that since the environment has been mean-centred, we have V(𝜀) = E(𝜀2) since E(𝜀)2 = 0, and thus368

𝛾𝑏 = 𝜄𝑏 , i.e. in the quadratic case, all of the genetic variation in the slope contributes to the genetic variance369

[..39 ]arising from plasticity. Note also that genetic variance in reaction norm intercept 𝑎 does not contribute370

to the heritability [..40 ]from plasticity (𝜄𝑎 = 0).371

For the character-state approach, such decomposition [..41 ]would be less informative about the potential372

36removed: 𝛾𝑖 𝑗
37removed: in
38removed: rather than the reaction norm itself,
39removed: in
40removed: of
41removed: can be performed but yields as many parameters as there are environments for 𝛾 , and pairwise combinations of

environments for 𝜄. They directly depend on the additive genetic variance in each environment, weighed by its frequency in the
experimental setting for 𝛾 ; and on the product between the (co)variance in frequency of the environment and the additive genetic
(co)variance in or between environments for 𝜄. While these quantities can be informative about particular (couple of) environment
(e.g. large 𝛾𝑘 would sign that the 𝑘th environment is associated with a large genetic variance, compared to the others), they are
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for (and [..42 ][..43 ]constraints on) reaction norm evolution. Instead, we can define [..44 ]an effective number373

of character states (as proposed for general multivariate phenotypes by Kirkpatrick 2009) as374

𝑛𝑒 =
∑
𝑖

𝜆𝑖
𝜆1
, (29)

where 𝜆𝑖 is the 𝑖th eigenvalue of G𝑧 ranked by size (i.e., 𝜆1 is the largest eigenvalue). [..45 ]Strong genetic375

correlations of phenotypes across environments lead to small 𝑛𝑒[..46 ], whereby reaction norm evolution is376

highly constrained [..47 ](with the limit of 𝑛𝑒 = 1 corresponding to the strongest constraint). Conversely,377

weak genetic correlations across environments leave more degrees of freedom for reaction norms to evolve,378

causing a large 𝑛𝑒[..48 ], close to the actual number of assayed environments. This 𝑛𝑒 metric does not capture379

all aspects of reaction norm evolvability, and is best combined with the ratio𝑉A×E/𝑉Add [..49 ]of the proportion380

of total genetic variance [..50 ]due to genetic variance in plasticity)[..51 ]. Unfortunately, 𝑛𝑒 is estimated with381

a strong bias due to the overestimation of the leading eigenvalue of G𝑧 (Lawley 1956), making it less useful382

in practice than in theory. We thus do not develop this metric further.383

Parameter estimation and variance partitioning in practice384

Estimating the parameters385

All the parameters mentioned in the previous section can be estimated through commonly used statistical386

frameworks. For the character-state approach (Equation 2), a [..52 ]random-parameter model can be used,387

or alternatively a “multi-trait” model (Rovelli et al. 2020; Mitchell & Houslay 2021). We will focus here on388

the former, which is more easily implemented while seemingly scarcely used in the literature on plasticity.389

certainly not summary quantities of the G𝑧 matrix and are difficult to easily relate to evolvability and constraints onreaction norms
shape. The variances 𝑉Add, 𝑉A

42removed: 𝑉A×E are more interesting summary statistics in this particular context. Another interesting summary quantity can
be provided by the toolbox of multivariate quantitative genetics. Following

43removed: ,
44removed: the
45removed: Large
46removed: close to the actual number of assayed environments means that genetic variance is well balanced and little correlated

across environments . Conversely, 𝑛𝑒 near 1 means that most genetic variation lies along a single combination of character states,
such that

47removed: , i.e. the genetic correlations are very high between the environments. However, it would be wrong to equate 𝑛𝑒 = 1
with an absence of genetic variance in plasticity: if the genetic variances within environments (i.e. the diagonal elements of G𝑧 ) are
variable while 𝑛𝑒 = 1, this results in more evolvability in some environments, thus 𝑉A×E > 0. Reciprocally, a maximal value for

48removed: (i.e. equal to the number of environments) does not mean that the genetic variance in plasticity is maximised at the
expense of additive genetic variance in the trait: for example, when there is no genetic covariances between environments and equal
genetic variances within environments, 𝑛𝑒 is maximised, but 𝑉A is not zero. As a result, a combined interpretation of

49removed: (i.e. how much of the
50removed: in the reaction norm consists of
51removed: generates an interesting summary of the main properties of the G𝑧 matrix in the context of a character-state.
52removed: random-intercept
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In [..53 ]the random-parameter model, the environment is considered as a categorical variable, to which a390

random effect is added using the genotype as the grouping factor. In the curve-parameter approach, the391

appropriate models will be [..54 ]random-parameter models for a polynomial approach (as mentioned in392

Morrissey & Liefting 2016), or non-linear mixed models, fitting the reaction norm function 𝑓 (𝜀, 𝜽 ) to the393

data. [..55 ]Genotype-specific parameters, such as the intercept, slope, and any higher-order effects [..56 ]of a394

polynomial function[..57 ], are treated as random’395

Since the parameters are estimated with noise, it is important to account for the impact of estimation396

uncertainty when computing variance components. In particular, while variances directly obtained using397

random effects (e.g. genetic variances) are expected to be unbiased, the variances arising from fixed effects398

(e.g. variances related to 𝑉Plas) should be corrected for biases due to uncertainty (as the adjusted 𝑅2 does for399

example). Details are provided in Appendix E.400

To compute the total phenotypic variance required to get the estimates 𝑃2RN,𝐻
2
RN and ℎ̂2RN, we advise using401

the sum of all estimated components rather the raw sample variance. The former is common practice in most402

quantitative genetics inference to account for potential imbalance in the experimental or sampling design403

(Wilson et al. 2010; de Villemereuil et al. 2018).404

We provide an R package, named Reacnorm github.com/devillemereuil/Reacnorm, providing functions405

implementing the variancce decomposition based on raw outputs of statistical models. A tutorial is shipped406

with the package, as an R vignette, showing how to implement such models using the Bayesian brms R pack-407

ages (Bürkner 2017), along with Reacnorm.408

Perfect modelling of quadratic curves409

We simulated phenotypic data conforming to a quadratic reaction norm, to evaluate the performance of the410

proposed approach when the reaction norm truly is quadratic. We considered both a discrete and continu-411

ous environment. For the discrete environment, we considered 𝑁Gen = 20 or 5 different genotypes and an412

environmental gradient of 𝑁Env = 10 or 4 values, equally spaced from -2 to 2. We sampled 𝑁Rep = 𝑁Gen413

individual measures for each genotype [..58 ]within an environment. For the continuous environment, we414

drew 𝑁Env = 10 or 4 values from a normal distribution for each of the 𝑁Gen = 200 or 50 genotypes[..59415

], without repeats contrary to the discrete case. In both cases, a residual noise was applied around each416

measure [..60 ]with a residual variance 𝑉Res = 0.25. In all cases, we defined a quadratic curve with average417

53removed: a random-intercept
54removed: random-slope
55removed: Random effects are fitted to the parametersof this function (with the genotype as grouping factor), e.g.
56removed: for
57removed: .
58removed: with a residual variance 𝑉Res = 0.25
59removed: . Residual
60removed: for each genotype
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Figure 4: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for three scenarios: two discrete (𝑁env: number of environments, 𝑁Gen: number of different genotypes,
𝑁Rep: number of replicates per genotype) and one continuous (𝑁env: number of environment tested per genotype, 𝑁Gen:
number of different genotypes). The grey dots correspond to the average over the 1000 simulations. The character-state
approachwas impossible for the continuous environment scenario. The yellow boxes on the right show the estimates for
𝑃2RN (proportion of variance generated by the plasticity in themean reaction norm), ℎ̂2RN (total heritability of the reaction
norm), ℎ̂2 (environment-blind heritability[..a ]) and ℎ̂2I (heritability [..b ]from plasticity) for both the curve-parameter
and character-state approaches. For the curve-parameter, the 𝜋-decomposition of 𝑃2RN into 𝜋Sl (contribution of the
slope) and 𝜋Cv (contribution of the curvature); the𝛾-decomposition of ℎ̂2RN into𝛾𝑎 (genetic contribution of the intercept),
𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of the curvature) and 𝛾𝑎𝑐 (genetic contribution of the
covariance between the intercept and the curvature) and the 𝜄-decomposition of ℎ2I into 𝜄𝑏 (slope) and 𝜄𝑐 (curvature) are
also shown.[..c ]

aremoved: based on average breeding values
bremoved: of
cremoved: The effective number of dimensions 𝑛𝑒 from the character-state is not shown, due to an important bias impacting the

comparison with the other parameters.

parameters 𝜽 = (1.5, 0.5,−0.5) for intercept, slope and curvature. We then drew 𝑁Gen different genotype-418

specific vectors of curve-parameter 𝜽 from a multivariate normal distribution with mean 𝜽 and (genotypic)419
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variance-covariance matrix420

G𝜃 =

©«
0.090 −0.024 −0.012

−0.024 0.160 0.008

−0.012 0.008 0.040

ª®®®®®¬
.

Figure 1 displays examples of curves resulting from these parameters. The simulation process was repeated421

1000 times for each scenario, and for each simulated dataset, we ran estimations using the lme4 R package422

(Bates et al. 2015) under the curve-parameter (for discrete and continuous environment) and character-state423

(only for discrete environment) approaches, in order to check how these approaches compare in practice.424

From the curve-parameter models, we computed 𝑉Plas (accounting for the uncertainty in fixed effects),425

then 𝑃2RN. We also computed the 𝜋-decomposition (𝜋Sl and 𝜋Cv, Equation 14), since the true reaction norm426

is quadratic here, as well as ℎ̂2RN, ℎ̂
2 and ℎ̂2I as in Equation 9. We then applied the 𝛾-decomposition to ℎ̂2RN427

(Equation 26): 𝛾𝑎 (impact of the genetic variation of the intercept), 𝛾𝑏 (for the slope), 𝛾𝑐 (for of the curvature)428

and 𝛾𝑎𝑐 (for the covariance between the intercept and curvature). Similarly, we applied the 𝜄-decomposition429

to ℎ2I (Equation 27): 𝜄𝑏 (for the slope) and 𝜄𝑐 (for the curvature). From the character-state model, we computed430

only 𝑃2RN, ℎ̂
2
RN, ℎ̂

2 and ℎ̂2I .431

The yellow boxes in Figure 4 display the theoretical expected values for the different parameters for three432

scenarios of environmental variation (two discrete, one continuous; other scenarios are shown in Appendix F).433

Using the first discrete scenario as a reference for now, most of the total phenotypic variance comes from the434

average plasticity (𝑃2RN = 0.55). This, in turns, includes a large contribution from the curvature (𝜋Cv = 0.56)435

of the average reaction norm, more than from its slope (𝜋Sl = 0.44). The total heritability of the reaction436

norm is substantial (ℎ2RN = 0.3), but interestingly most of it is due to the heritability [..61 ]from plasticity437

(ℎ2I = 0.21), while the [..62 ]environment-blind heritability of the trait is only ℎ2 = 0.08. Contrary to the438

average shape, most of the additive genetic variation comes from the slope, both when considering the total439

reaction norm (𝛾𝑏 = 0.52), or plasticity alone (𝜄𝑏 = 0.76). All scenarios share the same underlying parameters440

𝜽 and G𝜃 , resulting in very comparable values for our variance decomposition (i.e. 𝑃2RN and the heritabilities)441

across the different environmental sampling scheme. By contrast, the environemental sampling scheme (es-442

pecially discrete v. continuous distribution) can substantially impact the expected values of the 𝜋-, 𝛾- and443

𝜄-decompositions. This is especially true when switching from the discrete to the continous scenarios (e.g.444

𝜋Sl = 0.44 for the first discrete scenario while 𝜋Sl = 0.33 for the continuous scenario). [..63 ]445

Switching to the error in the estimation of the parameters (left panels of Figure 4), we see first that both the446

61removed: of plasticity (ℎ2RN = 0.21
62removed: marginal
63removed: Interestingly, the theoretical effective number of environment 𝑛𝑒 is very stable when comparing the first (4 environ-

ments) and second (10 environments) discrete scenarios (𝑛𝑒 = 2 v. 𝑛𝑒 = 1.9), which is due to the constraining shape of the quadratic
reaction norm.
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character-state and curve-parameter approaches allow for unbiased inference (Wilcoxon’s rank test, 𝑝 > 0.05),447

apart from a slight bias in the heritabilities (ℎ̂2RN, ℎ̂
2 and ℎ̂2I ) and some of their𝛾 and 𝜄 components in the discrete448

scenarios (< 5% relative bias, Wilcoxon’s rank test, 𝑝 < 0.05), notably due to a slight overestimation of the449

genetic variance of the intercept (visible in the top row of Figure 4). [..64 ][..65 ][..66 ]For the discrete case,450

the precision of the estimates was not much influenced by the number of environments and depended more451

on the number of genotypes (see Figure S1). For the continuous case, both the number of environments and452

genotypes influenced the precision of estimates (see Figure S2). As a sanity check, we also verified that 𝑉Tot453

(not shown in Figure 4) reflected the raw phenotypic variance with extreme precision (correlation > 99%)454

in the discrete case and very good precision (correlation > 87%) in the continuous case. The difference455

between these two types of scenarios is explained by how the stochasticity in environmental values differs456

among them. Importantly, the results in Figure 4) also illustrate the exact equivalence, in the discrete case,457

between the curve-parameter and character-state approaches, as the distributions of 𝑃2RN and ℎ̂2RN were nearly458

identical (Figure 4, correlation > 99%) between the two approaches. Thismeans that our variance partitioning459

is not impacted by which approach is chosen to study plasticity, as long as the curve-parameter approach460

captures the true reaction norm shape. When this does not hold, the differences between estimates from461

these alternative approaches can be exploited efficiently, as we describe below.462

Imperfect modelling of a non-polynomial reaction norm463

The true shapes of reaction norms are generally unknown andmay be complex, such that any curve-parameter464

model is likely to be mis-specified to some extent. In the case of a discrete environment, the character-state465

approach is arguably more general, as it does not assume anything about the “true” shape of the reaction466

norm (as pointed out previously by de Jong 1995). Nonetheless, having access to curve-parameters is often467

very interesting and more actionable (even in cases where the linear and quadratic components cannot be468

interpreted as the average slope and curvature), especially to predict evolution of phenotypic plasticity (see469

also de Jong 1995). To get the best of both worlds, we rely on the ability of the character-state approach470

to recover 𝑃2RN, using it as an “anchor”, to assess the performance of a given curve. Note that, under these471

circumstances, it is not possible to obtain the most natural 𝜋-decomposition in Equation 14, so we instead rely472

on the 𝜑-decomposition in Equation 16 (here taken at the second order). Because of this, we need to assess473

how “bad” our simplification using an imperfect curve is. To do so, we compute the ratio of the variance474

64removed: A notable exception, not shown in the graphics of
65removed: , was the effective number of dimensions, 𝑛𝑒 , for the character-state. The relative bias was between −12% and −35%

(Wilcoxon’s rank test, 𝑝 < 0.05), and was mainly explained by an overestimation of the dominant eigenvalue 𝜆1 in
66removed: .
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Figure 5: Estimation of the variance of the reaction normwhen the true shape (sigmoid on the left, Gompertz-Gaussian
performance curve on the right, red lines on top graphs) is unknown and approximated from a polynomial function. The
estimated reaction norms using a polynomial function (black line, top graphs) only account for a part of the reaction
norm shape, while the ANOVA estimation (pink dots, top graphs) fit the true shape more accurately. As a result, the
model is expected to explain only a part 𝑀2

Plas of phenotypic variance due to plasticity. On the bottom rows, the error
distribution are shown for 𝑀2

Plas, 𝑃
2
Plas, 𝜑1 and 𝜑2 (grey dots are the average estimated values, black crosses are the

expected true values).

modelled by the polynomial curve to the total variance due to phenotypic plasticity:475

𝑀2
Plas =

𝑉mod

𝑉Plas
[..67], (30)
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where both 𝑉mod and 𝑉Plas are bias-corrected. It is important to note here that 𝑀2
Plas is just a convenient way476

to quantify the amount of𝑉Plas explained by the chosen parametric curve, and should not be used to perform477

model selection. Model selection is a complex matter and we refer the readers to published reviews on this478

subject (e.g. Johnson & Omland 2004; Tredennick et al. 2021).479

In order to demonstrate the soundness and usefulness of this approach, we simulated datasets following480

relatively common curves that are not well-captured by a second order polynomial: a logistic sigmoid (here-481

after sigmoid scenario), or a Gompertz-Gaussian thermal performance curve (hereafter TPC scenario, see482

Figure 5). We assumed that the environment is sampled at either 10 or 4 values. For each of these conditions,483

we simulated 1000 datasets, with 10 measures per environment (for the sake of simplicity, and given the focus484

on 𝑃2RN here, we did not include different genotypes in these simulations). We estimated the parameters of a485

polynomial model, and computed the relative contributions of the first- and second-order parameters using486

Equation 16. In addition, we computed the unbiased estimates of the variance explained by our polynomial487

or character-state models to obtain𝑀2
Plas.488

Our results show that, as expected, the polynomial function is an imperfect proxy of our complex shapes489

(Figure 5, 𝑀2
Plas = 0.89 for the sigmoid and 𝑀2

Plas = 0.65 for the TPC), but using the character-state approach490

allows retrieving the total plastic variance without bias. The approach described here is thus useful to compare491

a given reaction norm model (e.g. a polynomial function) to an unknown true shape of the reaction norm,492

in a case where environment is discretised. In more detail, the linear component was the most important493

component to explain the phenotypic variation for the sigmoid scenario (𝜑1 = 0.89, same as the total model).494

This was because the quadratic component was always estimated close to zero (< 10−3), thus no variance495

was explained by the quadratic component (𝜑2 = 0). Of course, the sigmoid is not a straight line either, and496

some remaining variance unexplained by the polynomial curve (1 − 0.89 = 0.11) could have been explained497

by higher-order effects (e.g. cubic effect and higher). By contrast, for the TPC scenario, while the linear498

component was an important factor (𝜑1 = 0.47), the quadratic component also explained quite a lot of the499

variance as well (𝜑2 = 0.2). Again, higher-order effect, including at least a cubic effect, would have explained500

more of the variance arising from the average shape of plasticity.501

This example illustrates the usefulness of a combined curve-parameter and character-state approach to502

study the shape of reaction norms of a discretely sampled environment. While the character-state approach503

provides a widely applicable estimation of 𝑃2RN (if the environment is discretised), the curve-parameter ap-504

proach provides interpretable information about (at least) first- and second-order parameters of the reaction505

norm (although they might depart more or less strongly from its average slope and curvature), which helps506

describing where most phenotypic variance lies. Our ratio 𝑀2
Plas can then be used to evaluate how well a507

chosen polynomial function models an actual reaction norm.508
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Estimation of non-linear models509

Althoughwe have focused so far onmodels that are linear in its parameters, themain strength of our approach510

is its generality: it can be applied to any arbitrary functions (provided it is differentiable). This requires511

numerically computing integrals for𝑉Plas (for 𝑃2RN), 𝜋Sl, 𝜋Cv and 𝝍𝜀 (for the heritabilities), but this can be solved512

with efficient algorithms. We illustrate this by introducing genetic variation in the parameters of the sigmoid513

and TPC reaction norms illustrated in Figure 5 (top panels). We used a non-zero, but small, residual variance514

(𝑉R = 0.0001) to avoid numerical issues typical when running thousands of non-linear models. We focused515

on a continuous environment, and estimated the actual functions used to generate the datasets, using the non-516

linear modelling function of nlme package (Pinheiro et al. 2009). We used the cubature package (Narasimhan517

et al. 2023), as in the QGglmm package (de Villemereuil et al. 2016), to compute parameters linked to the518

variance decomposition, and, further, the 𝜋-, 𝛾- and 𝜄-decomposition. We simulated 1000 datasets for each519

scenario, consisting of 200 genotypes measured each in 10 different environments, randomly sampled from a520

normal distribution.521

We retrieved our simulated parameters without bias using the nlme function, except for a slight bias522

(Wilcoxon’s rank test, 𝑝 < 0.05) in the variance of 𝑟 (latent slope) in the sigmoid model and in 𝐶 (height523

of the peak) in the TPC model. This translated into significant (Wilcoxon’s rank test, 𝑝 < 0.05), but very524

limited bias (relative bias < 5%) in our derived parameters (Figure 6, bottom panels). Moreover, the sum of525

variance components (𝑉Tot) successfully reflects the total phenotypic variance, with a correlation between the526

two quantities > 91%.527

First focusing on the average shape of the reaction norm (Figure 6, top panel), one unfortunate aspect528

of running a non-linear model is that our bias correction described in Appendix E can no longer be applied.529

However, this bias is generally small provided the standard error is small for most parameters, and the result-530

ing bias in 𝑃2RN is extremely small, and even non-significant for the sigmoid model. This could of course be531

partly explained by a favourable context here, especially since the residual variance is relatively small. An532

important distinction here is the difference between the curve defined by the average parameters 𝑓 (𝜀, 𝜽 ) (Fig-533

ure 6, top panel, black curve) and the one defined by the local average phenotype E𝑔 |𝜀 (𝑧) (Figure 6, top panel,534

red curve), recalling that 𝑃2RN is linked to the latter. While the two are very close for the sigmoid case, [..68535

]they differ quite visibly for the TPC one, due to a more pronounced non-linearity in the parameters in the536

latter. The average slope contributed the most to the overall plastic variance of the mean reaction norm for537

the sigmoid shape (𝜋Sl = 0.88), with no impact of average curvature (𝜋Cv = 0), close to the𝜑-decomposition in538

Figure 5. For the TPC scenario, the contribution of the average slope (𝜋Sl = 0.31) and curvature (𝜋Cv = 0.35)539

are similar. In this case, the values are very different from the 𝜑-decomposition in Figure 5 (although note540

68removed: their
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Figure 6: Scenarios and results of non-linear modelling of phenotypic plasticity in a continuous environment. On
the left: results corresponding to a sigmoid curve scenario; on the right: results corresponding to a TPC scenario.
First row: example of the individual curves (each curve corresponds to one individual) simulated in each scenario;
yellow box: true parameters for the model and average shape; black curve : 𝑓 (𝜀, 𝜽 ); red curve : E𝑔 |𝜀 (𝑧). Second row:
distribution of the estimations of𝑉G,𝜀 (brown) and𝑉A,𝜀 (purple), along the environment; solid line: average value across
simulations; pale ribbon: 95%CI across simulations; yellow box: true values for the genetic variance partition. Third row:
𝛾-decomposition of 𝑉A,𝜀 along the environment, for each parameter and their covariation. Fourth row: distribution of
the error for each component of our variance partition (“Variances”) or for the 𝜋- and𝛾-decomposition (“Components”),
red dot is the average of estimates over all simulations. 26



that the distribution of the environment is different between these two scenarios). It might appear as counter-541

intuitive that the slope contributes so much to variance, since the curve increases from 0 and then decreases542

toward 0, but this is linked to the fact that the environment is normally distributed, so most values are near543

𝜀 = 0, an area where the slope of the curve is close to [..69 ]being maximised.544

Although the variation between genotypes in the top panel of Figure 6 seems quite large, the contribution545

from the average plasticity 𝑃2RN is 1.7 to 3.4 times higher than the one of the genetic variance 𝐻2
RN (Figure 6,546

yellow box in first- and second-row panels). This occurs because the genetic variance is actually very low547

in most environments (Figure 6, brown and purple lines of the second-row panels), and scarcely as high as548

𝑉Plas. As mentioned above, non-linearity in the parameters is less strong for the sigmoid case than for the549

TPC case, resulting in almost exactly equal values for 𝐻2
RN and ℎ̂2RN for the former, while they are slightly550

different for the latter. In both cases, the [..70 ]small difference between 𝐻2
RN and ℎ̂2RN can be explained by551

the disproportionate importance in the 𝛾-decomposition of parameters that are actually linearly related to552

the trait (𝛾𝐿 = 0.98 for the sigmoid and 𝛾𝐶 = 0.81 for the TPC scenarios). In terms of heritability [..71 ]from553

plasticity, it is substantial in both cases (ℎ2I = 0.081 for the sigmoid and ℎ2I = 0.133 for the TPC scenario), as554

can be expected from the non-parallel reaction norms (Figure 6). However, it remains smaller than the [..72555

]environment-blind heritability of the trait in both cases (ℎ2 = 0.143 for the sigmoid and ℎ2 = 0.216 for the556

TPC scenarios). Interestingly, for the TPC scenario, and contrary towhat happenswith the𝛾-decomposition, a557

majority of the additive genetic variance [..73 ]arising from plasticity comes from the variation in the location558

of the optimum (𝜄𝜀0 = 0.525). This is because variation in the location of the optimum shifts the reaction norm559

along the environment axis (i.e. on the “x-axis”), meaning that even a small shift can generate considerable560

variation that is non-parallel along the phenotype axis (i.e. along the “y-axis”).561

An interesting aspect of our framework is that we can explore the variation of 𝑉Gen,𝜀 , 𝑉A,𝜀 and the 𝛾-562

decomposition of𝑉A,𝜀 along the environmental gradient, which can be very informative from an evolutionary563

perspective. In the case of the sigmoid curve (Figure 6, second and third rows, left panels), the analysis is564

relatively simple : as the value of the environment increases, the parameter 𝐿 is multiplied by an increased565

value (going from 0 to 1 due to the sigmoid function) and thus its genetic variance plays a stronger role. This566

translates into𝑉Gen,𝜀 and𝑉A,𝜀 increasing with the environment, and 𝛾𝐿 accounting for almost all of the genetic567

variance after the sigmoid inflexion point in 0. The TPC scenario is even more interesting. First, we can see568

that both 𝑉Gen,𝜀 and 𝑉A,𝜀 (Figure 6, second row, right panels) are close to zero in the extreme environments569

and maximised in a region between the optimum and critical maximal temperature, where the reaction norm570
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suddenly drops after the optimum. This maximum also corresponds to the region where 𝑉Gen,𝜀 and 𝑉A,𝜀 are571

the most different (and where the red and black departs the most in Figure 6, top row, right panel). Regarding572

the 𝛾-decomposition (Figure 6, third row, right panels), the influence of the location of the optimum (𝛾𝜀0 ) is573

maximised at extreme environments, while the influence of the maximum value at the peak (𝛾𝐶 ) is exactly574

maximised at the average location of the peak. The influence of the covaration between both (𝛾𝐶𝜀0 ) is negative575

before the peak and positive after.576

As these simulations illustrate, our framework allows very finely describing the characteristics of reaction577

norms, such as how its average shape (slope/curvature) and genetic variation in the parameters influence the578

phenotypic variance in the trait, while discriminating between total genetic variation of the trait and genetic579

variation exclusively linked with plasticity itself.580

Discussion581

The variance decomposition in Equation 7 is very general, and applicable to any approach used to estimate582

a reaction norm. In particular, it applies equally well to both the character-state and curve-parameter ap-583

proaches. Each component and its variance-standardisation provide a different information on the reaction584

norms: 𝑃2RN quantifies the proportion of phenotypic variance due to the average plastic response across geno-585

types, while 𝐻2
RN or ℎ2RN quantify the contributions from (broad or additive) genetic variance in the reaction586

norms. Further, these genetic components can be separated into the [..74 ]environment-blind heritability of587

the trait (ℎ2) based on the average breeding values across environments, and the heritability [..75 ]from plastic-588

ity (ℎ2I ) which is solely based on the gene-by-environment interactions at the level of breeding values. Finally,589

the sum 𝑇 2
RN = 𝑃2RN + 𝐻2

RN quantifies how well we can predict the individual phenotypes based on their geno-590

types and environments (i.e. genetically variable reaction norms). Those components are efficient summary591

statistics yielding important information regarding the evolutionary potential of both the trait and its plastic-592

ity. Importantly, they are very generally applicable, with a strict equivalence between e.g. a character-state593

or a curve-parameter approach. However, they do not provide information regarding the actual shape of the594

reaction norms. To that end, we further decomposed some of these components in terms of characteristics of595

the shape or parameters of reaction norms.596

Themost difficult problem is to decompose the average plastic variance 𝑃2RN into terms arising either from597

the linear trend (𝜋Sl) or from the curvature (𝜋Cv) of the reaction norm, which we called 𝜋-decomposition.598

Unfortunately, our estimates for 𝜋Sl and 𝜋Cv are only valid if the environment is normally distributed, or the599

true reaction norm is quadratic. In other cases, mean slope and curvature loose their simple interpretation,600
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preventing a meaningful 𝜋-decomposition. Nonetheless, for polynomial reaction norms of higher order, we601

described an alternative decomposition, based on the polynomial coefficients rather than actual slope and602

curvature, which we called 𝜑-decomposition. While not as interpretable as the 𝜋-decomposition, this decom-603

position can serve as a way to compare polynomial shapes across contexts. Based on the equivalence between604

the curve-parameter and character-state, we introduced𝑀2
Plas as a way to quantify the ability of a polynomial605

model to recover𝑉Plas compared to an “agnostic” model such as the character-state. Our proposed framework606

is summarised in Figure 3.607

Decomposingℎ2RN andℎ2𝐼 is comparatively easier, because themodel assumed in Equation 3 and Equation 4608

ensures that we can always translate additive genetic variance in the parameters 𝜽 into additive genetic vari-609

ance in the trait 𝑧, even if the function 𝑓 is not linear in its parameters. Decomposition of the total heritability610

of the reaction norm ℎ2RN into the impact of the parameters 𝜽 leads to the 𝛾-decomposition. It quantifies the611

relative importance of genetic variance in different reaction norm parameters to the evolvability of the trait.612

For instance if a given selection episode concerns individuals that all experienced the same plasticity-inducing613

environment (i.e. when spatial environmental variation is negligible relative to temporal variation), using the614

multivariate breeder’s equation (Lande 1979), the relative contribution of genetic variation in parameter 𝜃𝑖 to615

the response to selection for the trait 𝑧 is616

Δ𝜃𝑖𝑧

Δ𝑧
= 𝛾𝑖 +

1

2

∑
𝑖≠𝑗

𝛾𝑖 𝑗 , (31)

where the 𝛾𝑖 and 𝛾𝑖 𝑗 are defined in Equation 26. In other words, the contributions of responses to selection617

by different reaction norm parameters to overall response to selection by the plastic trait 𝑧 is directly pro-618

portional to their contribution to its genetic variance. Importantly, these contributions will depend on the619

reaction norm gradient 𝝍𝜀 defined in Equation 19, and thus on the environment, as illustrated in Equation 26.620

In fact, the environment-specific additive genetic variance 𝑉A,𝜀 is a critical piece of information regarding621

evolutionary potential, and we can apply the 𝛾-decomposition within each environment as well. For example,622

in the TPC scenario investigated above (Figure 6, right panels), the contribution of the peak height parameter623

𝐶 is maximised at the average location of the optimum, where it accounts for 100% of the additive genetic624

variance. On the contrary, the influence of additive genetic variation in the location of the optimum 𝜀0 is more625

important in extreme environments. The complex interaction between the role of 𝐶 and 𝜀0 generates a peak626

for𝑉A,𝜀 in the area between the peak and critical maximal value for the environment (where the performance627

curve reaches zero). In the context of predicting eco-evolutionary response to warming, this would mean628

that a slight temperature rise above the optimum would provide a very short window of higher evolvability,629

but followed by a sharp decrease thereof if warming persists. Beyond these simple scenarios, how selection630

acts on reaction norms and plasticity depends on how the environment varies in space and/or time (Scheiner631
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1993b; de Jong 1999; Tufto 2015; King & Hadfield 2019), and how the reaction norm gradient 𝝍𝜀 and direction632

selection on the expressed trait 𝑧 covary across environments. However, an in-depth exploration of how to633

estimate these selection responses is beyond the scope of the present work.634

While the 𝛾-decomposition is key to understanding and predicting evolution of the trait, it is based on635

the total heritability of the reaction norm ℎ2RN, which combines additive genetic variation in the trait and its636

plasticity. To study plasticity in isolation from the [..76 ]environment-blind additive genetic variance in the637

trait, we decomposed ℎ2I in a similar fashion as ℎ2RN, which we called the 𝜄-decomposition. The components of638

the 𝜄-decomposition measure the contribution of each parameter to the evolutionary potential of plasticity, i.e.639

to the evolvability of reaction norm shape. In our thermal performance case (TPC) example, the 𝜄 associated640

to 𝐶 and 𝜀0 were close to 0.5, meaning that evolution can roughly equally impact the peak height 𝐶 or the641

location of the optimum 𝜀0, should selection on the shape of reaction norms occur.642

The detailed decomposition that we propose open the door to better [..77 ]comparatibility across studies,643

which can be a challenge in meta-analyses of plasticity. Murren et al. (2014) performed such a meta-analysis,644

comparing genetic variation in different parameters of reaction norm shape across published datasets. How-645

ever they (i) computed these parameters using only extreme environmental values, instead of the whole range646

of environments; (ii) did not account for uneven spacing between environments where relevant; (iii) did not647

account for uncertainty in estimations of reaction norms (as previously highlighted by Morrissey & Liefting648

2016); and (iv) assumed the modeled reaction norm shape is true. More [..78 ]details about the analyses in that649

study [..79 ]are provided in Appendix G. Our approach overcomes all these issues (some of which had been650

dealt with already by Morrissey & Liefting 2016; Pélabon et al. 2020). Unfortunately the dataset compiled by651

Murren et al. (2014) does not provide information on uncertainty of phenotypic estimates (related to 𝑉Res),652

precluding proper meta-analysis of reaction norm shape variation.653

Importantly, our variance partitioning can be implemented through commonly used statistical models,654

notably (non-)linear mixed models. We showed that even complex non-linear modelling can perform well,655

only at the cost of using dedicated libraries to compute integrals numerically. This means that biologists656

can readily seize all the modelling tools introduced here. In particular, although a character-state approach657

can be performed using a simple random-intercept model, studies of genetic variance in plasticity seem to658

rather use a multi-trait model, which offers more control, but is more difficult to implement (but see Stirling659

& Roff 2000). In order to make the variance partitioning introduced here more accessible, we have imple-660

mented the computation of [..80 ]all the decomposition mentioned here as an R package named Reacnorm661
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github.com/devillemereuil/Reacnorm, including cases where more than the genetic effect is assumed affect-662

ing variation in 𝜽 . The package also [..81 ]provides a tutorial as a vignette, showing how to implement the663

models in the Bayesian package brms and use functions from Reacnorm to study the properties of reaction664

norms. We hope that this will further stimulate interest in investigating variation and evolutionary potential665

of reaction norms.666

Code availability The code for the data simulation and analyses performed in this article is available at667

the following repository: github.com/devillemereuil/CodePartReacnorm668
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Appendix838

A A unified formalism for the curve-parameters and839

character-state approaches840

Despite having different mechanics, the curve-parameter and character-state approaches can be shown to841

be mathematically equivalent de Jong (1995). We can use this to express both approaches under the same,842

unified formalism. More precisely, we can express the character-state approach as being a special case of the843

curve-parameters approach. Under a curve-parameters approach, the reaction norm is seen as a function 𝑓844

of the environment 𝜀 and a vector of parameters 𝜽𝑔:845

𝑧 = 𝑓 (𝜀, 𝜽𝑔) . (S1)

The 𝜽𝑔’s covary across genotypes with a variance-covariance matrix G𝜃 :846

𝜽𝑔 ∼ N(𝜽 ,G𝜃 ) . (S2)

By contrast, in a character-state approach, the reaction norm values of different genotypes across environ-847

ments are directly provided by sampling from a multivariate normal distribution:848

�̂� ∼ N (𝝁,G𝑧) . (S3)

One way to express the character-state using the same formalism as the curve-parameter is to recognise that849

Equation S3 can be written as850

𝑧 = 𝝁𝑇𝑔 𝒖𝑘 ,

𝝁𝑔 ∼ N(𝝁,G𝑧),
(S4)

where 𝒖𝑘 is the unit vector with 1 at the 𝑘th value (corresponding to environment 𝜀𝑘 ) and 0 elsewhere. Thus,851

the character-state model can be expressed using the formalism of Equation S1 and Equation S2, where 𝝁𝑔 in852

Equation S4 plays the role of 𝜽𝑔, and thus G𝑧 plays the role of G𝜃 . In this case, the function 𝑓 is a function853

taking the level 𝑘 of the environment and the parameters 𝝁𝑔 of the genotype 𝑔 as input, and yielding the854

evaluated reaction norm 𝑧 as the output. Evidently, this function 𝑓 is not continuous and not differentiable855

along the (categorical) environment. However, it is a continuous, differentiable and even linear function856

along the (continuous) parameters 𝝁𝑔. As such, all properties mentioned in the main text and the Appendices857

pertaining to reaction norms that are “linear in its parameters” also apply to the character-state approach.858
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B Computation of the additive genetic variance holding859

environment constant860

B1 Preliminary results861

Multiple regression slopes expressed using a variance-covariance matrix Let us assume a multiple862

regression between a random variable 𝑦 and a set of random variables x = (𝑥1, . . . , 𝑥𝑛)𝑇 such that:863

𝑦 = 𝜇 + x𝑇 𝜷 + 𝑒, (S5)

where 𝜇 is the intercept and 𝑒 is the residual of the model. Note that in practical regression, the realised864

sampling of x will be contained in the design matrix of the model. If it exists and is unique, the solution for865

the vector of multiple regression slopes 𝜷 can be formulated in terms variance-covariance matrices (see e.g.866

p.179, Lynch & Walsh 1998):867

𝜷 = V(x)−1cov(x, 𝑦), (S6)

where V(x) is the variance-covariance matrix of x, , V(x)−1 is its inverse matrix and cov(x, 𝑦) is the column-868

vector of covariances between the 𝑥𝑖 and 𝑦.869

Multivariate version of Stein’s lemma Let us assume that x = (𝑥1, . . . , 𝑥𝑝𝑥 ) and y = (𝑦1, . . . , 𝑦𝑝𝑦 ) follow870

multivariate normal distributions, and that 𝑔 is a differentiable, 𝑅𝑝𝑥 → 𝑅 function such that E (▽𝑔), where871

▽𝑔 is the gradient of 𝑔 (the vector of partial derivatives), is a vector with finite values, then it can be shown872

(Landsman & Nešlehová 2008; Landsman et al. 2013) that:873

cov (𝑔(x), y) = cov(x, y)E (▽𝑔) . (S7)

Note that covariance matrices of vectors (also known as cross-covariance matrices) are not commutative, but874

are such that cov(x, y) = cov(y, x)𝑇 . In the case where 𝑝𝑦 = 1, then y = 𝑦 follows a normal distribution and:875

cov (𝑔(x), 𝑦) = cov(𝑦, x)E (▽𝑔) . (S8)

Note that cov(𝑦, x) is a row-vector and cov(x, 𝑦) is a column-vector by convention.876
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B2 Breeding values in a given environment877

Genetics of reaction norms As mentioned in the main text, a general formalism (including the character-878

state as a special case) for the reaction norm 𝑧 is given by Equation 3 in the main text, i.e.879

𝑧 = 𝑓 (𝜀, 𝜽𝑔) . (S9)

The phenotype predicted by the reaction norm 𝑧 thus depends on the environmental value 𝜀, and the reac-880

tion norm parameters 𝜽𝑔 specific to the genotype 𝑔. When holding the environment 𝜀 constant, the genetic881

variance is simply the variance of reaction norms across genotypes:882

𝑉G |𝜀 = V𝑔 |𝜀
(
𝑓 (𝜀, 𝜽𝑔)

)
(S10)

If the reaction norms are estimated in such a way that non-additive genetic variance can be separated out from883

additive genetic variance (e.g. if “genotype” refers to individuals) or are known to be negligible on the one884

hand; and if the reaction norm is linear in its parameters (i.e. 𝑓 is a linear function of 𝜽𝑔, as for a polynomial885

function) on the other hand, then the additive genetic variance conditional on the environment is readily886

given by Equation S10, i.e. 𝑉A |𝜀 = 𝑉G |𝜀 . In the case where 𝑓 is not linear in its parameters, it is necessary to887

rely on the theory in non-linear quantitative genetics (Morrissey 2015; de Villemereuil et al. 2016), as we do888

below.889

Linear relationship between breeding values The relationship between the breeding value of the trait890

A𝑧 and the breeding values of the reaction norm parameters 𝜽𝑔 is the key towards developing a framework891

that works for any reaction norm, linear in its parameters or not. Let us note A𝜃 the vector of breeding values892

of all the parameters in 𝜽 . We will follow the same demonstration as in de Villemereuil et al. (2016), which893

starts from the point that, by definition, breeding values are all linked through linear relationships (see also894

Robertson 1966), since they are all linearly linked to the genotype (Lynch & Walsh 1998). More precisely, the895

breeding value A𝑧 of the phenotypic trait 𝑧 of an individual linearly depends on a linear combination of its896

breeding values for the reaction norm parameters A𝜃 , so that:897

A𝑧 = 𝜇A + A𝑇
𝜃 𝝍 (S11)

where 𝜇𝑎 is a constant chosen such that E(A𝑧) = 0, 𝝍 is a vector of slopes that we will shortly describe as the898

reaction norm gradient.899

39



Derivation of 𝝍 To derive an expression of 𝝍, we can apply the results in Equation S6 to Equation S11,900

yielding901

𝝍 = G−1
𝜃 cov(A𝜃 , 𝑧). (S12)

This assumes that cov(A𝜃 ,A𝑧) = cov(A𝜃 , 𝑧), i.e. that there is no covariance between the environmental902

values of the phenotype as predicted by the reaction norm and the breeding values of the parameters. This903

results also assumes that G𝜃 is inversible. However, such assumption is already necessary to most statistical904

algorithms available to inferG𝜃 in practice, so that this assumption is not limiting here. Noting that 𝑧 = 𝑓 (𝜀, 𝜽 ),905

we can apply the multivariate version of Stein’s lemma (Equation S7):906

𝝍 = G−1
𝜃 cov(A𝜃 , 𝜽𝑔)E(▽𝜃 𝑓 ) = G−1

𝜃 G𝜃E(▽𝜃 𝑓 ) = E(▽𝜃 𝑓 ), (S13)

where we have used the fact that the covariance of breeding values of reaction norm parameters with their907

breeding values is their additive genetic covariance matrixG𝜃 . Again, note that this assumes that 𝑓 is partially908

differentiable with respect to all elements of 𝜽𝑔. Given that this demonstration was applied when holding the909

environment constant, the values in 𝝍 generally depend on the environment 𝜀, so below and in the main text,910

we use the notation 𝝍𝜀 .911

Values of 𝝍𝜀 in specific contexts When the reaction norm is linear in its parameters, the values in 𝝍𝜀 are912

(trivially) the linear coefficients of such relation. For a quadratic reaction norm, where 𝑧 = (Ā+𝑎𝑔)+(𝑏+𝑏𝑔)𝜀+913

(𝑐 + 𝑐𝑔)𝜀2, such linear coefficients are respectively 1, 𝜀 and 𝜀2 for 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔. It results that 𝝍𝜀 = (1, 𝜀, 𝜀2)𝑇914

as mentioned in the main text. More generally, if 𝑓 is a polynomial of order 𝑁 , then 𝝍𝜀 = (1, 𝜀, . . . , 𝜀𝑁 )𝑇 . In915

the context of a character-state, it can be seen from Equation S4 that the gradient 𝝍𝜀 in the parameters will be916

equal to 𝒖𝑘 , i.e. a vector of 1 for the 𝑘th value (corresponding to the environment chosen to be hold constant)917

and 0 elsewhere.918

B3 Additive genetic variance919

By definition, the additive genetic variance of the trait conditional on the environment𝑉A |𝜀 is the variance of920

the breeding values defined in Equation S11. We can thus express it from the breeding values of the reaction921

norm parameters (right hand side of Equation S11) as922

𝑉A |𝜀 = V𝑔 |𝜀 (A𝑇
𝜃 𝝍𝜀) = 𝝍𝑇𝜀 G𝜃𝝍𝜀 . (S14)

This formula holds whether the reaction norm is linear on its parameters or not, and also holds for the923

character-state approach (although in this case, this formula merely selects the 𝑘th element of the diagonal924
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of G𝑧).925

C Derivation of the general decomposition of variance926

C1 Distinguishing between 𝑉Plas, 𝑉Gen and 𝑉Add927

The phenotype predicted by the reaction norm 𝑧 depends on the environment, and the reaction norm param-928

eters 𝜽𝑔 specific to the genotype 𝑔. The impacts of environment and genotype are intricately related via the929

reaction norm shape, but in a given environment, one can still isolate the average impact of the environment930

from variation among genotypes by computing the average value of the reaction norm across genotypes con-931

ditional on the environment, i.e. E𝑔 |𝜀 (𝑧). The variance of E𝑔 |𝜀 (𝑧), taken across environments, is the component932

𝑉Plas = V(E𝑔 |𝜀 (𝑧)) in the main text, i.e. the phenotypic variance arising from plasticity after averaging across933

genotypes. The genotypic value G𝑧 of genotype 𝑔 within the environment 𝜀 is then given by934

G𝑧 = 𝑧 − E𝑔 |𝜀 (𝑧). (S15)

Note that, althoughwe removed the average effect of the environment, the genotypic valueG𝑧 still depends on935

both the genotype𝑔 and the environement 𝜀, because genotypes can vary in their response to the environment.936

The total genetic variance in the reaction norm is thus𝑉Gen = V(G𝑧). It is possible to get to the breeding values937

of the trait in each environmentA𝑧 following the process described in Appendix B, i.e.A𝑧 = 𝜇𝑎 +A𝑇
𝜃 𝝍𝜀 . The938

total additive genetic variance in the reaction norm is then939

𝑉Add = V(A𝑧) = E
(
V𝑔 |𝜀 (A𝑧)

)
+ V

(
E𝑔 |𝜀 (A𝑧)

)
= E(𝝍𝑇𝜀 G𝜃𝝍𝜀), (S16)

using the law to total variance and noting that E𝑔 |𝜀 (A𝑧) = 0 by construction. In Figure 1 in the main text,940

the average E𝑔 |𝜀 (𝑧) corresponds to the red line in the left panel of Figure Figure 1 in the main text, while A𝑧941

corresponds to the purple lines in the middle panel.942

C2 Distinguishing between 𝑉Add, 𝑉A and 𝑉A×E943

We can separate the total additive genetic variance of the reaction norm,𝑉Add, into two components: the [..82944

]environment-blind additive genetic variance of the trait 𝑉A and the additive genetic variance [..83 ]arising945

from plasticity𝑉A×E. The first component is given by considering, for a given genotype, its average breeding946

82removed: marginal
83removed: of
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value across environment:947

Ā = E𝜀 |𝑔 (A𝑧) . (S17)

This average corresponds to the breeding value that would be predicted for the same genotype present in all948

environments (or moving across them, beingmeasured several times), ignoring the impact of the environment.949

In other words, this average is the predicted breeding value after the impact of the environment has been950

marginalised. Graphically, it depicts the average shift in the 𝑦-axis of the reaction norm, as can be seen in the951

middle panel of Figure 1 in the main text. The [..84 ]environment-blind additive genetic variance of the trait952

is953

𝑉A = V(Ā) = E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) (S18)

𝑉A is here defined as a variance, but there are negative elements in E(𝝍𝜀) andG𝜃 , so in theory, their product954

could happen to be a negative scalar. This is not so here, because G𝜃 being a variance-covariance matrix, it955

must be positive semi-definite. By definition of positive semi-definiteness, the product E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) will956

be positive (or null) for any real vector E(𝝍𝜀).957

The remaining additive genetic variation after accounting for the marginal breeding value is linked to958

the impact of genetic variation [..85 ]arising from plasticity, i.e. genotype-by-environment interactions. We959

can define the part of the breeding values strictly linked to that genotype-by-environment interaction by960

mean-centring the breeding values, for each genotype:961

AI = A𝑧 − Ā . (S19)

The right panel of Figure 1 depicts these interaction breeding values. The additive genetic variance linked to962

genotype-by-environment, and thus to variation [..86 ]arising from plasticity, is:963

𝑉A×E = V(AI) = V(A𝑧) + V(Ā) − 2cov(A𝑧, Ā) = V(A𝑧) − V(Ā) = 𝑉Add −𝑉A, (S20)

noting that, by construction, cov(A𝑧, Ā) = cov(Ā, Ā) = V(Ā). By substituting 𝑉Add and 𝑉A with their964

values in Equation S16 and Equation S18, we obtain965

𝑉A×E = E(𝝍𝑇𝜀 G𝜃𝝍𝜀) − E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) = tr(ΨG𝜃 ) =
∑
𝑙,𝑘

Ψ𝑙,𝑘G𝜃 (𝑙,𝑘 ) , (S21)

whereΨ is the variance-covariance matrix of the reaction norm gradient 𝝍𝜀 across the environment. In other966

84removed: marginal
85removed: in plasticity, arising from
86removed: in
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words, 𝑉A×E is the sum of the products, for all pairs of parameters, of the (co)variance in the reaction norm967

gradient and the additive genetic (co)variance. The 𝛾- and 𝜄-decomposition directly comes from dividing each968

elements of the sums in Equation S16 and Equation S21 respectively by𝑉Add and𝑉A×E, so that the total sums969

to 1.970

C3 Variance decomposition for a polynomial model971

In this section, we will assume a polynomial reaction norm:972

𝑧 =
𝑁∑
𝑛=0

(𝜃𝑛 + 𝜃𝑛,𝑔)𝜀𝑛 (S22)

where 𝜃𝑛 = 𝜃𝑛 + 𝜃𝑛,𝑔 is the 𝑛th order coefficient of the polynomial. In this form, it is easy to remark that973

polynomial reaction norms are linear in their parameters, i.e. there is a linear relationship between the 𝜃𝑛’s974

and 𝑧, so that G𝑧 = A𝑧 . It results that:975

G𝑧 = A𝑧 = 𝑧 − E𝑔 |𝜀 (𝑧) =
𝑁∑
𝑛=0

(𝜃𝑛 + 𝜃𝑛,𝑔)𝜀𝑛 −
𝑁∑
𝑛=0

𝜃𝑛𝜀
𝑛 =

𝑁∑
𝑛=0

𝜃𝑛,𝑔𝜀
𝑛 . (S23)

Taking the derivative of this expression with respect to each of 𝜃𝑛,𝑔 in a given environment 𝜀 would yield a976

reaction norm gradient equal to the value of each exponent of 𝜀, i.e. 𝝍𝜀 = (1, 𝜀, . . . , 𝜀𝑁 )𝑇 . The total (additive)977

genetic variance is thus:978

𝑉Gen = 𝑉Add = E(𝝍𝑇𝜀 G𝜃𝝍𝜀) =
∑
𝑛

𝑉𝑛E(𝜀2𝑛) + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛+𝑚), (S24)

where𝑉𝑛 is the additive genetic variance for 𝜃𝑛,𝑔 and𝐶𝑛𝑚 is the additive genetic covariance between 𝜃𝑚,𝑔 and979

𝜃𝑛,𝑔. For the quadratic case, if 𝜀 has been mean-centred and is symmetrical, we have E(𝜀) = E(𝜀3) = 0 and the980

expression reduces to981

𝑉Gen = 𝑉Add = 𝑉0 + (𝑉1 +𝐶03)E(𝜀2) +𝑉3E(𝜀4). (S25)

For a given genotype, its average breeding value across environments is982

Ā = E𝜀 |𝑔 (A𝑧) = E𝜀 |𝑔

(
𝑁∑
𝑛=0

𝜃𝑛,𝑔𝜀
𝑛

)
=

𝑁∑
𝑛=0

𝜃𝑛,𝑔E(𝜀𝑛) (S26)

The [..87 ]environment-blind (additive) genetic variance of the trait is983

𝑉G = 𝑉A = E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) =
∑
𝑛

𝑉𝑛E(𝜀𝑛)2 + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛)E(𝜀𝑚) (S27)
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For the quadratic case with mean-centred and symmetrical 𝜀, this yields:984

𝑉A = 𝑉0 + 2𝐶02E(𝜀2) +𝑉2E(𝜀2)2 (S28)

Finally, the additive genetic variance [..88 ]arising from plasticity itself is985

𝑉A×E = 𝑉Add −𝑉A =
∑
𝑛

𝑉𝑛E(𝜀2𝑛) + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛+𝑚) −
∑
𝑛

𝑉𝑛E(𝜀𝑛)2 + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛)E(𝜀𝑚) . (S29)

By recognising that V(𝜀𝑛) = E(𝜀2𝑛) −E(𝜀𝑛)2 and cov(𝜀𝑛, 𝜀𝑚) = E(𝜀𝑛+𝑚) −E(𝜀𝑛)E(𝜀𝑚), we can further simplify986

this expression as:987

𝑉A×E =
∑
𝑛

𝑉𝑛𝑉 (𝜀𝑛) + 2
∑
𝑙𝑘

𝐶𝑛𝑚cov(𝜀𝑛, 𝜀𝑚) . (S30)

For the quadratic case, for a mean-centred and symmetrical 𝜀, all the covariances between the different expo-988

nents of 𝜀 are 0, yielding989

𝑉A×E = 𝑉1V(𝜀) +𝑉2V(𝜀2) . (S31)

C4 Variance decomposition for the character-state approach990

As mentioned in Appendix A, the character-state can be written using a function 𝑓 such that in environment991

𝜀𝑘 and for genotype 𝑔, we have992

𝑧 = 𝑓 (𝝁𝑔, 𝜀𝑘 ) = 𝝁𝑇𝑔 𝒖𝑘 . (S32)

In a given environment 𝜀𝑘 , the unit vector 𝒖𝑘 is equal to 1 at the 𝑘th index and 0 elsewhere. The reaction993

norm gradient is equal to this unit vector, i.e. 𝝍𝜀𝑘 = 𝒖𝑘 . In the first environment, for example, we have994

𝝍𝜀1 = 𝒖1 = (1, 0, . . . )𝑇 . As mentioned in Appendix A, the character-state approach is linear in its parameters.995

We can thus compute the genotypic/breeding values in a given environment 𝜀𝑘 as996

G𝑧 = A𝑧 = 𝑧 − E𝑔 |𝜀 (𝑧) = 𝝁𝑇𝑔 𝒖𝑘 − 𝝁𝑇 𝒖𝑘 = 𝜇𝑔,𝑘 − 𝜇 𝑗 , (S33)

where 𝜇𝑔,𝑘 and 𝜇 𝑗 are the 𝑘th values of the vectors 𝝁𝑔 and 𝝁. The total (additive) genetic variance is the997

variance of the breeding values across environments:998

𝑉Gen = 𝑉Add = V(A𝑧) = V(𝜇𝑔,𝑘 ). (S34)

Since the variance-covariance matrix of 𝝁𝑔 is the G𝑧 matrix, the variance of all elements 𝜇𝑔,𝑘 taken together999

is the average of the diagonal elements of G𝑧 , which we will note 𝑉𝑘 . Assuming that all environments are1000

88removed: in

44



equiprobable for the sake of simplicity (releasing this assumption merely requires to use weighted average),1001

we have1002

𝑉Add =
1

𝐾

𝐾∑
𝑘=1

𝑉𝑘 . (S35)

In other words, 𝑉Add is the average of the diagonal elements of the G𝑧 matrix.1003

The [..89 ]environment-blind (additive) genetic variance of the trait depends on the average of the breeding1004

values across environment for a given genotype:1005

Ā =
1

𝐾

∑
𝑘

A𝑧,𝑘 , (S36)

where A𝑧,𝑘 is the breeding value evaluated at the 𝑘th environment for a given genotype, still assuming1006

equiprobable environments. It results that the [..90 ]environment-blind (additive) genetic variance of the1007

trait is1008

𝑉G = 𝑉A =
1

𝐾2

(∑
𝑘

𝑉𝑘 + 2
∑
𝑘<𝑙

𝐶𝑘𝑙

)
, (S37)

where𝐶𝑘𝑙 is the genetic covariance between the environment 𝑘 and 𝑙 . In other words,𝑉A is the average of all1009

the elements of the G𝑧 matrix.1010

Finally, the (additive) genetic variance [..91 ]arising from plasticity can be computed as the difference1011

between 𝑉Add and 𝑉A:1012

𝑉G×E = 𝑉A×E = 𝑉Add −𝑉A =
1

𝐾2

(
(𝐾 − 1)

∑
𝑘

𝑉𝑘 − 2
∑
𝑘<𝑙

𝐶𝑘𝑙

)
(S38)

A few particular cases are important to note here. The first case is when all environments harbour the1013

same additive genetic variance, say 𝑉 , and are all perfectly correlated with one another. This is a situation1014

generally [..92 ]describe as a total absence of genetic variation in plasticity. In our framework, this situation1015

would indeed result in 𝑉Add = 𝑉A = 𝑉 and, indeed, no genetic variation [..93 ]arising from plasticity with1016

𝑉A×E = 0. Note that uneven additive genetic variances across environments, even if genetic correlation1017

are kept perfect across environments, would result in slightly positive genetic variance [..94 ]arising from1018

plasticity with𝑉A×E > 0. This is because, in such context, the trait can still evolve faster in some environments1019

compared to other, hence plasticity can evolve. The second extreme case, is when the [..95 ]environment-1020

blind additive genetic variance of the trait is null, i.e. 𝑉A = 0, while all the additive genetic variance in1021

89removed: marginal
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reaction norm is composed of the additive genetic variance [..96 ]arising from plasticity, i.e.𝑉Add = 𝑉A×E. This1022

happens when the sum of covariances (the total of which must be negative) exactly compensates the sum of1023

diagonal variances in theG𝑧 , meaning that [..97 ]negative genetic correlation [..98 ]between environments are1024

maximised. In this case, its is impossible for directional selection to act on average value of the trait across1025

all environments, but the evolvability of plasticity is [..99 ]maximal. A third, interesting case is when there is1026

absolutely no genetic correlation between environments, i.e. the off-diagonal elements of G𝑧 are all equal to1027

0. In such case, it is important to note that, because evolution can freely operate across environments, then1028

both 𝑉A = 1
𝐾2

∑
𝑘 𝑉𝑘 and 𝑉A×E = 𝐾−1

𝐾2

∑
𝑘 𝑉𝑘 are non-zero.1029

C5 Decomposition of variance for individual-based reaction norms1030

In Equation 4, we assumed that the only source of variation in 𝜽 is of genetic origin. This is a classical1031

assumption both in the empirical and theoretical literature (de Jong 1990; Gavrilets & Scheiner 1993a; Via &1032

Lande 1985), but in many cases, it can be useful or needed to include further sources of variation in 𝜽 . This is1033

for example the case when studying reaction norms using repeated measurements of the same individual in1034

different environments. In particular, this may require including a further “permanent environment” effect1035

to account for multiple repeats (Wilson et al. 2010) on the same individual, and also allows for the modelling1036

of the reaction norm at the individual level (individual plasticity, Nussey et al. 2007). When other random1037

effects are assumed in the model, we can write the full variation of 𝜽 as:1038

𝜽 ∼ N(𝜽 ,V𝜃 ), (S39)

whereV𝜃 is the total variance-covariance matrix of 𝜽 . Note that Equation 4 is still valid to model the genetic1039

component of 𝜽 which we named 𝜽𝑔. In such case, the heritability of the 𝑘th component of 𝜽 can be com-1040

puted as the ratio of the 𝑘th diagonal element of G𝜃 to the 𝑘th element of V𝜃 , i.e. ℎ2𝜃,𝑘 = 𝐺𝜃,𝑘,𝑘

𝑉𝜃,𝑘,𝑘
. Because the1041

modelling of 𝜽𝑔 remains unchanged, all our computations of (additive) genetic variances and their decompo-1042

sition remains completely identical. However, there are two important changes. The first change is that the1043

definition of𝑉Plas does not only depend on averaging over 𝑔 any more, but on other sources of variations in 𝜽1044

as well, i.e.𝑉Plas = V
(
E𝜃 |𝜀 (𝑧)

)
. This means that the marginalisation step conditional to the environment now1045

implies the fullV𝜃 rather only its subcomponentG𝜃 . The second change is that it is not possible to write the1046

total variance of the reaction norm as the sum of 𝑉Plas and 𝑉Gen anymore, because the latter is only a partial1047

reflection of the full variation in 𝜽 . Instead, we need to introduce the phenotypic variation in the trait arising1048
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from the full sources of variation in 𝜽 , which we denote here 𝑉Param:1049

VParam = V
(
ẑ − E𝜃 |𝜀 (ẑ)

)
= E

(
V𝜃 |𝜀 (ẑ)

)
. (S40)

Then, we can write the correct formulae for 𝑉P and 𝑇 2
RN:1050

VP = VPlas +VParam +VRes, T2
RN =

VPlas +VParam
VP

. (S41)

The Reacnorm package was designed to be able to input V𝜃 to compute those quantities if needed.1051

D Derivation of 𝜋- and 𝜑-partition of 𝑉Plas1052

D1 The 𝜋-decomposition1053

We have seen in Appendix C how to compute the variance arising from the average shape of reaction norm1054

𝑉Plas. In order to go further, we now separate this into a component linked to the average slope of the reaction1055

norm and another linked to the average curvature. For this, we need one or two of the following assumptions1056

to hold true: (i) the environment 𝜀 follows a normal distribution; or (ii) the function 𝑓 is quadratic. In such1057

context, we can isolate the contribution of the slope, 𝑉Sl, from the contribution of the curvature, 𝑉Cv to 𝑉Plas,1058

based on the best quadratic approximation of E𝑔 |𝜀 (𝑧) (akin to the reasoning in Lande & Arnold 1983, for1059

estimates of selection gradients), as:1060

𝑉Sl = E
(dE𝑔 |𝜀

d𝜀 (𝑧)
)2

V(𝜀), 𝑉Cv =
1

4
E

(
d2E𝑔 |𝜀
d𝜀2

(𝑧)
)2

V(𝜀2) . (S42)

As an illustration of why the assumptions above are needed, if 𝜀 follows a uniform distribution between -21061

and 2; and the average shape of plasticity is the following cubic function, 𝑓 (𝜀) = 2𝜀 − 0.5𝜀2 − 𝜀3, then the1062

average slope is -2, while the slope from the best quadratic approximation of E𝑔 |𝜀 (𝑧) is -0.4. In such cases,1063

the decomposition in Equation S42 is not valid anymore, due to (i) the impossibility to apply Stein’s lemma1064

to a non-normal distribution and (ii) strong covariation between the slope and curvature. This means that1065

whenever the environment is non-normal and the reaction norm is non-quadratic, the 𝜋-decomposition can1066

bear little meaning (in the cubic example above,𝑉Sl would be 5.4, while𝑉Plas = 2.0, so that 𝜋Sl would be largely1067

above 1). A truly quadratic reaction norm is the only case where 𝜋Sl + 𝜋Cv = 1.1068
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D2 The 𝜑-decomposition1069

In such cases where the environment is non-normal and the reaction norm is non-quadratic, it is always1070

possible to approximate the true shape of the reaction norm using a polynomial function:1071

𝑧 =
𝑁∑
𝑛=0

(𝜃𝑛 + 𝜃𝑛,𝑔)𝜀𝑛 (S43)

In the context of decomposing 𝑉Plas, such polynomial approximation provides a possibility to isolate the (co-1072

)contribution of the (pairs of) coefficients in E𝑔 |𝜀 (𝑧) =
∑𝑁
𝑛=0 𝜃𝑛𝜀

𝑛 :1073

𝑉Plas = V(E𝑔 |𝜀 (𝑧)) =
∑
𝑛

𝜃2𝑛V(𝜀𝑛) + 2
∑
𝑛<𝑚

𝜃𝑛𝜃𝑚cov(𝜀𝑛, 𝜀𝑚) (S44)

From this, we suggest the alternative 𝜑-decomposition of 𝑉Plas, with 𝜑𝑛 = 𝜃2𝑛V(𝜀𝑛 )
𝑉Plas

and 𝜑𝑛𝑚 = 2𝜃𝑛𝜃𝑚cov(𝜀𝑛,𝜀𝑚 )
𝑉Plas

.1074

It is important to note that this decomposition is based on the coefficients of the polynomial function and, thus,1075

it is unfortunately impossible to simply interpret the 𝜑𝑛 in terms of slope (for 𝜑1), curvature (for 𝜑2), and so1076

on. The only exception is when the reaction norm shape is quadratic, in which case 𝜋Sl = 𝜑1 and 𝜋Cv = 𝜑2.1077

E Correcting for uncertainty in the estimation of fixed1078

effects1079

Character-state approach It is easier to start with the character-state approach based on the ANOVA1080

model. We want to compute 𝑉Plas as the variance of the group-level effects 𝜇:1081

𝑉Plas = V(𝜇) (S45)

However, we do not have access to the real-world values for 𝜇, but only to the estimated 𝜇 from the model.1082

Such estimates, if unbiased, have an expected value of 𝜇𝑘 in environment 𝑘 and a standard-error (i.e. the1083

estimation of the sampling standard deviation) 𝑠𝑘 . In other words, we can state that 𝜇𝑘 is equal to 𝜇𝑘 up to an1084

additive error:1085

𝜇𝑘 = 𝜇𝑘 + 𝜇𝑘 (S46)

where 𝜇 is of mean 0 and variance 𝑠2
𝑘
. Considering each virtual repeat 𝑟 of the experiment, we can apply the1086

law of total variance:1087

V(𝜇) = V𝜀 (E𝑟 |𝜀 (𝜇)) + E𝜀 (V𝑟 |𝜀 (𝜇)) = V𝜀 (𝜇) + E𝜀 (𝑠2). (S47)
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We thus have:1088

𝑉Plas = V𝜀 (𝜇) = V𝜀 (𝜇) − E𝜀 (𝑠2) (S48)

This result is equivalent to e.g. the classical computation of the “sire variance” in sire models in quantitative1089

genetics (Lynch & Walsh 1998), although the latter is generally expressed using sums-of-squares.1090

Curve-parameter approach There is unfortunately no simple solution to the problem of accounting for1091

the uncertainty of fixed effects in the general context of non-linear modelling. However, for the particular1092

case where the model can be framed as a linear model, as is the case for the polynomial function, then 𝑧 = X𝜽 ,1093

where X is the design matrix containing the values for the environment. Noting Σ𝑋 the variance-covariance1094

matrix of X, we can define 𝑉Plas as:1095

𝑉Plas = 𝜽𝑇Σ𝑋𝜽 . (S49)

Again, the problem is that 𝜽 is unknown, we only have access to the estimated values of the parameters, 𝜽 ,1096

that are inferred with an error provided by the variance-covariance matrix of standard errors, S𝜃 . We can1097

write again:1098

𝜽 = 𝜽 + 𝜽 , (S50)

Noting that the error is independent from the true value, we have:1099

𝜽𝑇Σ𝑋𝜽 = 𝜽𝑇Σ𝑋𝜽 + 𝜽𝑇Σ𝑋𝜽 (S51)

To express 𝜽𝑇Σ𝑋𝜽 , it is important to note that 𝑆𝜃,𝑖 𝑗 = E(𝜃𝑖𝜃 𝑗 ), since E(𝜽 ) = 0. Then, we can note that, the error1100

being unknown, we actually want to compute E𝑟 (𝜽𝑇Σ𝑋𝜽 ) taken across virtual repeats 𝑟 of the experiment:1101

E𝑟 (𝜽𝑇Σ𝑋𝜽 ) = E𝑟 (
∑
𝑖 𝑗

𝜃𝑖𝜃 𝑗Σ𝑋,𝑖, 𝑗 ) =
∑
𝑖 𝑗

E𝑟 (𝜃𝑖𝜃 𝑗 )Σ𝑋,𝑖, 𝑗 =
∑
𝑖 𝑗

𝑆𝜃,𝑖 𝑗Σ𝑋,𝑖, 𝑗 = Tr(S𝜃Σ𝑋 ) (S52)

This is similar to the result of Brown & Rutemiller (1977). Finally, we have:1102

𝑉Plas = 𝜽𝑇Σ𝑋𝜽 − Tr(S𝜃Σ𝑋 ) . (S53)
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F Full results for the section “Perfect modelling of quadratic1103

curves”1104

This section provides the full results corresponding to the section “Perfect modelling of quadratic curves” in1105

the main text. The results of all investigated values for the number of environments (10 or 4) and number of1106

genotypes (20 or 5 for the discrete case, 200 or 50 for the continuous case) are provided for the discrete and1107

continuous cases.1108
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Figure S1: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for three discrete scenarios: 𝑁env: number of environments, 𝑁Gen: number of different genotypes, 𝑁Rep:
number of replicates per genotype. Estimates are for 𝑃2RN (proportion of variance generated by plasticity after averaging
across genotypes), ℎ̂2RN (total heritability of the reaction norm), ℎ̂2 (environment-blind heritability[..a ]) and ℎ̂2I (heri-
tability [..b ]from plasticity) for both the curve-parameter and character-state approaches. For the curve-parameter, the
𝜋-decomposition of 𝑃2RN into 𝜋Sl (contribution of the slope) and 𝜋Cv (contribution of the curvature); the𝛾-decomposition
of ℎ̂2RN into 𝛾𝑎 (genetic contribution of the intercept), 𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of
the curvature) and 𝛾𝑎𝑐 (genetic contribution of the covariance between the intercept and the curvature) and the 𝜄-
decomposition of ℎ2I into 𝜄𝑏 (slope) and 𝜄𝑐 (curvature) are also shown. The grey dots correspond to the average over the
1000 simulations.[..c ]
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Figure S2: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for four continous scenarios: 𝑁env: number of environment tested per genotype, 𝑁Gen: number of differ-
ent genotypes. The character-state approach was impossible for the continuous environment scenario. Estimates are
for 𝑃2RN (proportion of variance generated by plasticity after averaging across genotypes), ℎ̂2RN (total heritability of the
reaction norm), ℎ̂2 (environment-blind heritability[..a ]) and ℎ̂2I (heritability [..b ]from plasticity) for both the curve-
parameter and character-state approaches. For the curve-parameter, the 𝜋-decomposition of 𝑃2RN into 𝜋Sl (contribution
of the slope) and 𝜋Cv (contribution of the curvature); the 𝛾-decomposition of ℎ̂2RN into 𝛾𝑎 (genetic contribution of the
intercept), 𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of the curvature) and 𝛾𝑎𝑐 (genetic contribution
of the covariance between the intercept and the curvature) and the 𝜄-decomposition of ℎ2I into 𝜄𝑏 (slope) and 𝜄𝑐 (curva-
ture) are also shown. The grey dots correspond to the average over the 1000 simulations[..c ].

aremoved: based on average breeding values
bremoved: of
cremoved: . The effective number of dimensions 𝑛𝑒 from the character-state is not shown, due to an important bias impacting

the comparison with the other parameters

G Comparison with the approach from Murren et al. (2014)1109

Murren et al. (2014) studied variation of the reaction norm shapes across different datasets, using their own1110

metrics. We argue in the main text that our variance decomposition is more appropriate than the ones sug-1111

gested by Murren et al. (2014), and we develop here why.1112

The first step in the approach of Murren et al. (2014) is to choose a reference reaction norm in each of the1113
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studies and compute contrasts (i.e. difference with) to that particular reaction norm. The contrasts are then1114

analysed, rather than the reaction norms themselves. For the sake of simplicity, and because this does not (or1115

marginally) impact our comments on this approach, we will overlook that step and consider reaction norms1116

directly.1117

For each genotype 𝑘 and from its given reaction norm (or contrast) z𝑘 = {𝑧𝑘,1, . . . , 𝑧𝑘,𝑛}, Murren et al. (2014)1118

compute four statistics (we removed the absolute values for the sake of simplicity here):1119

1. The offset, 𝑂M, measures the “location” of the reaction norm, i.e. its mean. Comparison of the offsets1120

allows detecting wether reaction norms are “shifted” toward higher or lower values. It is computed, for1121

each genotype 𝑘 , as the absolute value of the average of the norm across environments:1122

𝑂M,𝑘 =

∑𝑛
𝑖

��𝑧𝑘,𝑖 ��
𝑛

. (S54)

2. The slope, 𝑆M, measures the linear trend of the reaction norms. Formally, it is the absolute sum of the1123

differences between two consecutive environments, divided by the number of intervals (𝑛 − 1):1124

𝑆M,𝑘 =

∑𝑛−1
𝑖

��𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖 ��
𝑛 − 1

. (S55)

3. The curvature,𝐶M, is computed as the absolute value of the average change in phenotype between two1125

consecutive pairs of environments:1126

𝐶M,𝑘 =

∑𝑛−2
𝑖

��(𝑧𝑘,𝑖+2 − 𝑧𝑘,𝑖+1) − (𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖)
��

𝑛 − 2
. (S56)

4. The wiggle,𝑊M, is, according to the authors the “the variability in shape not described by any of the1127

previous three measures”:1128

𝑊M,𝑘 =

∑𝑛−2
𝑖

��(𝑧𝑘,𝑖+2 − 𝑧𝑘,𝑖+1) − (𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖)
��

𝑛 − 2
−𝐶M,𝑘 . (S57)

Given the lower interest in this latter statistics, we will not comment on it any further. Most of the1129

comments on the other statistics also apply to this one.1130

One strong assumption underlying the calculations above is that environmental values 𝜀 = {𝜀1, . . . , 𝜀𝑛} on1131

which the reaction norms were evaluated are evenly spaced, e.g. that the differences 𝜀𝑖+1 − 𝜀𝑖 are equal for1132

all possible values of 𝑖 . The assumption is actually that the space between two measures is equal to 1 (which,1133

admittedly, is only a matter of rescaling when evenly-spaced values are already assumed). If this is the case,1134

then there is indeed no loss in generality in using the number of components (𝑛, 𝑛 − 1 and 𝑛 − 2) rather than1135
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actual values of 𝑥 in the denominator. Although it is common for studies on reaction norms to use evenly-1136

spaced environmental values, it is an unnecessary assumption that shall not be satisfied by all studies.1137

Second, developing the sums in 𝑆M and 𝐶M above show that the intermediate values cancel each other out,1138

leaving only the values at each extreme of the environmental range in the estimate:1139

𝑆M,𝑘 =
𝑧𝑘,𝑛 − 𝑧𝑘,1
𝑛 − 1

,

𝐶M,𝑘 =
(𝑧𝑘,𝑛 − 𝑧𝑘,𝑛−1) − (𝑧𝑘,2 − 𝑧𝑘,1)

𝑛 − 2
.

(S58)

The issue here is double: (i) the estimation is highly sensitive to the random noise coming from a small number1140

of values (two or three/four); and (ii) the intermediate values in the reaction norm are simply thrown out and1141

not used for a more robust estimation. In other words, it would have been exactly the same to not measure1142

the reaction norm at these intermediate values, since they are not accounted for in the calculation.1143

A final issue is that the approach uses the measured values of the reaction norms without accounting for the1144

uncertainty in their estimation (i.e. standard-deviation and sample size for each genotype and environmental1145

value) which poses the well-known issue of non-propagation of the error when doing “statistics on statistics”.1146

Although we also provide estimators of the impact of several aspects of reaction norms on the phenotypic1147

variation, our approach differs from the one from Murren et al. (2014) by many aspects. First, our variance1148

decomposition makes the explicit distinction between the average shape of the reaction norm and the genetic1149

variance surrounding it. As such, to 𝑂𝑀 , 𝑆𝑀 and 𝐶𝑀 corresponds not only the 𝜋-, but also the 𝛾- and 𝜄-1150

decomposition. We clearly delimit the domain of validity of each of these decomposition. We also account1151

for possible correlation between those components. Second, we use the whole of the statistical inference to1152

define our variance decomposition estimates. Third, we explicitly account for the uncertain estimation of1153

reaction norms.1154
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