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Abstract

Opioid substitution and syringes exchange programs have drastically reduced hepatitis C virus
(HCV) spread in France but HCV sexual transmission in men having sex with men (MSM) has
recently arese-arisen as a significant public health concern. The fact that the virus is transmitting
in a heterogeneous population, with ‘new’ and ‘classical’ hosts, makes prevalence and incidence rates
poorly informative. However, additional insights can be gained by analyzing dated-virus phylogenies
inferred from dated wirts-genetic sequence data. Here, using steh-a phylodynamics approach based
on Approximate Bayesian Computation, we estimate key epidemiological parameters of an ongoing
HCYV epidemic in MSM in Lyon (France). We show that this epidemiesinMSM-mnew epidemics is
largely independent from the ‘classical’ HCV epidemics and that its doubling time is one order of
magnitude lower (55.6 days versus 511 days). These results have practical implications for HCV

control and epen—newperspeetivefor—using-illustrate the additional information provided by virus

genomics in public health.



Background

%WMMWWWMMWWM%%WOM hepatitis C
virus (HCV) 4 i —infections [7,7].
The ww&bemgexehﬁwe}hx—h&m&nﬁgeﬂt—%h&World Health Orgamsatlon (WHO) and several
countries have issued recommendations towards its-the ‘elimination’ —Fhis-means-the-absenee-of

which they define as an 80% reduction in new chronic infections and a 65% decline in liver

mortality by 2030 [?]. HIV-HCV coinfected patients are eensidered—a—key—peopulation—targeted
with priority because of the shared reutes—ef-transmission—transmission routes between the two

viruses [?] and because of the increased we%e%ehfem&%%}ﬁ%eeﬁeﬁw% in

coinfections [?,7,7].

—Successful harm reduction
interventions, such as needle-syringe exchange and opiate substitution programs, as well as the-a
high level of enrolment into care of HIV-infected patlentsﬁ&s—a%e%u}t—mew
in the prevalence of active HCV infections drastie ; ars-in HIV-HCV

coinfected patients in several European countries %&emmg%he—hepe%h&&%l@%#ehﬁnﬁ&%}eﬁ%

by S during the recent years [7.7 7 7
. Unfortunately, this elimination goal is challenged by the emergence of HCV sexual transmission
especially among men having sex with men (MSM)recently—arese—as—a—sisnifieant—phenomenon:

This trend is reported to be driven by unprotected sexand-, drug use in the context of sex
( chemsex’ )&Hd—bff and potentially traumatic practices such as fisting s s—{27
in- [?,7,7]. In area of Lyon (France), where-HCV incidence has been shown to

increase concomitantly with a shift in the profile of infected hosts [?]. Understanding and quantifying

this recent increase is the main goal of this study.

Several modeling studies have highlighted the diffienlties—to—eontrelHCVinfeetion—difficulty
to control the spread of HCV infections in HIV-infected MSM in the absence of harm reduction
interventions [?,?]. Furthermore, we recently described the spread of HCV from HIV-infected
to HIV-negative MSM, using er—net-HIV pre-exposure prophylaxis (PrEP) —threugh—sharing—of
or not, through shared high-risk practices between—these—populations—H—This—resulted—in— [7]
. More generally, an alarming incidence of acute HCV infeetion-infections in both HIV-infected
and PrEP-using MSM was reported in France in 2016-2017 [?]. Additionally, while PrEP-using
MSM are regularly screened for HCV, those who are HIV-negative and do not use PrEP may
remain undiagnosed and untreated for years. Sinee-In general, we know little about the population
size and the—practices of HIV-negative MSM who do not use PrEP—these—reeent—_ All these
epidemiological events could jeopardize the goal of HCV elimination by creating a large pool of
infected and undiagnosed patients, pursuing-high-risk-praectieesthat-which could fuel new infections
in intersecting populations. Furthermore, the epidemiological dynamics of HCV infection have

mostly been studied in intravenous drug users (IDU) [?,?,7,?] and in the general population [?,7].
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Results from these populations are not easily transferable to other populations, which calls for a
better understanding of the epidemiological characteristics of HCV sexual transmission in MSM.
Given the lack of knowledge about the focal population driving the increase in HCV incidence,
we investi -analyse virus sequence data using-with phylodynamics methods. This research
field has been blooming over the last decade —{2;2+?}-and hypothesizes that the way rapidly evolv-
ing viruses spread leaves ‘footprints’ in their genomes [?,7.7]. By combining epidemiologieat
modelingmathematical modelling, statistical analyses and phylogenies of infections, where each
leaf corresponds to the virus sequence isolated from a patient, current methods can estimatekey
transmission-infer key parameters of viral epidemics. This framework has been successfully applied
to other HCV epidemics [?,7?, 7, ?|but-the-epidemies—we-study—is-partiendarly—, but the ongoing one
in Lyon is challenging to analyze because the focal population is heterogeneous, with ‘classical” hosts
(typically HEV-infeeted-patients HIV-negative patients infected through nosocomial transmission or
with a history of opioid intravenous drug use or blood transfusion) and ‘new’ hosts (both HIV-infected
and HIV-negative MSM, detected during or shortly after acute HCV W phase, potentially

using recreational drugs such as cocaine or cathinones).

based-on-Our phylodynamics analysis relies on an Approximate Baye51an Computatlon ABC%kN[Vl
) framework that was recently developed and validated [?]. We-implemented-

Wan epldemlologlcal model with two host types{, ‘classical’ and ‘new’ }—whef&eaeh
ing—(see the Methods)—By—analyzing—, we
use dated virus sequences —w&e&&m&&eckj/gvem% the date of onset of the HCV epidemics in
the-‘classical’ hestsand-in-the-and ‘new’ hosts, the level of mixing between the-hosts types, and,
for each host type, the duration of the infectious period and the basie-effective reproduction ratio
(i.e. the number of secondary infections, [?]). Fhis-alewed-uste-show—We find that the doubhng
time of the epidemics is one order of magnitude lower in ‘new’

that-than in ‘classical’ hosts, therefore emphasising the urgent need for public health action.

Results

The time-sealed-phylogeny inferred from the dated virus sequences reveals-shows that ‘new’ hosts

(in red) tend to eluster—together-be grouped in clades (Figure [1)). This pattern suggests a high
level-of-assertativity-degree of assortativity in the epidemics (i.e.each-infeetedhost— hosts tends to
infect hosts from the same type). Farthermorethe-estimatefor-theroot-of-thephylogeny—thatis

epidemiological-dataThe ABC phylodynamics approach allows us to go beyond a visual description
and to quantify several epidemiological parameters.
As for any bayesr&&]@wrkmference method, we need to assume wrlor distribution for each

, are voluntarlly designed to be 1arge and umformly
distributed so as to be as little mformatlve as possible. The-enly-exeeption—was-One exception is
the date of onset of the epidemics, for which we used-use as a prior the output of the phylogenetic

analysis as—a—prier—Fer—conducted in Beast (see the Methods). We also assume the date of the
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1978 1988 1998 2008 2018
Fig 1. Phylogeny of HCV infections in the area of Lyon (France). ‘Classical’ hosts are in

blue and ‘new’ hosts are in red. Sampling events correspond to the end of black branches. The
phylogeny was estimated using maximum-likelihood methods (PhyML) and then rooted in time

using beayestan-Bayesian inference (Beast2). See the Methods for additional details.

‘new’ hosts epidemics to be posterior to 1997

based on epidemiological data.

The

method converges towards posterior distributions for each parameter, which are shown in red in
Figure 21 The estimate for the origin of the epidemic {in ‘classical’ hosts enly+e1+976H969:1986}
is tg = 1977 1966., 1981 (numbers in brackets indicate the 95% Highest Posterior Density, or HPD).

For the ‘new’ host type, we estimate the epidemic

to have started in 2991—&998—2% = 2003 [2000; 2005
Regarding-We find the level of assortativity between host types

inference

ar—to-be-0:86[0:-72:-0:99t0 be high for ‘classical’ as_well as for ‘new’ hosts
az = 0.88 10.70;0.99]). Therefore, hosts & -mainly infect hosts

from the same type and this effect seems even more pronounced for ‘classical’ hosts.

The phylodynamics approach also allows us to infer the duration of the infectious period —Here;
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Fig 2. Parameter prior and posterior distributions. Prior distributions are in grey and

posterior distributions ef-the-regression-ABGC-inferred by ABC are in red. The thinner the
posterior distribution, the more accurate the inference.

asstmingfor each host type. Assuming that this parameter remains-—constantfor-a-—given-host-type o
does not vary over time, we estimate it to be Hﬁmﬁ&%ﬁ&ﬂ» 1.2 years [0.40;7.69] for ‘classical’ o

hosts (parameter 1/v;) and 0.4 years {8-26:-6-651-0.25; 0.78] for ‘new’ hosts (parameter 1/7s). o8
Fhe-basie-Regarding effective reproductlon numbers, i.e. the number of secondary infections o

caused by a given host over the-its infectious period, was-estimated-we estimate that of ‘classical’ 100
hosts to have decreased from 5:94f ‘elassie ; MLLQN@@
Mwafter the introduction of the third generation HCV test in 1997. We 1
also-estimate-that-The inference on the differential transmission parameter indicates that HCV s
%WMKWWMHW hosts H%%PHG*L@%GPQ—%%%H 108
times-more-than-than from ‘classical’ hosts i i
WNMHWMMWM%MMMM number s
To better W@Q@mthe differences between the two host types, we compute the E‘pidei—ﬁh%s 108
deublingtimes-cpidemic doubling time (¢p), which is the time #—+takesfor an infected population 10
to double in size;-. tp is computed for each type of host, assuming a—full-assertativity—complete 10
assortativity (see the Methods). We find that smee%g%e%m—ereulébees%Hﬁ&%eé%eél—]r&éays
{{QﬂS—}Q%}yeafs—}for the ‘classical” hosts, ,(D2>’t3 - s{6:35 12
‘ before 1997 &MMWMMM s
the MW%MMWWMMWM

cars). For the epidemics in the ‘new’ hosts, we estimate that ¢ ~ 51 days ({6-05:1-60}yearsor us
the-elassieal-hosts—We-show-the-densities-of-|0; 2.73] years). Distributions for theses three doubling 11

times are shown in Supplementary Figure S2. 17

105

in ‘new’ hosts

In-Supplementary Figure S3 +—we-show-shows the correlations between parameters in-based s
on the posterior distributions{Figure-3). We mainly find that the Ry in ‘classical’ hosts after the w0
introduction of the third generation of HCV detection tests (i.e. R( ), 1t2) is negatively correlated 120

121

to v and positively correlated to ~ys.
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Fig 3. Parameteric bootstrap illustration. Principal Component Analysis (PCAgraph-)
graphs where each dot represents a vector of summary statistics of a datadataset. The +-606-5,000
simulated data are in grey, and the target data is in red. Panel (a) shows the PCA graph using the

95% HPD distribution.

In other words, if the the epidemic spreads rapidly in ‘classical’ hostsimpeses-a—tower—growth—, it

requires a slower spread in ‘new’ hosts to explain the phylogeny. R(()l)’t2 is also slightly negatively

correlated to i, which probably comes from the fact that epidemies—with-the-samefor a given
Rybut—, epidemics with a longer infection duration have a lower doubling time and therefore a

weaker epidemiological impact. Overall, these correlations do not affect our main results, especially
the pronounced difference in infection periods (y; and v2).

To validate these results, we perfermed-perform a parametric bootstrap analysis by simulating
phylogenies using etr-the resulting posterior distributions to determine whether these are similar to
the target dataset (see the Methods). In Figure we see that the target data in red, i.e. the
summary statistics from the phylogeny shown in Figure [1] lies in the middle of the phylogenies
simulated using the posterior data. Even+-If we use the 95% HPD of the posterior but assume a
uniform distribution instead of the true posterior distribution, we find that the target phylogeny lies
outside the cloud of simulations (see Supplementaryfisure-S4Figure [B(D)). These results confirm
that the posterior distributions we infer are highly 1nformat1vefegﬁfehﬂgﬂfeph~y49geﬁfshﬂpe.

Finally,—to—furthervalidatethe—aeceuraey—To further explore the robustness of our inference
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method, we used-use simulated data to perform a ‘leave one out’ cross-validation (see the Methods). 1
As shown in Supplementary Figure S5, the relative error made for each parameter inference is 13
limited and comparable to what was-is found using a simpler model [?]. Two exceptions are the rate 13
at which ‘new’ hosts clear the infection (y2) and their level of assortativity (asz). Hewever—thisis 10
: it i . : .
102
143

144

a consequence of our choice of summary statistics, which is optimised to analyse a phylogeny with s
a high degree of assortativity (high values of ¢j and as)._ 146
analysis using 10 additional trees from the Beast posterior distribution. In Supplementary figure s
56, we show that the posterior distributions estimated by our ABC method are qualitatively similar s

with all these trees. 150
Discussion 151

Over the last years, « the area of Lyon (France) ; 1s
which-invelves-beth-witnessed an increase in HOV incidence both in HIV-positive and HIV-negative 15

pvgg\llAlgpAoAIlAsAngmen having sex with men (MSM)&H&J”’MJMW appears to be driven by sexual 15

transmission - and echoes similar trends in Amsterdam [?] and v 155

mere-reecently—in Switzerland [?]. Aelﬂevmg—arA quantitative analysis of

the epidemic is necessary to optimise public health interventionsbut-extremely—. Unfortunately, this 1
is challenging because the monitoring of the population at risk is limited and because classical tools s

156

in quantitative epldemlology%ﬁeh—afw incidence time series, are poorly informative in-with 15
such a heterogeneous population. To <
&&mumg phylodynamlcs In order &
to account for host heterogeneity, we extended and validated an existing framework—relying—-on 1o

Approximate Bayesian Computation framework [?]. 163

From a public health point of view, these-our results have two major implications. First, thereds 16

a-strong-assertativity-withinthe-we find a strong degree of assortativity in both ‘classical’ and ‘new’ s

hosts—This—ean—beseen—ualitatively from—the-phylogeny-host populations. The virus phylogeny 16
does hint at this result (Flgure. ) but the ABC approach allows us to quantify it-the pattern and to s

show that assortativity might-may be higher for the-‘classical’ hosts. The second streng-main result s
has to do with the massive-striking difference in doubling time-ef-the-epidemiesbetweenthetwe 10
hest-typestimes. Indeed, the current spread of the epidemics in ‘new’ hosts appears to be at least 1
comparable to the spread in the ‘classical’ hosts in the early 1990s before the advent of the third
generation tests. That the duration of the infectious period in new—new’ hosts is in the same order 1
of magnitude as the time until treatment suggests that the majority of the infeetion-transmission 17
events may be occurring during the acute phase. This underlines the necessity to act rapidly upon 17

detection, for instance with-by emphasising the importance of protection measures {eondom—use s



Yand-treatment—initiation—such as condom use and by initiating treatment even during the acute
phase [?]. A better understanding of the underlying contact networks i

3

could

rovide additional information regarding the structure of the epidemics and, with that respect, next

generation sequence data could be particularly informative [?,7?,7].

Fweolegitimateinterrogations-abott-the studyhave-to-do-with-Some potential limitations of the
study are related to the sampling schemeand-, the assessment of the host type, and the transmission

ARRRAARAAANANAIAARIRIRIR

model. Regarding the sampling, the proportion of the-infeetions—in-infected ‘new’ host that are
sampled is estimated—to—unknown but could be high. For the ‘classical’ hosts, we selected a
representative subset of the patients detected in the area —Regarding-the-host-typebut this sampling
is likely to be low. However, the effect of underestimating sampling for the new epidemics would
be to underestimate its spread, which is already faster than the classical epidemics. In general,
implementing a more realistic sampling scheme in the model would be possible but it would require

a more detailed model and more data to avoid identifiability issues. Regarding assignment of hosts
to one of the two types, this was assessed-performed by clinicians independently of the sequence

data. The main criterion used was the infection stage (acute or chronic), which was complemented

by other epidemiological criteria (history of intravenous drug use, blood transfusion, HIV status).

Finally, the ‘classical’ and the ‘new’ epidemics appear to be spreading on contact networks with
different structures. However, such differences are beyond the level of details of the birth-death
model we use here, and would require a larger dataset for them to be inferred.

In order to test whether the infection stage (acute vs.ehrenie}might-net- chronic) can explain
the data as—welbetter than the existence of two host types, we developed an alternative model

where all infected hosts first go through the-an acute phase before recovering or progressing to the

chronic phase. As for the model with two host types, we used 3 time intervals. Interestingly, it was

almost impossible to simulate phylogenies

aette—which-makesit-more-diffienlttoreproducethe-observed-phylogenywith this model, most

likely because of its intrinsic constrains on assortativity (both acute and chronic infections always

enerate new acute infections).

the—host—peprlation—To our knowledge,

attempts have been made in phylodynamics to tackle the issue of host population heterogeneity.
In 2018, a greup-study used the structured coalescent model -to investigate the importance of

accounting for so-called ‘superspreaders’ in the recent ebola epidemics in West Africa 4%} [?]. The
same year, another greup-study used the birth-death model to study the effect of drug resistance
mutations on the Ry of HIV strains [?]. Both of these are implemented in Beast2. However,the
birth-death model is unlikely to be directly applicable to our HCV epidemics because it links the
two epidemics via mutation (a host of type A becomes a host of type B), whereas in our case the
linking is done via transmission (a host of type A infects a host of type B).

strehy—s s-that —Overall, we show that our ABC approach, which had-—been—we
validated for simple epidemiological models such as Susceptible-Infected-Recovered [?]ean—slse-, can

be applied to more elaborate models that mest-current phylodynamics methods have difficulties
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to ineludecapture. Further increasing the level of details in the model 217
Fhis-may require to increase the number of simulations but also to introduce new summary statistics. 2

Another promising perspective would be to combine sequence and incidence data. Although this 210

could not be done here due to the limited sampling, such ¢ 220

data integration can readily be done with 22

regression-ABC.
Material and methods -
Epidemiological data 24

The Dat’AIDS cohort is a collaborative network of 23 French HIV treatment centers covering approx- 2
imately 25% of HIV-infected patients followed in France (Clinicaltrials.gov ref NCT02898987). The 2
epidemiology of HCV infection in the cohort has been extensively described from 2000 to 2016 [?,7,?7]. 2
The incidence of acute HCV infection has been estimated among HIV-infected MSM between 2012 and 22
2016and-, among HIV-negative MSM enrolled in PrEP between in 2016-2017 [?] —Fhe-epidemiology 29
ae infeetioninelidingineidence-estimates—in-and among HIV-infected and HIV-negative 2s0
MSMs has-been-deseribed-from 2014 to 2017 [?]. [SA: A réécrire pour ne citer que les donnéeszde séquences g

232

HCV sequences-sequence data 23
We included HCV molecular sequences of all MSM patients {N-=-68}-diagnosed with acute HCV 2z

genotype la infection at the Infectious Disease Department of the Hospices Civils de Lyon, France, 23
and for whom NS5B sequencing was performed between January 2014 and December 2017 svere 236
eonsidered(lN = 68). HCV genotype 1la isolated from N = 145 non-MSM, HIV-negative, male 27
patients of similar age were analysed by NS5B sequencing at the same time for phylogenetic analysis. 23
This study was conducted in accordance with French ethics regulations. All patients gave their 23
written informed consent to allow the use of their personal clinical data. The study was approved 20

by the Ethics Committee of Hospices Civils de Lyon. 201

HCYV testing and sequencing 202

HCV RNA was detected and quantified using the Abbott RealTime HCV assay (Abbott Molecular, s
Rungis, France). The NS5B fragment of HCV was amplified between nucleotides 8256 and 8644 2
by RT-PCR as previously described and sequenced using the Sanger method. Electrophoresis and 2
data collection were performed on a GenomeLab™ GeXP Genetic Analyzer (Beckman Coulter). s

b™ sequence analysis 27

Consensus sequences were assembled and analysed using the GenomeLa
software. The genotype of each sample was determined by comparing its sequence with HCV  2s

reference sequences obtained from GenBank. 249



Nucleotide accession numbers

All HCV NS5B sequences isolated in MSM and non-MSM patients reported in this study were
submitted to the GenBank database. The list of Genbank accession numbers for all sequences is

provided in Appendix.

Dated viral phylogeny

%%MW&%WT%MMMM
the alignment we used a Bayesian Skyline model in BEAST v2.4.8_[?]. The general time reversible
(GTR) nucleotide substitution model was used with a strict clock rate fixed at 107 based on data
QQMMWMMEM substitution rate categories. The maximum

MCMC was run for 100 million iterations and samples were saved every 5,000 iterations. We selected
the maximum clade credibility using TreeAnnotator BEAST2 %e%diifﬁe%weﬂﬁée&ﬂakdeek

M%%%%%&Mdate of the last common ancestor was estimated at3981-34
to be 1977.67 with a 95% Highest Posterior Density (HPD) of H962-63:4997-26}[1960.475; 1995.957].

Epidemiological model and simulations

We assumed-assume a Birth-Death model with two hosts types (Supplementary Figure S1) with
‘classical’ hosts (numbered 1) and new hosts (numbered 2). This model is described by the following

system of ordinary differential equations (ODEs):

dl
7; =a1B + (1 —ax)vBly — 11z (1a)
dl
7: = axfviz + (1 — a1)B1 — v l2 (1b)

Ia+this-In the model, transmission events are possible within each type of hosts and between
the two types of hosts at a transmission rate f. %—WWI/ corresponds to the

transmission

new-hosts(ly)—dividualsFrate differential between classical and new hosts. Individuals can be
‘removed’ from-the-infectionscompartment—i-at_a rate from an infectious compartment (I or

1) via infection clearance, host death or change in host behaviour (e.g. condom use). Fhis-event

eeeuﬁ—&%ﬂﬂﬁeﬂ&e&ﬂ}ﬂ%e—%—The assortatlwty between host typesis-given-by-the-a;—{a—valueeloseto
which can be seen as the percentage of transmissions

that occur with hosts from the 3 same type, is captured by parameter a;.

The basie-effective reproduction number (denoted Rp) is the number of secondary cases caused

by an infectious individual in a fully susceptible host population [?]. We seek to infer the Ry from
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Table 1. Prior distributions for the birth-death model parameters over the three
time intervals. t; is the date of origin of the epidemics in the studied area, t; is the date of
introduction of 3' generation HCV tests, t5 is the date of emergence of the epidemic in ‘new’ hosts

and ty is the time of the most recent sampled sequence.

Interval Vi YoV

height[to, t1] | Unif(0.1,4) | Unif(6-+ 430

R(()l) a;
Unif(0.9,15) | Unif(0,1)

L
[, 2] | | Unif(0.1.3)_ | Unifo-43)- |
|

Unif(0,10) | Bnitd0) | |

[ta,ts] |

the classical epidemic, denoted RO and defined by R0 = /71, and-as well as the Ry of the new
epidemic, denoted Ro and defined by Rf)—M%%—VRQﬂ%WWM
The doubling time of an epidemics (tp) eerrespord—corresponds to the time required for the
number of infected hosts to double in sizeand-it-, It is usually estimated in the early stage of an
epidemics, when epidemic growth can assumed to be exponential. Here;we-assumed-To calculate it

AAAARRARARARRRAR

we assume perfect assortativity (a1 = a2 = 1) and appreximated-approximate the initial exponential

growth rate by 8 — v, for ‘classical’ hosts and v3 — v, for ‘new’ hosts. Following [?], we obtain
3 = 1n(2)/(8 —v) and t'2 = n(2)/(v8 — 72).

%W%W%Whree time intervals—frem—+tytotfromt—totofrom
tr—te—tr. During the first interval [to,t1], to being the year of the origin of the epidemic in the
area of Lyon, we assume that only classical hosts are present. The second interval [tq, 5], begins
in t; = 1997.3 with the introduction of the third generation HCV tests, which we assume to have
deereased-affected | R( ) Mmﬁ@@w Flnally, the ‘new’ hosts
appear during the last interval [to,ty]-
where f2}, which we infer. is the date of origin of the second outbreak. The final time (f) is given
by-the-sampling-date-of-our-most-recentsequenee—~whieh-is-set by the most recent sampling date
in our dataset (2018.39). The prior distributions used are summarized in Table [1| and shown in

Figure
We-used-To simulate phylogenies, we use a simulator implemented in R via the Rcpp packagete

event—and—a—leafrepresents—a—_ This is done in a two-step procedure. First, epidemiological
trajectories are simulated using the compartmental model in equation [I] and Gillespie’s stochastic

event-driven simulation algorithm [?]. The number of individuals in each compartment and the
reactions occurring through the simulations of trajectories, such as recovery or transmission events
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are recorded. Using the target phylogeny, we know when sampling events occur. For each simulation,
cach sampling date is randomly associated to a host compartment using the observed fraction of
each infection type (here 68% of the dates associated with ’classical’ hosts type and 32% with ‘new’
hosts). Once the sampling dates are added to the trajectories, we move to the second step, which
involves simulating the phylogeny. This step starts from the last sampling date and follows _the
epidemiological trajectory through a coalescent process, that is backward-in-time. Each backward
step_in the trajectory can induce a tree modification: a sampling event —Here;—oursimulator

and-samphng-dates—mportantly—we-leads to a labelled leaf in the phylogeny, a transmission event
can lead to the coalescence of two sampled lineages or to no modification of the phylogeny (if one
of the lineages is not sampled).

We implicitly assume that the sampling rate is low, which is consistent with the limited number

of sequences in the dataset. We also assume that the virus can still be transmitted after sampling.
We simulated-61-000-simulate 71, 000 phylogenies from known parameter sets drawn in the prior

distributions shown in Tablet—Fhese—were-[I] These are used to perform the rejection step and
build the regression model in the Approximate Bayesian Computation (ABC) inference.

ABC inference
Summary statistics

Phylogenies are rich objects and to compare them we tised-break them into summary statistics. These
were-are_chosen to capture the epldemlologlcal information that—we-wanted-to-extractof interest.
following an carlier study, we use summary
statistics from branch lengths %ope}eg%ef—%h&ﬁe& tree topology, and lineage-through-time (LTT)
plot-developed-by- [7].

We also eemptited-additional-compute new summary statistics to extract information regarding
the heterogeneity of the population, the assortativity, and the difference between the two Ry. To
do so, we annetated-annotate each internal node by associating it with a probablhty of-being-to be

in a particular state (here the

In particular,

host type, ‘classical’ or ‘new’). We assume that this robability is given by the ratio

number of leaves labelled Y

P(Y) =

(2)

number of descendent leaves

where Y is a type-of-host—

Eachnode—ecould—therefore-be-state (or host type). Each node is therefore annotated with n
ratios, n being the number of possible states{i—e—types-oftabeb—. Since in our case n = 2, we only

follewed-follow one of the labels and used-use the mean and the variance of the distribution of the
ratios (one for each node) as summary statistics.

In a phylogeny, ‘cherries——cherries are pairs of leaves that are adjacent to a common ances-
tor. There are n(n + 1)/2 categories of cherries. Here, we eounted—the—number—compute the
proportion of homogeneous cherries for each label and the number-proportion of heterogeneous
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s-We also consider pitchforks, which we define
as a cherry and a leaf adjacent to a common ancestor, and intredueed-introduce three categories:

, itchforks, pitchforks whose cherries are homoge—
neous for a label and whose leaf sas-is labelled with another trait, and 4

cherries.

)

homogeneous ++i

e1)-4 : s—pitchforks whose cherries are heterogeneous.
The Lineage- Through Time (LTT) plot displays the number of lineages of a phylogeny over

time:—. In this plot, the number of lineages is incremented by one fer-each-every time there is a
new branch in the phylogeny, and is decreased by one fereach-every time there is a new leaf in
the phylogeny. We used-use the ratios defined for each internal node to build an-a LTT for each
label type, which we refer to as an—LTT label plot’. After each branching event in phylogeny, we
ineremented-increment the number of lineages by the value of the ratio of the internal node for the
given label. This number of lineages was-is decreased by one fer-each-every time there is a leaf in
the phylogeny. In the end, we ebtained-obtain n = 2 LTT label plots.

Finally, for each label, we e@mp&teé«eﬂ}&ﬂf—kheﬁm&gg@m%d(mrbranch lengths
summary statistics ¢
mwm)m%m in the phylogeny. Homogeneous
elusters—were—clades are defined by their root having a ratio of 1 for one type of label and their
size being greater than Ny,. For heterogeneous ehuster—we-kept—clades, we keep the size criterion
and impesed-impose that the ratio was-is smaller than 1 but greater than a threshold e. After

preliminary analyses, we set Npmin = 4 leaves and ¢ = 0.7. We therefore ebtained—obtain a set
of homogeneous elusters—clades and a set of heterogeneous elusters—clades, the branch lengths of
which were-posled-we pool into two sets to compute the summary statistics of heterogeneous and

homogeneous ehasters—clades. Note that we always select the largest clade, for both homogeneous
and heterogeneous cases, to avoid redundancy.

Regression-ABC

We first measured-measure multicollinearity between summary statistics using variance inflation
factors (VIF). Each summary statistic swas-is kept if its VIF value sas-is lower than 10. This step
led-stepwise VIF test leads to the selection of 88 summary statistics out of 234.

We then used-use the abc function from the abc R package to infer posterior distributions
from-rejeetion-only-generated using only the rejection step. Finally, we pe d-perform linear
adjustment using an elastic net regression.

The abe-abc function performs a classical one-step rejection algorithm [?] using a tolerance
parameter Pjs, which represents a percentile of the simulations that are close to the target. Fer

s-To compute the distance between
a simulation and the targetusing—the-, we use the Euclidian distance between normalized simulated

e

>

Dy

vector of summary statistics and the normalized target vector.

Prior to linear adjustment, the abc function performs smooth weighting using an Epanechnikov
kernel [?]. Then, using the glmnet package in R, we implemented-implement an elastic-net (EN)
adjustment, which balances the Ridge and the LASSO regression penalties [?]. The EN performing
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a linear regression, is-it-it is not subject to the risk of over-fitting that may occur for non-linear
regressions (e.g. when using neural networks, support vector machines or random forests).

We-inferred-posterior-distributions-ef-In the end, we obtain posterior distributions for tg, to, a1,
az, V, Y1, Y2, R(l) " and R(l) ? using our ABC-EN regression model with Ps = 0.1.

Parametric bootstrap and cross validation

)

Our parametric bootstrap validation consists in simulating 5,000 additional phylogenies from
parameter sets drawn in posterior distributions. We then eemputed-compute summary statistics

and perfermed-perform a principal component analysis (PCA) on the vectors of summary statistics
for the simulated and for the target data. If the posterior distribution is informative, we expect the
target data to be similar to the simulated phylogenies. On the contrary, if the posterior distribution
can generate phylogenies with a variety of shapes, the target data can be outside the cloud of
simulated phylogenies in the PCA.

In order to assess the robustness of our ABC-EN method to infer epidemiological parameters of

our BD model, we perfermed-also perform a ‘leave-one-out’ cross-validation —Fhis-eonsisted-asin_[7].

This consists in inferring posterior distributions of the parameters from one simulated reephylogeny,
assumed to be the target treephylogeny, using the ABC-EN method with the remaining 66;-666
160, 999 simulated phylogenies. We run the cross-validation 100 times with
100 different target trees-and-measured-the-phylogenies. We consider three parameter distributions
9:_the prior distribution, the prior distribution reduced by the feasibility of the simulations and

the ABC inferred posterior distribution. For each of these parameter distributions, we measure the
median and compute, for each simulation scenario, the mean relative error efinference-(MRE) such

1 100 0
MRE = — -1
R 100;|@ | (3)

where © is the true value.
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