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Abstract

Opioid substitution and syringes exchange programs have drastically reduced hepatitis C virus

(HCV) spread in France but HCV sexual transmission in men having sex with men (MSM) has

recently arose
:::::
arisen as a significant public health concern. The fact that the virus is transmitting

in a heterogeneous population, with ‘new’ and ‘classical’ hosts, makes prevalence and incidence rates

poorly informative. However, additional insights can be gained by analyzing dated
:::::
virus phylogenies

inferred from dated virus genetic sequence data. Here, using such a phylodynamics approach based

on Approximate Bayesian Computation, we estimate key epidemiological parameters of an ongoing

HCV epidemic in MSM in Lyon (France). We show that this epidemics in MSM
::::
new

:::::::::
epidemics

:
is

largely independent from the ‘classical’ HCV epidemics and that its doubling time is one order of

magnitude lower (55.6 days versus 511 days). These results have practical implications for HCV

control and open new perspective for using
::::::::
illustrate

::::
the

:::::::::
additional

:::::::::::
information

::::::::
provided

:::
by

:
virus

genomics in public health.
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Background 1

The burden of
:
It

::
is
::::::::::

estimated
::::
that

:::
71

:::::::
million

:::::::
people

:::::::::
worldwide

::::::
suffer

:::::
from

:
chronic hepatitis C 2

virus (HCV) infection is currently estimated to 71 million infections worldwide
::::::::
infections

:
[?, ?]. 3

The virus being exclusively a human agent, the World Health Organisation (WHO) and several 4

countries have issued recommendations towards its
:::
the

:
‘elimination’ . This means the absence of 5

a significant transmission in a given epidemiological context and is defined by a
:
of

::::
this

::::::
virus, 6

:::::
which

:::::
they

::::::
define

:::
as

:::
an

:
80% reduction in new chronic infections and a 65% decline in liver 7

mortality by 2030 [?]. HIV-HCV coinfected patients are considered a key population
:::::::
targeted 8

::::
with

:::::::
priority

:
because of the shared routes of transmission

:::::::::::
transmission

::::::
routes

:
between the two 9

viruses [?] and because of the increased severity of chronic HCV infection
::::::::
virulence

::
of

:::::
HCV

:
in 10

coinfections [?,?,?]. This population was therefore targeted with priority, leading to high treatment 11

uptake in countries with affordable access to treatments. This was complemented by successful harm 12

reductions interventionssuch as needle-syringes exchange and opiates
::::::::
Successful

::::::
harm

:::::::::
reduction 13

::::::::::::
interventions,

::::
such

:::
as

:::::::::::::
needle-syringe

:::::::::
exchange

:::
and

:::::::
opiate substitution programs, as well as the

:
a 14

high level of enrolment into care of HIV-infected patients. As a result,
:
,
::::
have

::::
led

::
to

::
a

::::::
drastic

:::::
drop 15

::
in the prevalence of active HCV infections drastically dropped during the recent years in HIV-HCV 16

coinfected patients in several European countries , increasing the hope that HCV elimination was 17

an attainable goal [?,?,?,?]. 18

Unfortunately, sexual transmission of HCV in HIV-infected
::::::
during

:::
the

::::::
recent

::::::
years

:::::::::
[?,?,?,?] 19

:
.
:::::::::::::
Unfortunately,

::::
this

:::::::::::
elimination

::::
goal

::
is

::::::::::
challenged

::
by

::::
the

::::::::::
emergence

::
of

:::::
HCV

::::::
sexual

::::::::::::
transmission, 20

::::::::
especially

:::::::
among

:
men having sex with men (MSM)recently arose as a significant phenomenon, 21

:
.
:::::

This
::::::
trend

::
is

::::::::
reported

:::
to

:::
be

:
driven by unprotected sexand ,

:
drug use in the context of sex 22

(‘chemsex’)and by
:
,
::::
and potentially traumatic practices such as fisting and sharing sextoys [?,?,?] 23

. This is the case in
:::::::
[?,?,?].

:::
In

:
area of Lyon (France), where HCV incidence has been shown to 24

increase concomitantly with a shift in the profile of infected hosts [?]. Understanding and quantifying 25

this recent increase is the main goal of this study. 26

Several modeling studies have highlighted the difficulties to control HCV infection
::::::::
difficulty 27

::
to

:::::::
control

:::
the

:::::::
spread

::
of

:::::
HCV

:::::::::
infections

:
in HIV-infected MSM in the absence of harm reduction 28

interventions [?, ?]. Furthermore, we recently described the spread of HCV from HIV-infected 29

to HIV-negative MSM, using or not HIV pre-exposure prophylaxis (PrEP) , through sharing of 30

::
or

::::
not,

::::::::
through

::::::
shared

:
high-risk practices between these populations [?]. This resulted in

:::
[?] 31

:
.
:::::
More

:::::::::
generally,

:
an alarming incidence of acute HCV infection

::::::::
infections

:
in both HIV-infected 32

and PrEP-using MSM
:::
was

::::::::
reported

:
in France in 2016-2017 [?]. Additionally, while PrEP-using 33

MSM are regularly screened for HCV, those who are HIV-negative and do not use PrEP may 34

remain undiagnosed and untreated for years. Since
::
In

:::::::
general,

:
we know little about the population 35

size and the practices of HIV-negative MSM who do not use PrEP, these recent .
:::::

All
:::::
these 36

epidemiological events could jeopardize the goal of HCV elimination by creating a large pool of 37

infected and undiagnosed patients, pursuing high-risk practices that
:::::
which

:
could fuel new infections 38

in intersecting populations. Furthermore, the epidemiological dynamics of HCV infection have 39

mostly been studied in intravenous drug users (IDU) [?,?,?,?] and in the general population [?,?]. 40
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Results from these populations are not easily transferable to other populations, which calls for a 41

better understanding of the epidemiological characteristics of HCV sexual transmission in MSM. 42

Given the lack of knowledge about the focal population driving the increase in HCV incidence, 43

we investigated
:::::::
analyse

:
virus sequence data using

:::
with

:
phylodynamics methods. This research 44

field has been blooming over the last decade [?,?,?] and hypothesizes that the way rapidly evolv- 45

ing viruses spread leaves ‘footprints’ in their genomes
:::::::
[?,?,?]. By combining epidemiological 46

modeling
::::::::::::
mathematical

:::::::::
modelling, statistical analyses and phylogenies of infections, where each 47

leaf corresponds to the virus sequence isolated from a patient, current methods can estimate key 48

transmission
::::
infer

:::
key

:
parameters of viral epidemics. This framework has been successfully applied 49

to
:::::
other

:
HCV epidemics [?,?,?,?]but the epidemics we study is particularly

:
,
:::
but

::::
the

:::::::
ongoing

::::
one 50

::
in

:::::
Lyon

::
is challenging to analyze because the focal population is heterogeneous, with ‘classical’ hosts 51

(typically HIV-infected patients
:::::::::::
HIV-negative

::::::::
patients

:::::::
infected

::::::::
through

::::::::::
nosocomial

::::::::::::
transmission

::
or 52

with a history of opioid intravenous drug use
::
or

:::::
blood

::::::::::
transfusion) and ‘new’ hosts (

:::::
both HIV-infected 53

and HIV-negative MSM, detected during or shortly after acute HCV
::::::::
infection phase, potentially 54

using recreational drugs such as cocaine or cathinones). To address this issue, we used a framework 55

based on
::::
Our

:::::::::::::
phylodynamics

::::::::
analysis

:::::
relies

::
on

:::
an

:
Approximate Bayesian Computation (ABC)

:
,
:::
[?] 56

:
)
::::::::::
framework that was recently developed and validated [?]. We implemented 57

:::::::::
Assuming an epidemiological model with two host types(

:
,
:
‘classical’ and ‘new’ ), where each 58

infection can generate secondary infections before ending (see the Methods). By analyzing
:
,
:::
we 59

:::
use

:
dated virus sequences , we estimated

::
to

::::::::
estimate

:
the date of onset of the HCV epidemics in 60

the ‘classical’ hosts, and in the
:::
and

:
‘new’ hosts, the level of mixing between the hosts types, and, 61

for each host type, the duration of the infectious period and the basic
:::::::
effective

:
reproduction ratio 62

(i.e. the number of secondary infections, [?]). This allowed us to show
:::
We

::::
find that the doubling 63

time of the epidemics
:
is
::::

one
::::::
order

::
of

::::::::::
magnitude

:::::
lower

:
in ‘new’ hosts is dramatically higher than 64

that
::::
than

:
in ‘classical’ hosts, therefore emphasising the urgent need for public health action. 65

Results 66

The time-scaled phylogeny inferred from the dated virus sequences reveals
:::::
shows

:
that ‘new’ hosts 67

(in red) tend to cluster together
::
be

::::::::
grouped

::
in

::::::
clades

:
(Figure 1). This

::::::
pattern

:
suggests a high 68

level of assortativity
::::::
degree

::
of

::::::::::::
assortativity

::
in

::::
the

:::::::::
epidemics (i.e.each infected host

:::::
hosts

:
tends to 69

infect hosts from the same type). Furthermore, the estimate for the root of the phylogeny, that is 70

the onset of the epidemics in the studied area, is in the early 1980s, which appears consistent with 71

epidemiological data
:::
The

:::::
ABC

::::::::::::::
phylodynamics

::::::::
approach

::::::
allows

:::
us

::
to

:::
go

:::::::
beyond

:
a
::::::
visual

::::::::::
description 72

:::
and

:::
to

::::::::
quantify

::::::
several

::::::::::::::
epidemiological

::::::::::
parameters. 73

As for any bayesian
:::::::
Bayesian

:
inference method, we need to assume

:
a
:
prior distribution for each 74

parameter(
:
.
::::::
These

::::::
priors,

::::::
shown

:
in grey in Figure 2) in order to infer posterior distributions (in red 75

in Figure 2). Priors were voluntarily assumed ,
:::
are

:::::::::::
voluntarily

::::::::
designed to be large and uniformly 76

distributed so as to be as little informative as possible. The only exception was
::::
One

:::::::::
exception

::
is 77

the date of onset of the epidemics, for which we used
:::
use

::
as

::
a
:::::
prior the output of the phylogenetic 78

analysis as a prior. For
:::::::::
conducted

::
in

::::::
Beast

::::
(see

::::
the

:::::::::
Methods).

::::
We

:::::
also

:::::::
assume the date of the 79
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1978 1988 1998 2008 2018

Fig 1. Phylogeny of HCV infections in the area of Lyon (France). ‘Classical’ hosts are in

blue and ‘new’ hosts are in red.
:::::::::
Sampling

::::::
events

::::::::::
correspond

::
to

::::
the

::::
end

::
of

:::::
black

:::::::::
branches.

:
The

phylogeny was estimated using maximum-likelihood methods (PhyML) and then rooted in time

using bayesian
::::::::
Bayesian

:
inference (Beast2). See the Methods for additional details.

second epidemics , we assumed that it took place after
:::::
‘new’

:::::
hosts

:::::::::
epidemics

::
to

:::
be

::::::::
posterior

:::
to 1997 80

based on epidemiological data. The width of the posterior distribution indicates our ability to infer 81

a parameter. 82

The ABC phylodynamics approach allows us to go beyond a visual description and to quantify 83

several epidemiological parameters. For instance, we can narrow down the estimation
::::::::
inference 84

:::::::
method

:::::::::
converges

:::::::
towards

:::::::::
posterior

::::::::::::
distributions

:::
for

:::::
each

::::::::::
parameter,

::::::
which

:::
are

::::::
shown

:::
in

::::
red

::
in 85

::::::
Figure

::
2.

::::
The

::::::::
estimate

:
for the origin of the epidemic (in ‘classical’ hosts only) to 1976[1969; 1980] 86

:
is
::::::::::::::::::::
t0 = 1977 [1966; 1981]

:
(numbers in brackets indicate the 95% Highest Posterior Density, or HPD). 87

The epidemic in the second host typeis estimated
:::
For

:::
the

:::::
‘new’

:::::
host

:::::
type,

:::
we

:::::::
estimate

::::
the

::::::::
epidemic 88

to have started in 2001[1998; 2005]
:::::::::::::::::::
t2 = 2003 [2000; 2005]. 89

Regarding
::
We

::::
find

:
the level of assortativity between host types , that is the extent to which a 90

host of a given type interacts with hosts of the same type, we estimate a1 to be 0.96[0.86; 0.99] and 91

a2 to be 0.86[0.72; 0.99]
::
to

:::
be

::::
high

:::
for

:::::::::
‘classical’

:::::::::::::::::::::
(a1 = 0.97 [0.91; 0.99])

::
as

:::::
well

::
as

:::
for

::::::
‘new’

:::::
hosts 92

::::::::::::::::::::
(a2 = 0.88 [0.70; 0.99]). Therefore, hosts appear to preferentially interact with

::::::
mainly

::::::
infect hosts 93

from the same type and this effect seems
::::
even

:
more pronounced for ‘classical’ hosts. 94

The phylodynamics approach also allows us to infer the duration of the infectious period . Here, 95
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Fig 2. Parameter prior and posterior distributions. Prior distributions are in grey and

posterior distributions of the regression-ABC
:::::::
inferred

:::
by

:::::
ABC are in red. The thinner the

posterior distribution, the more accurate the inference.

assuming
::
for

:::::
each

::::
host

:::::
type.

:::::::::
Assuming

:
that this parameter remains constant for a given host type 96

::::
does

:::
not

:::::
vary over time, we estimate it to be 1.7 years [0.46; 9.17]

:::
1.2

:::::
years

::::::::::
[0.40; 7.69] for ‘classical’ 97

hosts
::::::::::
(parameter

:::::
1/γ1)

:
and 0.4 years [0.26; 0.65]

:::::::::
[0.25; 0.78]

:
for ‘new’ hosts

::::::::::
(parameter

:::::
1/γ2). 98

The basic
:::::::::
Regarding

::::::::
effective

:
reproduction numbers, i.e. the number of secondary infections 99

caused by a given host over the
::
its

:
infectious period, was estimated

::
we

::::::::
estimate

::::
that

:::
of

::::::::
‘classical’ 100

::::
hosts

:
to have decreased from 5.94[3.24; 8.61] to 1.80[1.12; 2.48] for ‘classical’ hosts,

::::::::::::::::::::
R

(1),t1
0 = 3.29 [1.2; 6.63]101

::
to

::::::::::::::::::::::
R

(1),t2
0 = 1.47 [0.37; 2.67]

:
after the introduction of the third generation HCV test in 1997. We 102

also estimate that
:::
The

:::::::::
inference

:::
on

::::
the

::::::::::
differential

::::::::::::
transmission

::::::::::
parameter

::::::::
indicates

:::::
that

:::::
HCV 103

:::::::::::
transmission

::::
rate

::
is

:::::::::::::::::
ν = 7.97 [6.01; 9.90]

:::::
times

:::::::
greater

::::
from

:
‘new’ hosts transmit HCV 6.50[2.56; 9.81] 104

times more than
::::
than

:::::
from ‘classical’ hosts(parameter ν). Using all these inferences, we can calculate 105

the
:
.
:::
By

::::::::::
combining

:::::
these

::::::
results

::::
(see

::::
the

:::::::::
Methods),

:::
we

::::::::
estimate

::::
the

:::::::
effective

:
reproduction number 106

in ‘new’ hosts , R
(2),t3
0 (see the Methods), which is 2.35[0.55; 8.05]

:
to

:::
be

:::::::::::::::::::::
R

(2),t3
0 = 2.9 [0.81; 6.26]. 107

To better show
:::::::::
apprehend the differences between the two host types, we compute the epidemics 108

doubling times
:::::::
epidemic

::::::::
doubling

:::::
time

:
(tD), which is the time it takes for an infected population 109

to double in size,
:
.
:::
tD::

is
::::::::::
computed for each type of host, assuming a full assortativity

::::::::
complete 110

:::::::::::
assortativity

::::
(see

:::
the

:::::::::
Methods). We find that since 1997,the t

(1),t2
D could be estimated to 511.0 days 111

([0.58; 10.13] years) for the ‘classical’ hosts, whereas the t
(2),t3
D was estimated to 55.56 days ([0; 3.51] 112

years)for the ‘new’ hosts. Before
:::::
before

:
1997

:::::::::
t
(1),t1
D ≈ 8

:::::::
months

::::::::::
([0.1; 2.63]

:::::::
years).

::::::
After

:::::
1997, 113

the t
(1),t1
D was estimated to 83

::::
pace

::::::::
decreases

:::::
with

:
a
:::::::::
doubling

::::
time

::
of

::::::::::::
t
(1),t2
D ≈ 1.75

:::::
years

:::::::::
([0; 28.55] 114

::::::
years).

::::
For

:::
the

:::::::::
epidemics

::
in

:::
the

::::::
‘new’

:::::
hosts,

:::
we

::::::::
estimate

::::
that

::::::::::
t
(2),t3
D ≈ 51

:
days ([0.05; 1.60] years)for 115

the ‘classical’ hosts. We show the densities of
:::::::
[0; 2.73]

::::::
years).

:::::::::::::
Distributions

:::
for theses three doubling 116

times
:::
are

::::::
shown

:
in Supplementary Figure S2. 117

In Supplementary Figure S3 , we show
:::::
shows

:
the correlations between parameters in

:::::
based 118

::
on

:
the posterior distributions(Figure 3). We mainly find that the R0 in ‘classical’ hosts after the 119

introduction of the third generation of HCV detection tests (i.e. R
(1),t2
0 ) is negatively correlated 120

to ν and positively correlated to γ2. This makes sense because a rapid growth of the epidemic 121
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(a)

(b)

Fig 3. Parameteric bootstrap illustration.
:::::::
Principal

:::::::::::
Component

::::::::
Analysis

::
(PCAgraph )

::::::
graphs where each dot represents a vector of summary statistics of a data

::::::
dataset. The 1, 000

:::::
5, 000

simulated data are in grey, and the target data is in red.
:::::
Panel

::::
(a)

:::::
shows

::::
the

:::::
PCA

:::::
graph

::::::
using

:::
the

::::
HPD

::::::::::::
distribution.

::::::
Panel

:::
(b)

::::::
shows

:::
the

:::::
PCA

::::::
graph

:::::
using

::
a

:::::::
uniform

:::::::::::
distribution

::::::
drawn

:::::
from

:::
the

::::
95%

:::::
HPD

:::::::::::
distribution.

::
In

:::::
other

:::::::
words,

:
if
::::

the
::::
the

::::::::
epidemic

:::::::
spreads

:::::::
rapidly

:
in ‘classical’ hostsimposes a lower growth

:
,
::
it 122

:::::::
requires

::
a

::::::
slower

::::::
spread

:
in ‘new’ hosts

::
to

:::::::
explain

::::
the

:::::::::
phylogeny. R

(1),t2
0 is also slightly negatively 123

correlated to γ1, which probably comes from the fact that epidemics with the same
:::
for

::
a

:::::
given 124

R0but
:
,
:::::::::
epidemics

:::::
with

:
a longer infection duration have a lower doubling time and therefore a 125

weaker epidemiological impact. Overall, these correlations do not affect our main results, especially 126

the pronounced difference in infection periods (γ1 and γ2). 127

To validate these results, we performed
:::::::
perform

:
a parametric bootstrap analysis by simulating 128

phylogenies using our
:::
the

::::::::
resulting

:
posterior distributions to determine whether these are similar to 129

the target dataset (see the Methods). In Figure ??
:::
3(a), we see that the target data in red, i.e. the 130

summary statistics from the phylogeny shown in Figure 1, lies in the middle of the phylogenies 131

simulated using the posterior data. Even if
:
If

:
we use the 95% HPD of the posterior but assume a 132

uniform distribution instead of the true posterior distribution, we find that the target phylogeny lies 133

outside the cloud of simulations (see Supplementary figure S4
:::::
Figure

:::::
3(b)). These results confirm 134

that the posterior distributions we infer are highly informativeregarding the phylogeny shape. 135

Finally, to further validate the accuracy
:::
To

:::::::
further

:::::::
explore

::::
the

::::::::::
robustness

:
of our inference 136
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method, we used
:::
use

:
simulated data to perform a

:
‘leave one out

:
’ cross-validation (see the Methods). 137

As shown in Supplementary Figure S5, the relative error made for each parameter inference is 138

limited and comparable to what was
:
is
:
found using a simpler model [?]. Two exceptions are the rate 139

at which ‘new’ hosts clear the infection (γ2) and their level of assortativity (a2). However, this is 140

likely to be due to the constraint imposed by the shape of the target phylogeny itself rather than by 141

the method. In general, this cross-validation goes beyond the scope of this epidemiological model 142

because, for instance, assortativity values can vary between 0 and 1, whereas for the phylogenetic 143

structure we studied with a high degree of clustering, we expect it should be close to 1
::::
This

::
is

:::::
likely 144

:
a
:::::::::::
consequence

:::
of

:::
our

::::::
choice

::
of

:::::::::
summary

:::::::::
statistics,

::::::
which

::
is

:::::::::
optimised

::
to

:::::::
analyse

::
a
:::::::::
phylogeny

:::::
with 145

:
a
::::
high

:::::::
degree

::
of

:::::::::::
assortativity

::::::
(high

::::::
values

::
of

:::
a1 :::

and
::::
a2).

:
146

:::::::
Finally,

::
to

:::::::
evaluate

::::
the

::::::
impact

::
of

:::::::::::
phylogenetic

:::::::::::::
reconstruction

:::::::::::
uncertainty,

:::
we

:::::::
perform

::
a

:::::::::::::
supplementary147

:::::::
analysis

:::::
using

:::
10

:::::::::
additional

:::::
trees

:::::
from

::::
the

:::::
Beast

:::::::::
posterior

:::::::::::
distribution.

:::
In

::::::::::::::
Supplementary

::::::
figure 148

:::
S6,

:::
we

::::
show

:::::
that

:::
the

::::::::
posterior

::::::::::::
distributions

:::::::::
estimated

::
by

::::
our

:::::
ABC

:::::::
method

:::
are

::::::::::::
qualitatively

::::::
similar 149

::::
with

:::
all

:::::
these

:::::
trees. 150

Discussion 151

Over the last years, an increase in HCV incidence has been witnessed in the area of Lyon (France) , 152

which involves both
::::::::
witnessed

:::
an

:::::::
increase

::
in

:::::
HCV

:::::::::
incidence

:::::
both

::
in HIV-positive and HIV-negative 153

::::::::::
populations

::
of

:
men having sex with men (MSM)and

:::
[?]

:
.
:::::
This

:::::::
increase appears to be driven by sexual 154

transmission . Similar trends have been described
:::
and

::::::
echoes

:::::::
similar

::::::
trends in Amsterdam [?] and , 155

more recently, in Switzerland [?]. Achieving a
:
A

:
quantitative analysis of this epidemics is required 156

:::
the

::::::::
epidemic

::
is

:::::::::
necessary to optimise public health interventionsbut extremely

:
.
:::::::::::::
Unfortunately,

::::
this 157

:
is
:
challenging because the monitoring of the population at risk is limited and because classical tools 158

in quantitative epidemiologysuch as
:
,
:::::::::
especially incidence time series,

:
are poorly informative in

::::
with 159

such a heterogeneous population. To address this issue, we analysed virus sequence data
::::::::::
circumvent 160

:::
this

:::::::::
problem,

:::
we

:::::
used

:::::
HCV

:::::::::
sequence

:::::
data,

::::::
which

:::
we

:::::::::
analysed

:
using phylodynamics. In order 161

to account for host heterogeneity, we extended and validated an existing framework relying on 162

Approximate Bayesian Computation
:::::::::
framework [?]. 163

From a public health point of view, these
:::
our results have two major implications. First, there is 164

a strong assortativity within the
::
we

::::
find

:
a
::::::
strong

:::::::
degree

::
of

:::::::::::
assortativity

::
in

:::::
both

:
‘classical’ and ‘new’ 165

hosts. This can be seen qualitatively from the phylogeny
:::
host

::::::::::::
populations.

::::
The

::::::
virus

:::::::::
phylogeny 166

::::
does

::::
hint

::
at

::::
this

::::::
result (Figure 1) but the ABC approach allows us to quantify it

:::
the

:::::::
pattern and to 167

show that assortativity might
::::
may be higher for the ‘classical’ hosts. The second strong

:::::
main result 168

has to do with the massive
::::::
striking

:
difference in doubling time of the epidemics between the two 169

host types
:::::
times. Indeed, the current spread of the epidemics in ‘new’ hosts appears to be at least 170

comparable
::
to the spread in the

::::::::
‘classical’

:::::
hosts

:::
in

:::
the

:
early 1990s before the advent of the third 171

generation tests. That the duration of the infectious period in new
::::
‘new’

:
hosts is in the same order 172

of magnitude as the time until treatment suggests that the majority of the infection
:::::::::::
transmission 173

:::::
events

:
may be occurring during the acute phase. This underlines the necessity to act rapidly upon 174

detection, for instance with
::
by

:
emphasising the importance of protection measures (condom use 175
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) and treatment initiation
:::
such

:::
as

:::::::
condom

::::
use

::::
and

:::
by

::::::::
initiating

::::::::::
treatment even during the acute 176

phase [?]. A better understanding of the underlying contact networks therefore seems essential
:::::
could 177

::::::
provide

::::::::::
additional

:::::::::::
information

::::::::
regarding

::::
the

::::::::
structure

::
of

::::
the

:::::::::
epidemics and, with that respect, next 178

generation sequence data could be particularly informative [?,?,?]. 179

Two legitimate interrogations about the study have to do with
::::
Some

:::::::::
potential

:::::::::
limitations

:::
of

:::
the 180

:::::
study

:::
are

:::::::
related

::
to

:
the sampling schemeand

:
, the assessment of the host type,

::::
and

:::
the

::::::::::::
transmission 181

:::::
model. Regarding the sampling, the proportion of the infections in

:::::::
infected

:
‘new’

::::
host

:
that are 182

sampled is estimated to
::::::::
unknown

::::
but

:::::
could

:
be high. For the ‘classical’ hosts, we selected a 183

representative subset of the patients detected in the area . Regarding the host type
:::
but

::::
this

::::::::
sampling 184

:
is
::::::
likely

::
to

:::
be

::::
low.

:::::::::
However,

::::
the

:::::
effect

:::
of

:::::::::::::::
underestimating

::::::::
sampling

:::
for

::::
the

::::
new

:::::::::
epidemics

::::::
would 185

::
be

:::
to

:::::::::::::
underestimate

:::
its

:::::::
spread,

::::::
which

::
is

:::::::
already

::::::
faster

:::::
than

::::
the

:::::::
classical

::::::::::
epidemics.

::::
In

:::::::
general, 186

::::::::::::
implementing

:
a
:::::
more

::::::::
realistic

::::::::
sampling

:::::::
scheme

::
in

:::
the

::::::
model

::::::
would

:::
be

:::::::
possible

::::
but

::
it

:::::
would

:::::::
require 187

:
a
:::::
more

:::::::
detailed

::::::
model

::::
and

:::::
more

:::::
data

::
to

:::::
avoid

:::::::::::::
identifiability

::::::
issues.

:::::::::
Regarding

:::::::::::
assignment

::
of

:::::
hosts 188

::
to

::::
one

::
of

:::
the

::::
two

::::::
types, this was assessed

:::::::::
performed by clinicians independently of the sequence 189

data. The main criterion used was the infection stage (acute or chronic), which was complemented 190

by other epidemiological criteria (history of intravenous drug use,
:::::
blood

:::::::::::
transfusion, HIV status). 191

:::::::
Finally,

:::
the

:::::::::
‘classical’

::::
and

::::
the

:::::
‘new’

:::::::::
epidemics

:::::::
appear

:::
to

:::
be

:::::::::
spreading

:::
on

:::::::
contact

::::::::
networks

:::::
with 192

:::::::
different

::::::::::
structures.

::::::::::
However,

::::
such

::::::::::
differences

::::
are

:::::::
beyond

::::
the

::::
level

:::
of

::::::
details

:::
of

:::
the

:::::::::::
birth-death 193

:::::
model

:::
we

::::
use

:::::
here,

:::
and

::::::
would

:::::::
require

::
a

:::::
larger

:::::::
dataset

:::
for

::::::
them

::
to

:::
be

::::::::
inferred.

:
194

In order to test whether the infection stage (acute vs.chronic) might not
:::::::
chronic)

::::
can

:
explain 195

the data as well
::::::
better

:::::
than

:::
the

:::::::::
existence

::
of

::::
two

:::::
host

:::::
types, we developed an alternative model 196

where all infected hosts first go through the
::
an

:
acute phase before recovering or progressing to the 197

chronic phase. As for the model with two host types, we used 3 time intervals. Interestingly, it was 198

almost impossible to simulate phylogenies under this model. This is most likely due to the fact that 199

there cannot be an assortativity parameter in this alternative model (all new infections must be 200

acute ), which makes it more difficult to reproduce the observed phylogeny
:::
with

::::
this

:::::::
model,

:::::
most 201

:::::
likely

:::::::
because

::
of

:::
its

::::::::
intrinsic

:::::::::
constrains

:::
on

::::::::::::
assortativity

:::::
(both

::::::
acute

::::
and

:::::::
chronic

:::::::::
infections

::::::
always 202

:::::::
generate

::::
new

::::::
acute

::::::::::
infections). 203

The phylodynamics analysis raised technical challenges because of the known heterogeneity in 204

the host population. To our knowledge, only two studies have recently tackled this issue
:::
few 205

::::::::
attempts

:::::
have

::::
been

::::::
made

::
in

::::::::::::::
phylodynamics

:::
to

::::::
tackle

:::
the

:::::
issue

:::
of

::::
host

::::::::::
population

:::::::::::::
heterogeneity. 206

In 2018, a group
:::::
study used the structured coalescent model , to investigate the importance of 207

accounting for so-called ‘superspreaders’ in the recent ebola epidemics in West Africa [?]
:::
[?]. The 208

same year, another group
:::::
study

:
used the birth-death model to study the effect of drug resistance 209

mutations on the R0 of HIV strains [?]. Both of these are implemented in Beast2. However,the 210

birth-death model is unlikely to be directly applicable to our HCV epidemics because it links the 211

two epidemics via mutation (a host of type A becomes a host of type B), whereas in our case the 212

linking is done via transmission (a host of type A infects a host of type B). 213

This study shows that the
:::::::
Overall,

:::
we

::::::
show

::::
that

::::
our

:
ABC approach, which had been

::
we 214

validated for simple epidemiological models such as Susceptible-Infected-Recovered [?]can also ,
::::
can 215

be applied to more elaborate models that most
::::::
current

:
phylodynamics methods have difficulties 216
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to include
::::::
capture. Further increasing the level of details in the model will require further analyses. 217

This may require to increase the number of simulations but also to introduce new summary statistics. 218

Another promising perspective would be to combine sequence and incidence data. Although this 219

could not be done here due to the limited sampling, such a combination of different sources of 220

data can be readily performed in an ABC framework
::::
data

:::::::::::
integration

:::
can

:::::::
readily

:::
be

:::::
done

:::::
with 221

::::::::::::::
regression-ABC. 222

Material and methods 223

Epidemiological data 224

The Dat’AIDS cohort is a collaborative network of 23 French HIV treatment centers covering approx- 225

imately 25% of HIV-infected patients followed in France (Clinicaltrials.gov ref NCT02898987). The 226

epidemiology of HCV infection in the cohort has been extensively described from 2000 to 2016 [?,?,?]. 227

The incidence of acute HCV infection has been estimated among HIV-infected MSM between 2012 and 228

2016and ,
:
among HIV-negative MSM enrolled in PrEP between in 2016-2017 [?] . The epidemiology 229

of acute HCV infection, including incidence estimates, in
::::
and

::::::
among HIV-infected and HIV-negative 230

MSMs has been described from 2014 to 2017 [?].
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
[SA: A réécrire pour ne citer que les données de séquences que nous utilisons (voire un autre article si on en a besoin pour le labeling)]231

232

HCV sequences
:::::::::::
sequence

:
data 233

:::
We

::::::::
included HCV molecular sequences of all MSM patients (N = 68) diagnosed with acute HCV 234

genotype 1a infection at the Infectious Disease Department of the Hospices Civils de Lyon, France, 235

and for whom NS5B sequencing was performed between January 2014 and December 2017 were 236

considered
::::::::
(N = 68). HCV genotype 1a isolated from N = 145 non-MSM, HIV-negative, male 237

patients of similar age were analysed by NS5B sequencing at the same time for phylogenetic analysis. 238

This study was conducted in accordance with French ethics regulations. All patients gave their 239

written informed consent to allow the use of their personal clinical data. The study was approved 240

by the Ethics Committee of Hospices Civils de Lyon. 241

HCV testing and sequencing 242

HCV RNA was detected and quantified using the Abbott RealTime HCV assay (Abbott Molecular, 243

Rungis, France). The NS5B fragment of HCV was amplified between nucleotides 8256 and 8644 244

by RT-PCR as previously described and sequenced using the Sanger method. Electrophoresis and 245

data collection were performed on a GenomeLabTM GeXP Genetic Analyzer (Beckman Coulter). 246

Consensus sequences were assembled and analysed using the GenomeLabTM sequence analysis 247

software. The genotype of each sample was determined by comparing its sequence with HCV 248

reference sequences obtained from GenBank. 249
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Nucleotide accession numbers 250

All HCV NS5B sequences isolated in MSM and non-MSM patients reported in this study were 251

submitted to the GenBank database. The list of Genbank accession numbers for all sequences is 252

provided in Appendix. 253

Dated viral phylogeny 254

We inferred a maximum likelihood phylogeny using PhyML v3.0 software complemented with the 255

Smart Model-Selection (SMS) software, from the ATGC platform [?,?], to perform model selection. 256

The SMS tool selected the GTR+Γ+I model with
::
To

:::::
infer

:::
the

:::::::::::
time-scaled

:::::
viral

:::::::::
phylogeny

:::::
from 257

:::
the

:::::::::
alignment

:::
we

::::
used

::
a
::::::::
Bayesian

:::::::
Skyline

::::::
model

::
in

::::::::
BEAST

::::::
v2.4.8

:::
[?]

:
.
::::
The

:::::::
general

::::
time

:::::::::
reversible 258

::::::
(GTR)

:::::::::
nucleotide

::::::::::::
substitution

:::::
model

::::
was

:::::
used

::::
with

::
a
:::::
strict

:::::
clock

::::
rate

:::::
fixed

::
at

:::::
10−3

::::::
based

::
on

:::::
data 259

::::
from

::::
Ref.

:::::
[?]

:::
and

::
a
:::::::
gamma

:::::::::::
distribution

:::::
with

:
four substitution rate categories. The maximum 260

likelihood phylogeny was then rooted using BEAST v2.4.8 [?]. To do so, two trees were built using 261

:::::::
MCMC

:::
was

::::
run

:::
for

:::
100

::::::
million

:::::::::
iterations

::::
and

:::::::
samples

:::::
were

:::::
saved

:::::
every

:::::
5,000

:::::::::
iterations.

::::
We

:::::::
selected 262

:::
the

:::::::::
maximum

::::::
clade

:::::::::
credibility

::::::
using

::::::::::::::
TreeAnnotator

:
BEAST2 according to two molecular clock 263

models: either relaxed or strict [?]. We performed a model comparison with Tracer v.1.6.0 using the 264

AIC criterion. The strict molecular clock model had a lower AIC value and was therefore considered 265

to be the best model. The
::::::::
package.

::::
The

:
date of the last common ancestor was estimated at 1981.34 266

::
to

::
be

::::::::
1977.67 with a 95% Highest Posterior Density (HPD) of [1962.03; 1997.26]

:::::::::::::::::
[1960.475; 1995.957]. 267

Epidemiological model and simulations 268

We assumed
::::::
assume a Birth-Death model with two hosts types (Supplementary Figure S1) with 269

‘classical’ hosts (numbered 1) and new hosts (numbered 2). This model is described by the following 270

system of ordinary differential equations (ODEs): 271

dI1
dt

= a1βI1 + (1− a2)νβI2 − γ1I1 (1a)

dI2
dt

= a2βνI2 + (1− a1)βI1 − γ2I2 (1b)

In this
:
In

::::
the

:
model, transmission events are possible within each type of hosts and between 272

the two types of hosts at a transmission rate β. The parameter
:::::::::
Parameter

:
ν corresponds to the 273

transmission differential between the number of partners of the classical hosts (I1) and that of the 274

new hosts(I2). Individuals Ii ::::
rate

::::::::::
differential

:::::::
between

::::::::
classical

::::
and

::::
new

::::::
hosts.

::::::::::
Individuals

:
can be 275

‘removed’ from the infectious compartment i
::
at

::
a
::::
rate

:::
γ1:::::

from
:::
an

:::::::::
infectious

::::::::::::
compartment

:::
(I1:::

or 276

:::
I2) via infection clearance, host death or change in host behaviour (e.g. condom use). This event 277

occurs at a removal rate γ1. The assortativity between host typesis given by the ai (a value close to 278

1 means there is very little transmission to
:
,
::::::
which

:::
can

:::
be

::::
seen

:::
as

:::
the

::::::::::
percentage

:::
of

::::::::::::
transmissions 279

::::
that

:::::
occur

:::::
with hosts from the other type)

:::::
same

:::::
type,

::
is

::::::::
captured

:::
by

::::::::::
parameter

::
ai. 280

The basic
:::::::
effective

:
reproduction number (denoted R0) is the number of secondary cases caused 281

by an infectious individual in a fully susceptible host population [?]. We seek to infer the R0 from 282
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Table 1. Prior distributions for the birth-death model parameters over the three

time intervals. t0 is the date of origin of the epidemics in the studied area, t1 is the date of

introduction of 3rd generation HCV tests, t2 is the date of emergence of the epidemic in ‘new’ hosts

and tf is the time of the most recent sampled sequence.

Interval γ1 ::
γi: γ2 ν R

(1)
0 ai

height[t0, t1] Unif(0.1, 4) Unif(0.1, 4) 0 Unif(0.9, 15) Unif(0, 1)

[t1, t2]
::::::::::
Unif(0.1, 3)

:
Unif(0.13)

[t2, t3]
:::::::::
Unif(0, 10)

:
Unif(1, 10)

the classical epidemic, denoted R
(1)
0 and defined by R

(1)
0 = β/γ1, and

::
as

::::
well

:::
as the R0 of the new 283

epidemic, denoted R
(2)
0 and defined by R

(2)
0 = νβ/γ2 = νR

(1)
0 γ1/γ2 ::::::::::::::::::::::::

R
(2)
0 = νβ/γ2 = νR

(1)
0 γ1/γ2. 284

The doubling time of an epidemics (tD) correspond
::::::::::
corresponds

:
to the time required for the 285

number of infected hosts to double in sizeand it
:
.
::
It

::
is
:
usually estimated in the early stage of an 286

epidemics, when epidemic growth can assumed to be exponential. Here, we assumed
::
To

:::::::::
calculate

::
it, 287

::
we

:::::::
assume

:
perfect assortativity (a1 = a2 = 1) and approximated

:::::::::::
approximate the initial exponential 288

growth rate by β − γ1 for ‘classical’ hosts and νβ − γ2 for ‘new’ hosts. Following [?], we obtain 289

t
(1)
D = ln(2)/(β − γ1) and t

(2)
D = ln(2)/(νβ − γ2). 290

R
(1)
0 is assumed to vary over

:::
We

::::::::
consider

:
three time intervals: from t0 to t1, from t1 to t2, from 291

t2 to tf . During the first interval [t0, t1], t0 being the year of the origin of the epidemic in the 292

area of Lyon, we assume that only classical hosts are present. The second interval [t1, t2], begins 293

in t1 = 1997.3 with the introduction of the third generation HCV tests, which we assume to have 294

decreased
:::::::
affected

:
R

(1)
0 :::::::

through
::::
the

::::::::
decrease

::
of

:::
the

::::::::::::
transmission

::::
rate

::
β. Finally, the ‘new’ hosts 295

appear during the last interval [t2, tf ]. We also wish to date the origin of this second outbreak(, 296

:::::
where

:
t2)

:
,
:::::
which

:::
we

::::::
infer,

::
is

:::
the

::::
date

:::
of

:::::
origin

:::
of

:::
the

:::::::
second

::::::::
outbreak. The final time (tf ) is given 297

by the sampling date of our most recent sequence, which is
:::
set

::
by

::::
the

:::::
most

::::::
recent

::::::::
sampling

:::::
date 298

::
in

:::
our

:::::::
dataset

::
(2018.39). The prior distributions used are summarized in Table 1

:::
and

:::::::
shown

::
in 299

::::::
Figure

:
2. 300

We used
::
To

::::::::
simulate

:::::::::::
phylogenies,

:::
we

::::
use

:
a simulator implemented in R via the Rcpp packageto 301

simulate epidemiological trajectories and transmission sampled trees. The simulator resembles that 302

developed by [?] and uses Gillespie’s stochastic simulation algorithm to simulate epidemiological 303

trajectoriesgiven our model. Further details about this simulator can be found elsewhere preprint 304

by Danesh et al. to be submitted to bioRxiv. 305

Following other phylodynamics studies, we assume that a time-scaled phylogenyof an epidemic 306

can be correlated to a sampled transmission tree in which a branching represents a transmission 307

event and a leaf represents a .
::::::

This
::

is
::::::

done
::
in

::
a
:::::::::

two-step
::::::::::
procedure.

:::::::
First,

::::::::::::::
epidemiological 308

::::::::::
trajectories

:::
are

:::::::::
simulated

::::::
using

:::
the

::::::::::::::
compartmental

::::::
model

::
in

:::::::::
equation

:
1
::::
and

::::::::::
Gillespie’s

:::::::::
stochastic 309

:::::::::::
event-driven

::::::::::
simulation

:::::::::
algorithm

:::
[?]

:
.
:::::

The
:::::::
number

:::
of

::::::::::
individuals

::
in

:::::
each

::::::::::::
compartment

::::
and

::::
the 310

::::::::
reactions

:::::::::
occurring

:::::::
through

:::
the

:::::::::::
simulations

::
of

:::::::::::
trajectories,

:::::
such

::
as

::::::::
recovery

::
or

::::::::::::
transmission

::::::
events, 311
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:::
are

::::::::
recorded.

::::::
Using

:::
the

::::::
target

:::::::::
phylogeny,

:::
we

:::::
know

:::::
when

:::::::::
sampling

:::::
events

::::::
occur.

::::
For

::::
each

::::::::::
simulation, 312

::::
each

::::::::
sampling

:::::
date

::
is

:::::::::
randomly

::::::::::
associated

::
to

::
a
:::::
host

::::::::::::
compartment

:::::
using

::::
the

::::::::
observed

::::::::
fraction

::
of 313

::::
each

::::::::
infection

::::
type

:::::
(here

:::::
68%

::
of

:::
the

:::::
dates

::::::::::
associated

::::
with

:::::::::
’classical’

:::::
hosts

:::::
type

:::
and

:::::
32%

::::
with

:::::
’new’ 314

::::::
hosts).

:::::
Once

::::
the

::::::::
sampling

:::::
dates

::::
are

::::::
added

::
to

::::
the

:::::::::::
trajectories,

:::
we

:::::
move

::
to

::::
the

::::::
second

:::::
step,

::::::
which 315

:::::::
involves

::::::::::
simulating

:::
the

::::::::::
phylogeny.

::::::
This

::::
step

::::::
starts

:::::
from

:::
the

::::
last

:::::::::
sampling

:::::
date

::::
and

::::::
follows

::::
the 316

:::::::::::::
epidemiological

::::::::::
trajectory

:::::::
through

::
a
:::::::::
coalescent

::::::::
process,

::::
that

::
is
:::::::::::::::::
backward-in-time.

:::::
Each

:::::::::
backward 317

::::
step

::
in

::::
the

:::::::::
trajectory

::::
can

:::::::
induce

::
a
::::
tree

::::::::::::
modification:

:::
a
:
sampling event . Here, our simulator 318

generates phylogenies of infections using the coalescent approach based on simulated trajectories 319

and sampling dates. Importantly, we
::::
leads

::
to

::
a
:::::::
labelled

::::
leaf

::
in

::::
the

::::::::::
phylogeny,

:
a
::::::::::::
transmission

:::::
event 320

:::
can

::::
lead

:::
to

:::
the

:::::::::::
coalescence

::
of

::::
two

::::::::
sampled

:::::::
lineages

:::
or

::
to

:::
no

:::::::::::
modification

:::
of

:::
the

::::::::::
phylogeny

::
(if

::::
one 321

::
of

:::
the

::::::::
lineages

::
is

:::
not

:::::::::
sampled).

:
322

:::
We

:::::::::
implicitly

::::::
assume

:::::
that

:::
the

::::::::
sampling

::::
rate

::
is
:::::
low,

:::::
which

::
is

:::::::::
consistent

:::::
with

:::
the

:::::::
limited

:::::::
number 323

::
of

:::::::::
sequences

::
in

:::
the

::::::::
dataset.

::::
We

::::
also assume that the virus can still be transmitted after sampling. 324

We simulated 61, 000
:::::::
simulate

:::::::
71, 000 phylogenies from known parameter sets drawn in the prior 325

distributions shown in Table1. These were
::
1.

::::::
These

::::
are used to perform the rejection step and 326

build the regression model in the Approximate Bayesian Computation
::::::
(ABC)

:
inference. 327

ABC
::::::::::
inference 328

Summary statistics 329

Phylogenies are rich objects and to compare them we used
:::::
break

:::::
them

::::
into

:
summary statistics. These 330

were
::
are

:
chosen to capture the epidemiological information that we wanted to extract

::
of

:::::::
interest. 331

In particular, we used the summary statistics based on
::::::::
following

:::
an

::::::
earlier

::::::
study,

:::
we

:::
use

:::::::::
summary 332

::::::::
statistics

::::
from

:
branch lengths, topology of the tree

::::
tree

::::::::
topology, and lineage-through-time (LTT) 333

plot developed by [?]. 334

We also computed additional
:::::::
compute

:
new summary statistics to extract information regarding 335

the heterogeneity of the population, the assortativity, and the difference between the two R0. To 336

do so, we annotated
::::::::
annotate each internal node by associating it with a probability of being

:
to

:::
be 337

in a particular state (here the type of host , classical or new). This probability was assumed to be 338

::::
host

:::::
type,

:::::::::
‘classical’

::
or

:::::::
‘new’).

:::
We

:::::::
assume

::::
that

::::
this

:::::::::::
probability

::
is given by the ratio 339

P (Y ) =
number of leaves labelled Y

number of descendent leaves
(2)

where Y is a type of host . 340

Each node could therefore be
::::
state

::::
(or

::::
host

::::::
type).

::::::
Each

:::::
node

::
is

::::::::
therefore

:
annotated with n 341

ratios, n being the number of possible states(i. e. types of label).
:
.
:
Since in our case n = 2, we only 342

followed
:::::
follow

:
one of the labels and used

:::
use the mean and the variance of the distribution of the 343

ratios (one for each node) as summary statistics. 344

In a phylogeny, ‘cherries ’
:::::::
cherries

:
are pairs of leaves that are adjacent to a common ances- 345

tor. There are n(n + 1)/2 categories of cherries. Here, we counted the number
:::::::
compute

::::
the 346

:::::::::
proportion

:
of homogeneous cherries for each label and the number

:::::::::
proportion

:
of heterogeneous 347
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cherries. Furthermore, we considered triplets, that is
:::
We

::::
also

::::::::
consider

:::::::::
pitchforks,

::::::
which

:::
we

::::::
define 348

::
as a cherry and a leaf adjacent to a common ancestor, and introduced

::::::::
introduce

:
three categories: 349

homogeneous triplets, triplets whose cherries were
:::::::::
pitchforks,

:::::::::
pitchforks

::::::
whose

:::::::
cherries

::::
are homoge- 350

neous for a label and whose leaf was
:
is
:
labelled with another trait, and triplets whose cherries were 351

heterogeneous. We expected the structure of cherries and triplets capture the information about 352

the interaction between the different hosts.
::::::::
pitchforks

::::::
whose

:::::::
cherries

::::
are

:::::::::::::
heterogeneous.

:
353

The Lineage-Through-Time (LTT) plot displays the number of lineages of a phylogeny over 354

time: .
:::

In
::::
this

:::::
plot,

:
the number of lineages is incremented by one for each

::::
every

:::::
time

:::::
there

::
is
::
a 355

new branch in the phylogeny, and is decreased by one for each
:::::
every

::::
time

::::::
there

::
is

:
a
:::::

new leaf in 356

the phylogeny. We used
:::
use the ratios defined for each internal node to build an

:
a LTT for each 357

label type, which we refer to as an
:
‘LTT label plot’. After each branching event in phylogeny, we 358

incremented
:::::::::
increment

:
the number of lineages by the value of the ratio of the internal node for the 359

given label. This number of lineages was
:
is

:
decreased by one for each

:::::
every

::::
time

:::::
there

::
is
::
a
:
leaf in 360

the phylogeny. In the end, we obtained
::::::
obtain n = 2 LTT label plots. 361

Finally, for each label, we computed some of the same
::::::::
compute

:::::
some

::
of

::::
our

:
branch lengths 362

summary statistics as for the unlabelled phylogeny on homogeneous clusters and heterogeneous 363

clusters
::
on

:::::::::::::
homogeneous

:::::
clades

::::
and

:::::::::::::
heterogeneous

::::::
clades

:
present in the phylogeny. Homogeneous 364

clusters were
:::::
clades

::::
are

:
defined by their root having a ratio of 1 for one type of label and their 365

size being greater than Nmin. For heterogeneous cluster, we kept
::::::
clades,

:::
we

:::::
keep the size criterion 366

and imposed
::::::
impose

:
that the ratio was

:
is
:

smaller than 1 but greater than a threshold ε. After 367

preliminary analyses, we set Nmin = 4 leaves and ε = 0.7. We therefore obtained
::::::
obtain

:
a set 368

of homogeneous clusters
::::::
clades and a set of heterogeneous clusters

::::::
clades,

:
the branch lengths of 369

which were pooled
::
we

::::
pool

:
into two sets to compute the summary statistics of heterogeneous and 370

homogeneous clusters.
::::::
clades.

:::::
Note

:::::
that

:::
we

::::::
always

:::::
select

::::
the

::::::
largest

::::::
clade,

:::
for

:::::
both

::::::::::::
homogeneous 371

:::
and

:::::::::::::
heterogeneous

::::::
cases,

::
to

:::::
avoid

::::::::::::
redundancy.

:
372

Regression-ABC 373

We first measured
:::::::
measure

:
multicollinearity between summary statistics using variance inflation 374

factors (VIF). Each summary statistic was
:
is
:
kept if its VIF value was

::
is lower than 10. This step 375

led
:::::::
stepwise

:::::
VIF

::::
test

:::::
leads to the selection of 88 summary statistics out of 234. 376

We then used
:::
use

:
the abc function from the abc R package to infer posterior distributions 377

from rejection only
:::::::::
generated

:::::
using

:::::
only

:::
the

::::::::
rejection

:::::
step. Finally, we performed

:::::::
perform

:
linear 378

adjustment using
::
an elastic net regression. 379

The abc
::::
abc function performs a classical one-step rejection algorithm [?] using a tolerance 380

parameter Pδ, which represents a percentile of the simulations that are close to the target. For 381

this, we calculate a Euclidian distance between the simulations
:::
To

::::::::
compute

:::
the

::::::::
distance

::::::::
between 382

:
a
::::::::::
simulation and the targetusing the

:
,
:::
we

:::
use

::::
the

:::::::::
Euclidian

:::::::
distance

::::::::
between

:
normalized simulated 383

vector of summary statistics and the normalized target vector. 384

Prior to linear adjustment, the abc function performs smooth weighting using an Epanechnikov 385

kernel [?]. Then, using the glmnet package in R, we implemented
:::::::::
implement

:
an elastic-net (EN) 386

adjustment, which balances the Ridge and the LASSO regression penalties [?]. The EN performing 387
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a linear regression, is it
:
it

::
is

:
not subject to the risk of over-fitting that may occur for non-linear 388

regressions (e.g. when using neural networks, support vector machines or random forests). 389

We inferred posterior distributions of
::
In

:::
the

::::
end,

:::
we

:::::::
obtain

::::::::
posterior

::::::::::::
distributions

:::
for t0, t2, a1, 390

a2, ν, γ1, γ2, R
(1),t1
0 and R

(1),t2
0 using our ABC-EN regression model with Pδ = 0.1. 391

Parametric bootstrap and cross validation 392

Parametric bootstrap validation consisted in simulating 1, 000 transmission additional trees 393

:::
Our

:::::::::::
parametric

:::::::::
bootstrap

:::::::::
validation

::::::::
consists

::
in

::::::::::
simulating

::::::
5, 000

:::::::::
additional

:::::::::::
phylogenies

:
from 394

parameter sets drawn in posterior distributions. We then computed
::::::::
compute summary statistics 395

and performed
:::::::
perform

:
a principal component analysis (PCA) on the vectors of summary statistics 396

for the simulated and for the target data. If the posterior distribution is informative, we expect the 397

target data to be similar to the simulated phylogenies. On the contrary, if the posterior distribution 398

can generate phylogenies with a variety of shapes, the target data can be outside the cloud of 399

simulated phylogenies in the PCA. 400

In order to assess the robustness of our ABC-EN method to infer epidemiological parameters of

our BD model, we performed
:::
also

::::::::
perform a ‘leave-one-out’ cross-validation . This consisted

:
as

::
in
::::

[?].

::::
This

:::::::
consists

:
in inferring posterior distributions of the parameters from one simulated tree

:::::::::
phylogeny,

assumed to be the target tree
:::::::::
phylogeny, using the ABC-EN method with the remaining 60, 000

simulated trees. We ran
::::::
60, 999

:::::::::
simulated

:::::::::::
phylogenies.

::::
We

:::
run

:
the cross-validation 100 times with

100 different target trees and measured the
::::::::::
phylogenies.

::::
We

::::::::
consider

:::::
three

:::::::::
parameter

::::::::::::
distributions

::
θ:

::::
the

:::::
prior

:::::::::::
distribution,

::::
the

:::::
prior

:::::::::::
distribution

::::::::
reduced

::
by

::::
the

:::::::::
feasibility

:::
of

:::
the

:::::::::::
simulations

::::
and

:::
the

:::::
ABC

:::::::
inferred

::::::::
posterior

::::::::::::
distribution.

::::
For

::::
each

::
of

:::::
these

::::::::::
parameter

::::::::::::
distributions,

:::
we

::::::::
measure

:::
the

::::::
median

::::
and

:::::::::
compute,

:::
for

::::
each

::::::::::
simulation

::::::::
scenario,

:::
the

:
mean relative error of inference (MRE)

::::
such

::
as:

:

MRE =
1

100

100∑
i=1

| θi
Θ
− 1 |

::::::::::::::::::::::

(3)

:::::
where

::
Θ

::
is
::::
the

::::
true

:::::
value. 401
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