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1 Laboratoire Évolution: Génomes, Comportement, Écologie;
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Abstract

Robustness to genetic or environmental disturbances is often considered as a key
property of living systems. Yet, in spite of being discussed since the 1950s, how
robustness emerges from the complexity of genetic architectures and how it evolves
still remains unclear. In particular, whether or not robustness is independent to
various sources of perturbations conditions the range of adaptive scenarios that can
be considered. For instance, selection for robustness to heritable mutations is likely
to be modest and indirect, and its evolution might result from indirect selection on
a pleiotropically-related character (e.g., homeostasis). Here, I propose to treat
various robustness measurements as quantitative characters, and study theoretically,
by individual-based simulations, their propensity to evolve independently. Based on
a simple evolutionary model of a gene regulatory network, I showed that different
ways to measure

:::
five

:::::::::::::
measurements

::
of

:
the robustness of gene expression to genetic

or non-genetic disturbances were substantially correlated. Yet, robustness was
mutationally variable in several dimensions, and robustness components could
evolve differentially under direct selection pressure. Therefore, the fact that the
sensitivity of gene expression to mutations and environmental factors rely on the
same gene networks does not preclude distinct evolutionary histories of robustness
components.

1 Introduction 1

Robustness is the capacity of living organisms to buffer internal or environmental 2

disturbances. Robustness encompasses, for instance, the ability to maintain 3

physiological equilibria (homeostasis), to ensure developmental stability, or to repair 4

and mitigate DNA damage in both soma and germline. Although robustness is 5

virtually intermingled with the definition of life itself, its underlying mechanisms 6

and its evolutionary origins remain far from being clearly understood (Stearns, 7

2002; Masel and Siegal, 2009; Wagner, 2013; Hallgrimsson et al., 2019). 8

Robustness evolves as a consequence of non-linearities in the developmental or 9

physiological mechanisms, i.e. changes in the magnitude of the effect of some 10

genetic or environmental factor on the phenotype of interest (Nijhout, 2002). The 11

study of the evolutionary processes leading to robustness roots into the conceptual 12

and empirical work by C.H. Waddington and the concept of canalization 13

(Waddington, 1942; Schmalhausen, 1949; Waddington, 1959; Loison, 2019). 14

Canalization is a property of complex developmental systems that buffers 15

environmental and genetic variation, and maintains actively the organism in an 16
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optimal developmental path. Although the scope and the definition of canalization 17

varies substantially among authors, canalization is generally expected to evolve as 18

an adaptation to ”canalizing” selection for an optimal phenotype (Eshel and 19

Matessi, 1998; Debat and David, 2001; Flatt, 2005; Klingenberg, 2019). However, 20

formal population genetic models have questioned the unicity of the canalization 21

process. In particular, robustness to environmental factors appears more likely to 22

evolve as an adaptation than robustness to genetic (mutational) disturbances, on 23

which selection seems to be rather weak and indirect even in optimal theoretical 24

conditions (Wagner et al., 1997; Hermisson et al., 2003; Le Rouzic et al., 2013). 25

In this context, the evolution of robustness as a general property of organisms 26

heavily depends on the genetic and physiological integration of the different 27

robustness dimensions (Fares, 2015)
::::::::::::::::::::::::::::::::::::
(Fares, 2015; Félix and Barkoulas, 2015). If 28

the robustness to environmental factors and to genetic mutations share the same 29

physiological bases, the adaptive evolution of environmental canalization can 30

generate a correlated response of genetic canalization; this hypotheses has been 31

refered
:::::::::
hypothesis

:::
has

:::::
been

::::::::
referred to as ”congruent evolution” (Visser et al., 32

2003),
::::
and

:::::
have

:::::::
recieved

:::::
some

:::::::::
empirical

::::::::
support 33

::::::::::::::::::::::::::::::
(Lehner, 2010; Tonsor et al., 2013). In contrast, if genetic and environmental 34

robustness had independent biological bases, they would be featured by independent 35

evolutionary mechanisms, and possibly independent evolutionary histories. 36

Although this issue would benefit from a better theoretical framework, 37

modelling
::::::::
modeling

:
the evolution of robustness is not straightforward. The simplest 38

approach relies on focusing on modifiers, i.e. genes that can influence the 39

robustness of the organism without affecting the phenotype. However, in the case of 40

genetic robustness, modifier-based models either rely on tricky rescaling or cannot 41

dissociate the phenotype and the robustness to the phenotype (Wagner et al., 1997; 42

Kawecki, 2000; Rajon and Masel, 2013). In addition, in models where the 43

genotype-phenotype association is arbitrary
:::::
(such

::
as

:::
the

::::
NK

:::::::
model, 44

:::::::::::::::::::::::
Kauffman and Levin, 1987

:
,
::
or

::::
the

::::::::::
multilinear

::::::
model,

::::::::::::::::::::::::
Hansen and Wagner, 2001

:
), 45

any correlation between environmental and genetic robustness is a modelling
:::::
would 46

::
be

::
a

::::::::
modeling

:
choice, and not an output of the model. More promising to address 47

the congruent evolution issue are models in which the phenotype is a result of an 48

integrated process mimicking some developmental or physiological mechanism 49

(refered
:::::::
referred

:
to as causally cohesive genotype phenotype models in Rajasingh 50

et al., 2008). In such dynamic models, robustness to various disturbances appear as 51

an emergent property of the model complexity, caused by regulatory feedbacks, that 52

cannot be easily deduced from the model parameters. Although the potential 53

palette of relevant dynamic models is large and could include morphological 54

development models (Milocco and Salazar-Ciudad, 2020),
:::::
RNA

:::::::
folding

:::::::
models 55

::::::::::::::::::::::::
(Wagner and Stadler, 1999)

:
, or metabolic models (Nijhout et al., 2019), 56

evolutionary biologists have often considered gene regulatory network models as a 57

good compromise between complexity and numerical tractability for studying the 58

evolution of canalization and robustness (Kauffman, 1969; Wagner, 1994; Smolen 59

et al., 2000; Le Cunff and Pakdaman, 2012). 60

Such theoretical gene networks have been shown to display enough non-linearity, 61

leading to epistasis and pleiotropy, to evolve enhanced or reduced sensitivity to 62

environmental (Masel, 2004; Espinosa-Soto et al., 2011; Espinoza-Soto et al., 2011) 63

and genetic (Wagner, 1996; Bergman and Siegal, 2003; Draghi and Wagner, 2009; 64

Azevedo et al., 2006; Rünneburger and Le Rouzic, 2016) perturbations. Interesting 65

observations suggest that environmental or genetic canalization could be correlated 66

to other robustness properties in such models. For instance, Ciliberti et al. (2007) 67

:::::::::::::::::::::::::::::::::::::
Ciliberti et al. (2007) and Kaneko (2007) noticed that robustness to mutations and 68
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robustness to noise was correlated
::
in

:::::
gene

::::::::
networks

:::
—

:
a
:::::::
similar

::::::
result

:::
was 69

::::::::
obtained

::::::
earlier

:::
for

:::::::::::
RNA-folding

::::::::::
structures

::::::::::::::
(Fontana, 2002). Furthermore, it has 70

been shown that network stability, the propensity of the network to maintain stable 71

(non-cyclic) gene expressions, was correlated to robustness, as selection on stability 72

alone could drive an indirect response of genetic (Siegal and Bergman, 2002) and 73

environmental (Masel, 2004)
:::::::::::::::::::::::::::::::::::::
(Masel, 2004; Nagata and Kikuchi, 2020) canalization. 74

In contrast, Odorico et al. (2018) showed that networks selected to maintain (but 75

not converge to) an equilibrium became both environmentally sensitive and 76

genetically canalized, suggesting that environmental and genetic robustness could 77

be theoretically decoupled. However, no systematic quantitative description of the 78

pleiotropic pattern underlying different robustness components has ever been 79

attempted. 80

Here, I aim at extending the study of canalization in theoretical gene networks 81

to address the multidimensional nature of robustness, by estimating the 82

evolutionary independence of various robustness components. Four 83

robustness-related measurements were considered, two of them corresponding to 84

environmental robustness (early vs. late disturbances), two corresponding to genetic 85

robustness (early — inherited — or late — acquired — mutations). Gene 86

expression instability was also included in the set of robustness-related traits, as it 87

is related to the intrinsic stability of the expression phenotype. The first part of 88

this study focuses on the multidimensional patterns of robustness in small and 89

random networks, and the second part on the evolutionary consequences of the 90

pleiotropic nature of robustness, based on individual-based simulations. 91

2 Model and Methods 92

2.1 Gene regulatory network 93

The network model belongs to the family of gene regulatory network models 94

sometimes refered
:::::::
referred

:
to as ”Wagner model” (after Wagner, 1994; Wagner, 95

1996; see Fierst and Phillips, 2015 for a historical record), with two main 96

differences: (i) the network output (gene expressions ) is quantitative and not 97

qualitative, in .
:::::

Two
::::::::
variants

::
of

:::
the

::::::
model

:::::
were

::::::::
proposed

:::
in

:::::::::::::
Wagner (1994)

:
;
:::
the 98

::::::
second

::::
one,

:::::::::
involving

:::::::
discrete

::::
gene

:::::::::::
expressions

::::::
scaled

:::::::
between

::::
−1

:::
and

:::
1,

:::
has

:::::
often 99

::::
been

::::::
reused

:::
in

:::
the

:::::::::
literature 100

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wagner, 1996; Siegal and Bergman, 2002; Ciliberti et al., 2007)

:
.
::::
The

::::::
model 101

::::::::
described

::::::
below

::
is

:::::
closer

:::
to

:::
the

:::::
first

:::::
model

:::
by

::::::::::::::
Wagner (1994),

:::::::::
featuring

::
a 102

:::::::::
continuous

:::::
gene

::::::::::
expression

::
P

::::::::
between

:
0
::::
and

::
1,

::::
and

::
a
:::::::::::
constitutive

:::::::::
expression

:::::
level 103

::::::::
0 < a < 1

:::::
that

:::
can

:::
be

:::::
lower

:::::
than

:
the same way as in Siegal and Bergman (2002), 104

and (ii) the expression of unregulated genes (constitutive expression ) was lower 105

than half the maximum expression
:::::::::::::
mid-expression

::::::
point. 106

More specifically, the structure of a n-gene network is encoded as a n× n matrix 107

W, while the state of the network is stored into a vector of size n, P. In this setting, 108

Wij encodes the influence of gene j on the expression of gene i, Wij < 0 represents 109

a negative interaction (inhibition), Wij > 0 a positive interaction (activation), and 110

Wij = 0 denotes the absence of regulatory interaction. Pi is the expression of gene i, 111

ranging between 0 (no expression) and 1 (maximum expression). 112

The properties of these gene networks are explored in a discrete dynamic system:

Pt+1 = F (WPt), (1)
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where the function F is a vectorized version of a sigmoid scaling function:
F (x1, x2, . . . , xn) = [f(x1), f(x2), . . . , f(xn)];

f(x) =
1

1 + λae−µax
, (2)

with λa = (1− a)/a and µa = 1/a(1− a) (Guyeux et al., 2018). The function f is 113

scaled such that f(0) = a and df/dx|x=0 = 1; the parameter a thus stands for the 114

constitutive gene expression (the expression of a gene in absence of regulators), and 115

this function defines the scale of the matrix W: Wij = δ (δ � 1) means that the 116

expression of gene i at the next time step will tend to Pi,t+1 = a+ δ if i is regulated 117

by a single, fully expressed transcription factor j (Pj,t = 1).
::::
This

:::::::
setting, 118

::::::::::
extensively

::::::::
described

:::
in

:::::::::::::::::::::::::::::::
Rünneburger and Le Rouzic (2016)

:
,
::::::
differs 119

::::::::::::::
mathematically

::::
from

::::
the

:::::::::::
constitutive

:::::::::
expression

::::::
model

::
in
:::::::::::::::

Wagner (1994)
:::
that 120

:::::
shifts

:::
the

:::::::
sigmoid

:::
as

:::::::::::::::::::
Pt+1 = F (WPt + a).

:
121

Gene networks dynamics start from an initial expression P0, and gene 122

expression was updated for T timesteps
::::
time

:::::
steps. By default, P0 = (a, a, ..., a), 123

since this step immediately follows a virtual initial state with no expression. The 124

expression phenotype corresponding to a gene network was determined by averaging 125

gene expressions during the last τ timesteps
::::
time

:::::
steps

:
for each gene i: 126

P ∗i = (1/τ)
∑T
t=T−τ Pit. 127

2.2 Robustness indicators 128

Five robustness indicators were calculated, corresponding to five different aspects of 129

genetic or environmental robustness in a gene network: robustess
:::::::::
robustness

:
to 130

early (ρE) and late (ρe) environmental disturbance, and robustness to early (ρM ) 131

and late (ρm) genetic disturbance, and network stability ρS . All indicators were 132

expressed on a scale homogeneous to log variances in gene expressions; the mode of 133

calculation is summarized in Table 1, robustness is maximal when the indicator 134

:::::
index ρ is small. 135

The robustness to early environmental disturbance ρE measures the capacity of 136

a network to reach a consistent final state starting from different initial gene 137

expressions. In practice, R replicates of the network dynamics were run, in which 138

the initial gene expressions (P0) were drawn into Gaussian (µ = a, σ = σE) 139

distributions (expression values < 0 and > 1 were set to 0 and 1, respectively). The 140

environmental robustness ρEi for each gene i was measured as the log variance in 141

the final gene expression across these replicates. 142

The robustness to late environmental disturbance ρe measures the capacity of a 143

network to recover its equilibrium state after having being disturbed. Gene 144

expressions after T timesteps
::::
time

:::::
steps

:
were disturbed by adding a random 145

Gaussian noise of standard deviation σe to each gene of the network, and ρei was 146

computed for each gene i as the log variance in gene expression at time step T + 1 147

over R replicates. 148

The robustness to early mutations ρM measures the system robustness to 149

inherited genetic mutations (modifications of the W matrix). A random non-zero 150

element of the W matrix was shifted by a random Gaussian number of standard 151

deviation σM , and its consequences on the mean expression of all network genes was 152

recorded. The procedure was replicated R times, and the robustness score ρMi for 153

each gene i was calculated as the log variance of gene expression across R replicates. 154

The robustess
:::::::::
robustness to late mutations ρm measured the effect of mutations 155

in the gene network W after having reached the final state. In practice, the W 156

matrix was mutated in the same way as for ρM with a standard deviation σm, but 157

4/31



Indicator Robustness component Computation Disturbance std. dev.

ρE Early noise in gene
expression

ρEi = log[ 1
R−1

∑R
r=1(P ∗i,r − P ∗i )2] σE = 0.1

ρe Late noise in gene
expression

ρei = log[ 1
R−1

∑R
r=1(Pi,T+1,r − Pi,T+1)2] σe = 0.1

ρM Early (inherited)
mutations

ρMi = log[ 1
R−1

∑R
r=1(P ∗i,r − P ∗i )2] σM = 0.1

ρm Late (aquired)
mutations

ρmi = log[ 1
R−1

∑R
r=1(Pi,T+1,r − Pi,T+1)2] σm = 0.1

ρS Expression stability ρSi = log[(P ∗i − PT+1)2]

Table 1: Summarized calculation of all five robustness indicators. Index i stands for the gene
(1 ≤ i ≤ n), and r for the replicate (1 ≤ r ≤ R), since all indicators except ρS were estimated by a
resampling procedure. P ∗i stands for the equilibrium gene expression of gene i (mean expression from

the last τ timesteps
::::
time

:::::
steps), and P ∗i = (1/R)

∑R
r=1 P

∗
i,r represents the mean over replicates. Noise

in gene expression was simulated by adding a random Gaussian deviation to the initial state P0 of the
network (for ρE) or to the last state PT of the network (for ρe). Mutations were simulated by adding
a random deviation to a random interaction in the network W, either before starting the network
dynamics (ρM ) or after the last time step (ρm). All robustness indicators are homogeneous to a log
variance in gene expression; robustness increases when the indicator gets smaller, and sensitivity
increases when the indicator increases. The last column indicates the standard deviation of the
corresponding Gaussian disturbance.

its consequences on gene expression were calculated for only one timestep
::::
time

::::
step, 158

starting from the last state of the network. The robustness score was calculated as 159

for other indicators (log variance over R replicates). 160

Finally, dynamic systems based on the Wagner model often tend to generate 161

limit cycles and never converge to a stable equilibrium. Network stability ρS 162

quantifies the capacity for a specific network to lead to stable gene expressions. For 163

consistency with other indicators, this instability was measured as the log squared 164

difference between the average expression during the last τ timesteps
:::
time

:::::
steps, 165

and an extra timestep
::::
time

::::
step. 166

All these scores were calculated for every gene i of a given network, and then 167

averaged over all genes in order to get a series of summary network descriptors. The 168

magnitude of the score itself is arbitrary, as it depends on the size of the 169

disturbance. However, indicators happen to increase approximately linearly with 170

the size of the disturbance (Appendix 1), the results were thus largely unaffected by 171

a change in the variance of mutational effects and environmental noise. 172

2.3 Random networks 173

Random networks were generated as n× n W matrices filled with independent 174

identically-distributed random numbers drawn into a Gaussian (by default: 175

µ0 = 0, σ0 = 1) distribution. A density parameter 1/n ≤ d ≤ 1 could be specified, 176

corresponding to the frequency of non-zero slots in the W matrix. Zeros were 177

placed randomly, with the constraint that all genes should be regulated by at least 178

another one. 179

2.4 Exhaustive exploration of two-gene networks 180

The main interest of gene-network models is the complexity and the richness of the
underlying genotype-phenotype relationship. As a side effect, such models are in
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general difficult to handle mathematically (Carneiro et al., 2011; Le Cunff and
Pakdaman, 2012). Excluding the one-gene self-regulating case (which already has
non-trivial mathematical properties, Guyeux et al., 2018), the simplest network
(2-by-2 matrix) has four genetic parameters, which makes the exploration of the
parameter set tedious. Here, the number of dimensions was restricted by
considering the set of networks that lead to a predefined arbitrary equilibrium,
Pθ
∞ = (P θ1 , P

θ
2 ). As F (WPθ

∞) = Pθ
∞, the W matrix can be reduced to two

independent parameters, W11 and W21:

W = F

[(
W11 A
W21 B

) (
P θ1
P θ2

)]
=

(
P θ1
P θ2

)
, (3)

with

A =
1

P θ2
[f−1(P θ1 )−W11P

θ
1 ],

B =
1

P θ2
[f−1(P θ2 )−W21P

θ
1 ],

(4)

f−1(y) = − 1
µa

log
(

1−y
λay

)
being the inverse of f(x) (equation 2). This equation can 181

be extended to any network size, provided that a single element Wij is unknown for 182

each line i of the matrix: 183

Wij =
1

P θj
[f−1(P θi )−

∑
j′ 6=j

Wij′P
θ
j′ ]. (5)

Among the n2 elements of a n-gene network, there are thus n(n− 1) neutral 184

dimensions that can be explored without modifying equilibrium gene expressions. 185

Large gene networks are thus characterized by a proportionally larger neutral space. 186

The W matrix achieving the desired Pθ∗
∞ equilibrium from a specific pair 187

W11,W21 always exists (and is unique), but the stability of the equilibrium is not 188

guaranteed. Networks which final gene expression P∗ = (P ∗1 , P
∗
2 ) differed 189

substantially from the target (in practice, when |P ∗1 − P θ1 | + |P ∗2 − P θ2 | > 0.15) 190

were excluded from the analysis. Such discrepancies correspond to either unstable 191

equilibria (in which case gene expressions were driven away from the equilibrium) or 192

extreme oscillatory behaviors (large oscillations may hit expression limits 0 or 1, 193

which drives the average expression away from the target equilibrium). 194

2.5 Evolutionary simulations 195

The evolution of gene networks under various evolutionary constraints was studied 196

by individual-based simulations. Each individual was featured by its genotype (a 197

n× n W matrix, by default n = 6
:
to

:::::
limit

::::
the

:::::::::::::
computational

:::::::
burden), its 198

expression phenotype P∗, and the five robustness scores ρS , ρE , ρe, ρM , and ρm. 199

Individuals were haploid and reproduced clonally. Mutations consisted in adding a 200

random Gaussian deviate of variance σ2
ν to an element

:
a
::::::::
random

:::::::::
regulatory 201

:::::::::
interaction

:
of the W matrix, with a rate ν per individual and per generation. 202

::::::::::
Mutational

::::::::::
parameters

::
ν

::::
and

:::
σν ::::

were
:::::
kept

::::::::::
reasonably

:::
low

:::
to

::::
limit

::::
the

::::::::
strength

::
of 203

:::::::
indirect

::::::::
selection

:::
for

:::::::
genetic

:::::::::
robustness 204

::::::::::::::::::::::::::::::::::::::::::::::::::
(Wagner et al., 1997; Rünneburger and Le Rouzic, 2016).

:
Generations were 205

non-overlapping, and population size N was constant. A generation consists in 206

sampling N new individuals among the N parents, with a probability propotional 207

:::::::::::
proportional

:
to the individual fitness. Fitness was computed assuming stabilizing 208

selection around a target (optimal) expression level for n′ ≤ n genes of the network 209
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Parameter Symbol Value
Population size N 1000
Gene network size n 6
Constitutive expression a 0.2
Network time steps T 16
Network measurement steps τ 4
Network density d 1.0
Simulation replicates 100
Number of generations G 5000 Mutation rate per individual ν 0.01
Size of mutational effects σν 0.1
Number of selected genes n′ 3
Stabilizing selection coefficient s 10
Directional selection coefficient β 0
Number of robustness tests R 100
Size of early environmental noise σE 0.1
Size of late environmental noise σe 0.1
Size of early genetic mutations σM 0.1
Size of late genetic mutations σm 0.1

Table 2: Default parameter values in the evolutionary simulations.

(by default n′ = 3), as w = exp(−
∑n′

i=1 si(P
∗
i − θi)2), where si was the strength of 210

stabilizing selection on gene i (si = 0 standing for no selection), and θi was the 211

optimal expression phenotype. The θi were drawn in a uniform (0,1) distribution at 212

the beginning of each replicated simulation, and the initial gene network was empty 213

(Wij = 0) except for one random element per line, which was initialized to match 214

the optimal expression using equation (5). 215

:::
The

:::::::::
evolution

::
of

::::::::::
robustness

:::::::::::
components

::::
was

:::::::
tracked

:::
by

::::::::::
estimating

:::
ρS ,

::::
ρE ,

:::
ρe, 216

:::
ρM ,

::::
and

:::
ρm:::

at
:::::::
regular

::::
time

:::::::
points.

::::::::::::
Components

::::
were

:::::::::
estimated

:::
for

:::::
each 217

:::::::::
individual,

::::
and

::::::::
averaged

::::
out

::::
over

::::
the

::::::::::
population.

:::::
The

::::::::
response

::
to

::::::
direct

::
or 218

:::::::
indirect

::::::::
selection

::::
was

:::::::::
computed

::
as

::::
the

:::::::
average

:::::::
change

::::
from

::::::::::
generation

::
0;

::::
the 219

:::::::::::
multivariate

::::::::
response

:::
was

:::::::
stored

::
as

::
a

:::::::::::
5-dimension

::::::
vector

:::
R.

:
Simulation runs were 220

replicated 100 times and the results were averaged out, default parameter values are 221

provided in Table 2. 222

Directional selection on robustness indicators was also performed in some 223

simulations, consisting in multiplying individual fitness by 224

exp(
∑
x∈(S,E,e,M,m) βxρx), where βx was the strength of directional (positive or 225

negative) selection on robustness index x (in practice, βx = ±0.01). The vector β is 226

thus proportional to the multivariate selection gradient on robustness components. 227

There was no correlated selection (the fitness function is the product of independent 228

marginal functions applied on gene expressions and robustness components). 229

Estimating genetic covariance matrices G was computationally untractable 230

:::::::::
intractable

:
in simulations (it would require a heavy resampling procedure in each 231

individual), mutational covariances M from the average genotype in the population 232

(W) were used instead to derive multivariate evolutionary predictions. Mutational 233

covariance matrices M = νC/5 were estimated from covariances C in gene 234

expressions and robustess
:::::::::
robustness

:
coefficients among 100 gene networks differing 235

from W by 5 mutations (drawn from the same algorithm as during the simulations). 236

In order to control for the influence of stabilizing selection on gene expression on 237

the evolution of robustness, conditional mutational matrices (equivalent to 238

conditional evolvabilities of G matrices in Hansen and Houle, 2008) were computed 239

as Mc(y|x) = My −MyxM
−1
x Mxy, where y indicate the ny unconstrained traits 240
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and x the nx constrained traits (i.e. the n′ = 3 genes under stabilizing selection). 241

Mc(y|x) was thus a ny × ny matrix measuring how the unconstrained traits can 242

mutate while traits x remain constant. Predicted mutational evolvabilities in the 243

direction of selection β were calculated as epred = β>Mcβ/|β|2 (Hansen and Houle, 244

2008), and realized (observed) evolvabilities were obtained by projecting the 245

multivariate response to selection R on the direction of β: eobs = Rβ/|β|. 246

::::::::
Contrary

::
to

::::
the

:::::::
genetic

::::::::::
covariances

:::
G,

::::::::::
mutational

:::::::::::
covariances

:::
M

::::::
cannot

:::
be

::::
used 247

:::::::
directly

::
to

::::::::
compute

:::::::::::
quantitative

::::::::::::
evolutionary

:::::::::::
predictions,

::
as

::::
the

:::::::::::
relationship 248

:::::::
between

:::
M

::::
and

::
G

::::::::
depends

:::
on

:::
the

:::::::::::::::::::::
mutation-selection-drift

::::::::::::
equilibrium,

:::::
which

::
is 249

::::::::::
notoriously

:::::::
difficult

:::
to

::::::
handle

::::::::::::::
mathematically

::::::::::::::::::::::::
(Bürger and Lande, 1994).

::::
The 250

::::::::
following

::::::::
analyses

::::
thus

:::::
focus

:::
on

:::::::
whether

:::::::::::
mutational

:::::::::::
evolvabilities

::::
are

:::::::::::
proportional 251

::
to

:::
the

::::::::
selection

::::::::::
responses,

::::::::
assuming

:::::
that

::
G

::::
are

:::::::::::
proportional

:::
to

:::
M.

:
252

Simulations and data analysis were coded in R (R Core Team, 2020), except for 253

the core gene network dynamics that was coded in C++ and embedded in the R 254

code with the Rcpp package (Eddelbuettel and Balamuta, 2017). Scripts to 255

reproduce simulations and figures are available as a GitHub directory
:::::
online 256

(https://github.com/lerouzic/robustness). 257

3 Results 258

3.1 Random networks 259

Random interaction matrices are regularly used in the literature to study the 260

general properties of gene networks (e.g. Carneiro et al., 2011; Pinho et al., 2012). 261

As such, random networks are not expected to reflect the properties of 262

biologically-realistic genetic architectures, as biological networks are far from 263

random. However, such an approach helps developing a general intuition about the 264

properties of the underlying model. 265

Correlations were calculated between all five robustness components over 10,000 266

random networks (Appendix 2). All robustness components were positively 267

correlated, correlations ranged from about 0.62 (late genetic vs. early 268

environmental) to above 0.97 (late environmental vs. late genetic). A Principal 269

Component Analysis (Figure 1A and B) confirms that robustness components were 270

partially correlated. The first PC (82% of the total variance) corresponds to the 271

general robustness of the network, and involves all robustness indexes. The 272

remaining variance is explained by orthogonal vectors separating all other 273

robustness components. At least 4 out of 5 PCs, explaining 10% to 2% of the total 274

variance, did not vanish when increasing the sample size (Appendix 3). The part of 275

the variance in robustness explained by the first PC is robust to the way random 276

networks were generated
:::::::
network

::::::::::
properties, as it remains around 80% when the 277

mean and the variance in the regulation strenghts
::::::::
strengths, the network density, 278

and the network size vary (Figure 1C, D, E, and F). 279

3.2 Two-gene networks 280

In the following, I considered an arbitrary case of a two-gene network which genes 281

are expressed to P∞ = (0.3, 0.6). Equivalent results could be achieved with a 282

different, arbitrary target. Figure 2 illustrates how the robustness components 283

varied in this constrained 2-gene network model (red stands for maximum 284

robustness, i.e. minimum scores for ρS , ρE , ρe, ρM , and ρm). All the networks 285

considered here converge to the same gene expression, and can thus be considered 286

as phenotypically equivalent ; the colored space in Figure 2 thus represents a 287
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Figure 1: A: Summary of the principal component analysis on the five robustness indicators over 10,000
random 6-gene networks (µ0 = 0, σ0 = 1), indicating the position of the five robustness components on all five
(normalized) Principal Components (PC); ρS : Stability, ρE : Early environmental, ρe: Late environmental,
ρM : Early genetic, ρm: Late genetic. B: relative contribution of the five PCs to the total variance. C:
Influence of the average regulation strenght

::::::::
strength (µ0) on the % of the total variance explained by the

first PC (negative values feature inhibitory networks, positive values activating networks). D: Influence of
the standard deviation of the regulation strength (σ0). E: Influence of the network density. F: Influence of
the network size.

connected neutral network in which populations can evolve, and thus change the 288

topology and the robustness of the gene network, while keeping the expression 289

phenotype constant. In the white regions, the equilibrium was not achieved in 290

numerical simulations for at least three different reasons (Appendix 4): (i) 291

fluctuations around the equilibrium were large enough to hit the edges of the (0,1) 292

interval, shifting the mean expression; (ii) the expression dynamics was slow and 293

the network was unable to get close to the equilibrium after 16 time steps; (iii) the 294

equilibrium was not reachable from the default starting point. 295

The different robustness components were correlated, but did not overlap 296

perfecty
::::::::
perfectly. In order to assess the variation of the robustness properties, five 297

networks of contrasted robustness, labeled from A to E, were tracked more 298

specifically (Figure 2; the corresponding W matrices are provided in Appendix 5). 299

Appendix 6 illustrates the effect of various sources of disturbance on each network 300

dynamics. The network denoted as B was robust to most sources of disturbance, 301

while network E was sensitive to all components except stability. Network C was 302

unstable, but remained relatively buffered. Networks A and D illustrate 303

intermediate loss-of-robustness behaviors, through different mechanisms (instability 304

for network D, and weak buffering for network A). 305

This 2-gene network analysis thus confirms the results obtained for large random 306

networks: robustness components are only partially correlated. Robustness is not a 307

feature of large and intricate genetic architectures, as it is already present (and 308

multidimensional) in the simplest gene networks. 309

3.3 Evolution and evolvability of robustness 310

The evolution of robustness was studied by individual-based simulations, in which 311

all individuals were characterized by their genotype (a 6-gene network) and a set of 312

phenotypes (gene expressions and network robustness). Gene expressions for 3 out 313
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Figure 2: Robustness indicators (ρE , ρe, ρM , ρm, and ρS) estimated for an exhaustive continuum of two-gene
networks with an arbitrary expression equilibrium at P∞ = (0.3, 0.6). Although two-gene networks have
four independent genetic parameters, only two were represented here, the two others being computed to
ensure the desired equilibrium. Red stands for the maximum robustness (lowest robustness scores); yellow for
minimum robustness (highest scores). For readability, color scales are different across panels. Letters A to E
stand for five example networks illustrated in Appendix 6.

of 6 genes were under stabilizing selection. In addition to stabilizing selection on 314

gene expression (forcing the network to maintain a functional role), robustness 315

indicators were directly selected towards more or less sensitivity.
:::::
Such

::::::
direct, 316

:::::::
artificial

::::::::
selection

:::::::::
pressures

:::
on

::::::::::
robustness

:::
are

:::
not

:::::::::
designed

::
to

::::::
reflect

::::::::
realistic 317

:::::::
selection

:::
on

:::::
gene

:::::::::
networks,

:::
but

:::::
they

::::::
might

:::::
reveal

::::::::::::
evolutionary

:::::
limits

:::
to

:::
the 318

::::::::
evolution

::
of

::::::::::
robustness

::::
due

::
to

::::::::
internal

::::::::::
constraints.

:
Stabilizing selection on gene 319

expression is expected to generate a slight selection pressure on the robustness, but 320

this effect was apparent only for larger or more frequent mutations (Appendix 7). 321

Direct selection on all robustess
:::::::::
robustness

:
components lead to a response, 322

showing that robustness is evolvable (diagonal panels in Figure 3). Yet, the 323

evolutionary potential differed substantially among robustness indicators, as 324

indicated by the differences in the Y-scales. Robustness indicators being all 325

homogeneous to a sum of squared difference in gene expression (i.e., the variance in 326

gene expression induced by various disturbances), they could be compared directly. 327

The most evolvable robustness components were early environmental disturbances 328

(ρE) and stability (ρS), which can differ by up to 25 log units (11 orders of 329

magnitude) after 10,000 generations of bidirectional selection. In contrast, 330

robustness to late environmental noise ρe and genetic changes (ρM and ρm) only 331

differed by 3 to 4 log units (i.e. a factor 10 to 100). For these three robustness 332

components (ρe, ρM , and ρm), the response was clearly asymmetric (the response 333
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towards more robustness was slower). Although the average response supports a 334

clear evolutionary trend, response to selection was variable across simulation 335

replicates, as distributions of up and down responses generally overlap. The 336

selection response was still ongoing after 10,000 generations. 337

Selection on robustness components also lead to an indirect response of all other 338

components, which confirms a general genetic correlation. The magnitude of the 339

correlated response (from 10% to 100% of the direct response) depended on the 340

correlation across robustness components. Simulations were run to test the 341

long-term effect of synergistic and antagonistic selection on all pairs of robustness 342

indicators (Figure 4), and selection responses after 1,000 generations were compared 343

to the mutational evolvabilities computed at the beginning of the simulations. 344

There was a convincing proportional relationship between predicted and observed 345

evolvabilities on all directions of selection. Selection response was fast in directions 346

that were mutationally evolvable, and slow in directions that were not evolvable. 347

Yet, in spite of the variation of evolvability across directions in the multivariate 348

robustness space, evolution was always possible, even if reduced proportionally to 349

the mutational variance, confirming the absence of absolute constraints. 350

The proportionality between realized and predicted evolvabilities tends to fade 351

out for long-term selection responses (Appendix 8), which can be due to the 352

evolution of mutational constraints (the M matrix evolves compared to the initial 353

network). This was confirmed by tracking the evolution of mutational correlations 354

across robustess
::::::::::
robustness traits through time (Figure 5). Average correlations did 355

not evolve in the
:::::::::::
substantially

:::
in control simulations, but direct selection on 356

robustness components did trigger systematic change in some (but not all) 357

mutational correlations. For instance, the correlation between ρM and ρm does not 358

seem to be evolvable, while the correlation between ρM and ρE changed from ' 0.3 359

to about 0.6 or 0.15 depending on the selection regime. All correlations remained 360

positive. Correlations evolved approximately the same way under univariate and 361

bivariate selection, and the
::::
The evolution of correlations was

:::::::
partially

:
driven by 362

the direction of selection (more or less robustness), and not by the orientation of 363

the selection gradient relative to the main evolvability axis. Within each
:::::::
specific 364

pair of robustness components, the evolution of correlation was
:::::
rather

:
consistent: 365

for instance, selecting to decrease ρE or ρM (i.e. making the network more robust) 366

always decreased the correlation between ρE and ρM . Nevertheless
:::
Yet, there was 367

no general pattern associating the evolution of robustness and the evolution of 368

correlation; for instance, decreasing ρS or ρE increased the correlation between 369

these two variables
::::::::
depending

:::
on

::::
the

::::::::::
robustness

::::::::::
component,

::::::::
selecting

:::
for

:::::
more

:::
or 370

:::
less

::::::
robust

:::::::::
networks

::::
may

::::::::
increase

::
or

::::::::
decrease

:::
the

:::::::::::
correlations

::::::::
(colored

:::::
inset

::
in 371

::::::
Figure

:::
5).

::::::
There

:::
was

:::
no

::::::
effect

::
of

:::::
joint

::::::::
selection;

::::::::
selecting

::::::::
together

::::
two

::::::::::
robustness 372

::::::::::
components

::::
did

:::
not

::::::
make

:::::
them

:::::
more

:::
(or

::::
less)

::::::::::
correlated

::::::::::
(Appendix

:::
9). 373

4 Discussion 374

Whether or not various robustness components of genetic architectures are 375

independent is central to understand why organisms are robust or sensitive to 376

genetic or environmental disturbances. Independent genetic bases of robustness 377

components would call for independent evolutionary histories, while a pleiotropic 378

genetic architecture could explain the evolution of nonadaptive robustness 379

components as a result of indirect selection. The analysis of the genetic correlations 380

between five robustness components, based on a simple gene network model, results 381

in a balanced answer: robustness components are largely correlated, but pleiotropy 382

is not an absolute constraint, and pairs of robustness components evolved in 383
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Figure 3: The evolution of all five robustness indicators under direct and indirect selection was recorded for
10,000 generations in individual-based simulations. The figures show the average and standard deviation of
robustness over 100 replicated simulations. The control simulations (black circles) correspond to stabilizing
selection on gene expression only (no direct selection on robustness). Colored symbols correspond to
simulations in which robusntess

:::::::::
robustness

:
indicators were selected up or down (upward or downward

triangles), colors correspond to the observed indicator, colums
:::::::
columns

:
indicate which indicator was selected

(diagnoal
:::::::
diagonal

:
panels: direct selection, off-diagonal panels: indirect selection).
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Figure 4: Trajectories of the bivariate response to selection over 5000 generations (average over
100 simulation replicates) for all combinations of robustness indicators. Each panel displays the
selection response in eight directions,

:::
as

:::::::::
illustrated

:::
in

:::
the

::::::
legend

:
(four univariate

::
—

:::::::
colored

:::::::
arrows

::
—

and four bivariate combinations)
::
—

:::::
gray

::::::
arrows

::
—

:::::::::
gradients

::
of

::::::::
selection, as illustrated in the legend.

Symbol colors match the same
::::
color

:
code as

::
in Figure 3for univariate responses

:
). Mutational and

conditional mutational matrices, estimated from the initial genotypes, are illstrated
:::::::::
illustrated

:
as

ellipses in each panel (95% ellipses assuming a multivariate Gaussian mutational distribution). For
conditional Mc matrices, the constraining traits were the three gene which expression was under
stabilizing selection. X and Y axes were adjusted so that their scale matches for each trait comparison
(correlational ellipses were not distorted). The colored inset illustrates the relation

:::::::::::::
proportionality

between the predicted mutational evolvability (calculated from Mc) and the observed evolvability in
the direction of selection after 1000 generations (same color/symbol code as in the rest of the figure,
hyphenated line: linear regression with no intercept).
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Figure 5: Evolution of the average mutational correlation under univariate and
bivariate selection among

::
on

:
robustness components. Panels, symbols, and colors

are the same as in Figure 4. Correlations were estimated for each M matrix
and averaged over 100 simulation replicates.

:::
The

:::::
color

::::::
insets

::::::
shows

:::
the

:::::
(lack

::::
of)

::::::::::
consistency

::::::::
between

:::
the

:::::::::
evolution

::
of

:::::::::::
correlations

:::::
when

::::::::
selecting

:::
for

::::::
higher

:::
(x

:::::
axis)

:::
and

::::::
lower

::
(y

:::::
axis)

::::::::::
robustness.

::::
∆r

::::::
stands

:::
for

::::
the

:::::::::
difference

::::::::
between

::::::::::
correlation

::
at

:::::::::
generation

::::::
10,000

::::
and

:::
at

::::::::::
generation

::
1.

:::
In

:::
the

::::::
inset,

:::
the

:::::
color

::
of

::::
the

:::::::
symbol

:::::
filling

::::::::::
corresponds

:::
to

:::
the

::::::::
selected

::::::::::
robustness

:::::::::::
component,

:::
the

:::::
color

::
of
::::

the
:::::::
symbol

::::::
border

::
to

:::
the

::::::::::
correlated

:::::::::
robutsness

:::::::::::
component.
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divergent directions under direct,
::::::::
artificial

:
bivariate selection. Such a quantitative 384

answer to the so-called ’congruence’ hypothesis (Visser et al., 2003) would explain 385

both how unselected robustness components could be partly driven by indirect 386

selection and why various robustness-related features seem to have their own 387

evolutionary history. 388

4.1 Model
::::::
limits 389

Gene regulation networks are popular candidates when attempting to model 390

complex biological processes: they are at least partly built on solid and realistic 391

principles (transcription factors can enhance or repress the expression of other 392

genes), gene regulation plays a crucial role in most biological, physiological, and 393

developmental mechanisms, and even modest size regulation networks display a 394

wide diversity of behavior, including homeostasis (stable equilibrium of gene 395

expressions) (Stern, 1999), cyclic dynamics (Leloup and Goldbeter, 2003; Akman 396

et al., 2010), or amplification of a weak signal (Hornung and Barkai, 2008). 397

Conveniently, the phenotypic level considered as the output of a gene network (the 398

expression level of all network genes) can be assimilated to a partial transcriptome, 399

which opens the possibility for confrontation with empirical data. 400

The gene network model proposed by Wagner (1994) is particularly popular in 401

evolutionary biology to model gene network evolution due to its computational 402

simplicity and efficiency, combined with a direct biological interpretation (each line 403

of the regulation matrix is the set of transcription factor fixation sites in the 404

promoter of a gene)
:::
(see

::::::::::::::::::::::::::::::::::::::::::::::::
Spirov and Holloway, 2013; Fierst and Phillips, 2015

::
for 405

::::::
review

:::
and

::::::::::
alternative

::::::::
models). In practice, multiple variants based on this original 406

model have been derived, either to address specific questions, or to correct for 407

unrealistic features. Here, I used a quantitative version of the model, in which gene 408

expressions were scaled between 0 (no expression) and 1 (maximum expression), 409

which was first proposed in Wagner (1994), although later work have often 410

preferred binary networks (in which genes can be on/off, e.g. Wagner, 1996; 411

Ciliberti et al., 2007), and a gene expression scaling between -1 and 1. Unlike in 412

Wagner (1996) and Siegal and Bergman (2002), mutations had cumulative effects 413

(the value of the mutant allele was drawn in a Gaussian centered around the value 414

of the parental allele), which allows for cumulative
::::::
gradual

:
evolution. Finally, the 415

sigmoid response function was made asymetrical
::::::::::::
asymmetrical by introducing a 416

constitutive expression parameter (as in e.g. Rünneburger and Le Rouzic, 2016) in 417

order to avoid the unrealistically high expression of unregulated genes (half the 418

maximum expression) from the default setting. This constitutive expression was not 419

evolvable in the model, but simulations (Appendix 7) show that two robustness 420

components (ρE and ρS) were very sensitive to this parameter (larger constitutive 421

expression was associated with more robust networks). It is thus not unlikely that 422

real systems may evolve towards more robustness by increasing the constitutive 423

expression of key genes, as already suggested (for dfferent
:::::::
different

:
reasons) by 424

Draghi and Whitlock (2015). 425

Discrete time and simple matrix algebra made it possible to run evolutionary 426

individual-based computer simulations, in which the network output needs to be 427

calculated for thousands of individuals and thousands of generations. Using more 428

realistic models based on continuous time and differential equations, non-linear 429

regulation effects, and independent degradation and transcription rates would make 430

the simulations less practical, with little benefit in terms of explanatory power. 431

Computational constraints also limit the network size to a few dozen genes, which 432

was not enough to generate realistic levels of sparcity –
:::::::
sparsity

::
—

:
simulated gene 433

networks were too dense to be realistic. Decreasing network density and smaller 434
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network sizes made robustness components slightly less correlated (Figure 1E 435

and F), suggesting that the integration of robustness components increases with 436

network complexity
::::
(size

::::
and

:::::::
number

::
of

::::::::::::
connections). The simulated phenotypic 437

target (maintaining a constant set of gene expressions) were also extremely simple 438

compared to what gene networks are theoretically able to do (e.g. converging to 439

different equilibria in different cell types, or controling
::::::::::
controlling a complex 440

dynamic of gene expression during the development). However, the simulation 441

results are robust to most simulation parameters (Appendix 7), suggesting that 442

they reflect general properties of the underlying genetic architecture.
::
In

::::::::::
particular, 443

:::
the

:::::::
network

::::
size

::
n
::::
and

:::
the

::::::::
number

::
of

:::::::
selected

::::::
genes

::
n′

:::
do

::::
not

::::
alter

::::::::::
drastically 444

:::::::::
robustness

::::::::::::
components,

:::::::
showing

:::::
that

:::::
small

::::::::::
regulatory

::::::
motifs

:::
are

:::
not

::::::::::::
qualitatively 445

:::::::
different

:::::
from

:::::
large

::::
gene

:::::::::
networks

::
in

::::::
terms

::
of

::::::::::
robustness.

:
446

In spite of the simplicity of the network model, it appeared that connecting 447

network features (for instance, the strength of a specific regulation) and robustness 448

was not trivial, even in very small networks. For instance, in the n = 2 449

gene-network analysis, most robustness components were complex functions of all 450

four regulation strengths. Throughout this work, robustness was thus treated as an 451

emergent property of the underlying network, which can not
:::::
cannot

:
be easily 452

deduced from a reductionnist
:::::::::::
reductionist approach. Yet, it is possible to interpret 453

the correlation patterns in terms of network dynamics. Two of the most correlated 454

components are the robustness to early environmental variation ρE and network 455

stability ρS , which both measure the ability of the network to converge to a given 456

gene expression equilibrium. Conversely, the correlation between late mutational 457

ρm and environmental ρe robustnesses can be attributed to the consequences of 458

such disturbances over a single time step: for a single target gene, decreasing the 459

concentration of a transcription factor and decreasing the sensitivity of the 460

promoter to the same transcription factor have very similar immediate consequences 461

on gene expression. Yet, even if these measurements happen to be correlated by 462

constructionin the network model, their partial evolutionary independence 463

highlights their potential for independent evolvability in real gene networks
:::::::
network 464

:::::::::::
architectures, which are substantially more complex and subtle than our 465

mathematical approximation
::::
gene

::::::::
network

::::::
model.

:
466

::
In

:::
the

:::::::::::
simulations,

::::::::
selection

:::
on

::::::::::
robustness

:::::::::::
components

::::
was

:::::
direct

::::
and

::::::::
constant 467

::::
both

::
in

:::
up

::::
and

:::::
down

::::::::::
directions

::::
(i.e.

:::::::
towards

:::::
more

::
or

::::
less

::::::
robust

:::::::
genetic 468

:::::::::::::
architectures).

::::
This

:::::::
setting

::::
was

:::
not

:::::::::
expected

::
to

::::::
reflect

::::::::
realistic

:::::::::::
evolutionary 469

::::::::
pressures

:::
on

::::::::::
robustness,

::::::
which

::::::
might

::
be

:::::
more

:::::::::
complex,

:::::::::::
overlapping,

::::
and 470

:::::::::::
asymmetric.

::::::::::
Stabilizing

::::::::
selection,

:::
for

:::::::::
instance,

::::::
selects

:::::
both

:::::::
directly

:::
for

::::::::::
robustness 471

::
to

::::::::::::
environment,

::::
and

:::::::::
indirectly

:::
for

::::::::::
robustness

::
to

:::::::::
mutations

::::::::::::::::::::
(Wagner et al., 1997); 472

:::::::
selection

::::
for

:::::::
stability

::::
also

:::::::::
promotes

:::::::::
indirectly

::::::::::
robustness

::
to

::::::::::
mutations 473

::::::::::::::::::::::::
(Siegal and Bergman, 2002)

:
.
:::::::::::
Conversely,

::::::::
selecting

:::
for

:::::
lower

::::::::::
robustness

:::::::
through 474

:::
the

::::::::::
phenotype

::::
may

:::
be

:::::::
difficult

::
or

:::::
even

::::::::::
impossible:

:::::::::::
fluctuating

::::::::
selection

::::
does

::::
not 475

:::::::
promote

:::::::::::
decanalized

:::::::
genetic

::::::::::::
architectures

:::::::::::::::::::::
(Le Rouzic et al., 2013),

::::
and

::::::::
selection 476

::
for

:::::::::::::
environmental

::::::::::
sensitivity

::
is

:::::::
limited

:::
by

:::
the

::::::::::
inaccuracy

::
of

::::
the

::::::::::
perception

::
of

:::
the 477

::::::::::::
envrionmental

::::::
signal

:::::::::::::::::
(Reed et al., 2010)

:
.
::::::::::
Simulation

::::::
results

:::::
thus

::::::::
illustrate

::::
how 478

:::::::::
robustness

:::::::::::
components

::::
may

::::::
evolve

:::::::::::::
independently

::::::
when

:::::::::::
individually

::::::::
selected; 479

:::::::
whether

::
or

::::
not

:::::
there

::::::
exists

:::::::
realistic

::::::::::
conditions

:::
for

::::
such

::::::::
selection

:::::::::
pressures

::
is

::
a 480

:::::::
different

:::
—

::::
and

:::::
more

:::::::::::
complicated

:::
—

::::
issue. 481

4.2 Measuring robustness 482

There are potentially many ways to measure the robustness of a phenotypic trait. 483

Here, five indicators were proposed to catch
:::::::
capture various (and potentially 484

independent) aspects of what is generally defined as robustness. The sensitivity to 485
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inherited mutations (ρM ) is probably the most popular one, as it is central to the 486

discussion around the evolution of canalization (Waddington, 1959; Wagner, 1996; 487

Fares, 2015). The sensitivity to environmental perturbations is also unavoidable, 488

although its implementation in a gene network model is less straightforward. Here, 489

it was calculated as both the sensitivity of the network to disturbance in the initial 490

expression state (ρE), which measures the size of the basin of attraction of the 491

optimal expression pattern, and as the strength of the stability of the equilibrium 492

when disturbed (ρe). These two measurements can be interpreted as developmental 493

robustness and physiological homeostasis, respectively, as they quantify the response 494

of the network to disturbances in the expression levels at different time scales. The 495

robustness to mutations occuring
::::::::
occurring

:
after the network convergence (ρm) was 496

considered because it sets up an alternative to the genetic vs. environmental 497

congruence hypothesis: in long-lived organisms, non-heritable (somatic) mutations 498

participate to the ageing process (Kennedy et al., 2012), ageing being to some 499

extent under direct selection. Thus, the robustness to somatic mutations could also 500

drive indirectly the evolution of genetic canalization. Althought
::::::::
Although not 501

strictly a robustness component, the gene network stability (ρS , amplitude of the 502

fluctuations of gene expressions) was also considered because it has been proven to 503

drive an indirect response of genetic canalization, based on very similar model 504

(Siegal and Bergman, 2002). Its correlation with other robustness indicators 505

confirms the tigh
::::
tight link between robustness and stability in gene networks. 506

These indicators were chosen based on the possibility to measure them in 507

numerical simulations. Although the empirical assessment of the correlation 508

between robustness components would be way more convincing than a theoretical 509

study, defining similar measurements from experimental datasets can be challenging. 510

For instance, ρM and ρE could, at least in theory, be estimated as the variance in 511

gene expression across genetic backgrounds or across environmental conditions, 512

respectively. Measuring ρm environmentally is more complicated, as it would likely 513

be confounded with other ageing mechanisms. In contrast, the empirical distinction 514

between e.g. ρe and ρS relies on discriminating internal vs. external sources of noise, 515

and might be in practice impossible. In all cases, gene expression data are generally 516

quite noisy and their analysis necessitates heavy corrections to prevent multiple 517

testing issues. Studying empirically the robustness and evolvability of molecular 518

and morphological traits has long been considered as a challenging task, but 519

methodological and technological progress has recently brought new concrete 520

perspectives (Payne and Wagner, 2019). 521

Some popular measurements of developmental robustness were not considered 522

here for technical reasons. For instance, fluctuating asymetry
::::::::::
asymmetry

:
(the 523

variance between the same phenotypic trait measured in the right and the left body 524

parts of symmetric organisms) is a convenient measurement of microenvironmental 525

effects on the development (Debat and David, 2001; Leamy and Klingenberg, 2005), 526

but it has no equivalent at the level of gene expression in a regulation network. The 527

deterministic sensitivity to a directional environmental gradient could also be used 528

to measure phenotypic plasticity, which is central to the question of phenotypic 529

robustness. Yet, there are several ways to model phenotypic plasticity in a gene 530

network (Masel, 2004; Burban et al., 2021), and it requires a specific selection setup 531

(different expression optimums
:::::::
optima as a function of the environment). Because 532

of this additional complexity, adaptive phenotypic plasticity was excluded from the 533

focus of this work, although the evolution of plasticity of gene expression remains 534

an intriguing and fundamental question. In particular, phenotypic plasticity (i.e. an 535

adaptive lack of robustness to some environmental signal) may itself be canalized to 536

genetic or other environmental disturbances (Stearns and Kawecki, 1994); 537
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considering reaction norms (a measurement of plasticity) as quantitative traits thus 538

opens challenging questions about the adaptive evolution of the canalization of 539

robustness traits. 540
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Appendix 1 719

Sensitivity of the robustness measurements to the magnitude 720

of the disturbance 721
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Four out of five robustness indicators (ρE , ρe, ρM , ρm) depend on the magnitude of 723

the disturbance (σE , σe, σM , and σm, respectively). The figure displays the 724

influence of the size of the disturbance on the robustness measurement (left: 10 725

random networks, right: 10 evolved networks). Vertical dotted lines stand for the 726

values used in the simulations. Robustness scores are not completely consistent for 727

random networks, as some of them can be differentially robust to large or small 728

disturbances. The consistency is better in evolved networks (the rank of different 729

genotypes in terms of robustness rarely depends on the size of the disturbance). 730

22/31



Appendix 2 731

Correlations among robustness indexes among random 732

networks 733

734
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735

Correlations between all five robustness components among 10,000 random 6-gene 736

networks (µ0 = 0, σ0 = 1). 737
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Appendix 3 738

Sampling effects on Principal Components 739
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740

Influence of the sampling effect (number of networks and number of replicates R 741

to estimate robustness) on the relative weight of the principal components. All PCs 742

except the last one are robust to sampling. 743
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Appendix 4 744

Reasons for not reaching the desired equilibrium 745

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1

0
1

2
3

4

W11

W
21

On target Still changing Alternative eq. Large osc.

746

Although equation 4 guarantees that an equilibrium exists at the target 747

phenotypic expression, the equilibrium might not be reachable in practice when 748

simulating the gene network dynamics. The colored area in the figure corresponds 749

to networks that failed to produced the target phenotype, each color representing a 750

distinct reason; Yellow: network dynamics was slow and the final gene expression 751

has not been reached yet after 16 time steps; Gray: an alternative equilibrium was 752

reached (most of the time implying that one or both genes are either completely 753

silenced to fully expressed). Red: The network steady state featured oscillations 754

that were so large that they hit the maximum or minimum expression, shifting the 755

average expression away from the target expression. 756
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Appendix 5 757

Two-gene example networks 758

W11 W21 W12 W22

A 0.70 0.20 -0.21 0.38
B -0.30 0.30 0.29 0.33
C -0.40 0.80 0.34 0.08
D -1.00 -0.80 0.64 0.88
E 1.50 3.50 -0.61 -1.27

759

The five two-gene networks detailed in Figure 2 and Appendix 6. 760
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Appendix 6 761

Illustration of the robustness scores 762
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The figure displays a subset of the replicated tests for four robustness indexes. 765

Rows A to E correspond to the five networks described in Appendix 5.
::::
Four

::::
(out

::
of 766

::::
five)

::::::::::
robustness

:::::::::::::
measurements

::::
rely

::
on

::
a
::::::::::
resampling

:::::::::
procedure

::::::::::::::
(corresponding

:::
to 767

:::
the

::::
four

::::::::
columns

::
of

:::
the

:::::::
figure).

:
In each panel, the default (undisturbed) network 768

kinetics is displayed as plain lines (black for gene 1, red for gene 2), while 10 769

disturbed networks are indicated as pale lines. By construction, all networks have 770

an equilibrium at (0.3, 0.6). The network
:::::::
stability

::::
can

::
be

::::::::
assessed

:::::
from

:::
the 771

:::::::::
amplitude

::
of

::::
the

:::::
cycles

:::
in

:::
the

:::::::::::
undisturbed

:::::::
kinetics

::::::
(thick

::::::
lines),

::::
and

:::::
does

:::
not

::::
rely 772

::
on

::
a

:::::::::
stochastic

::::::::::
algorithm.

::::
The

::::::::
network robustness to genetic disturbance was 773

estimated by mutating the gene network before the first time step (early genetic 774

mutation, first column) or before the last time step (late genetic mutation, second 775

column). Environmental robustness was estimated by disturbing the gene 776

expression, without changing the genotype, before the first time step (early 777

environmental, third column) and before the last time step (late environmental, 778
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fourth column). The network stability can be assessed from the amplitude of the 779

cycles in the undisturbed kinetics (e.g. in network C), and does not rely on a 780

stochastic algorithm. 781
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Appendix 7 782

Exploration of the parameter set 783

784
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Influence of simulation parameters (mutation rate ν, mutation size σν , population 786

size N , constitutive expression a, total number of genes n, number of selected genes 787

n′, network density d, and strenght of selection s) on fitness and robustness indexes 788

after 5000 generations (default settings except for the target parameter). The figure 789

reports the mean ± standard deviation across 20 replicated simulations. Vertical 790

dotted lines stand for the default parameter values. 791
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Accuracy of the prediction vs. simulation time 793
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Effect of the number of generations on the proportionality relationship between 795

predicted and observed evolvabilities of robustness components. The figure displays 796

the r2 of a linear regression (without intercept) between the predicted evolvability 797

from the conditional Mc matrix measured at the first generation and the observed 798

evolvability in the direction of selection for all replicated simulations. The 799

regression at generation 1,000 is illustrated in the colored inset in Figure 4
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.
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Evolution
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::::::::
Evolution

:::
of

:::
the

::::::::::
mutational

::::::::::
correlation

:::::::
among

:::::::::
robustness

:::::::::::
components

:::::
after 804

::::::
10,000

::::::::::
generations

::
of

:::::::::
evolution

:::::::::::::::::::
(∆r = r10,0000 − r0),

::::::::
averaged

::::
over

::::
100

::::::::::
simulation 805

:::::::::
replicates.

::::
For

::::
each

::::
pair

:::
of

:::::::::
robustness

::::::::::::
components,

::::
nine

::::::::
selection

:::::::::
gradients

:::::
were 806

::::::::
simulated

::::::::::
(including

:::::::
control

::::::::::
simulations

::::::::
without

::::::::
selection

::
on

:::::::::::
robustness,

::::::
central 807

::::
slot). 808
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