The impact of social complexity on the efficacy of natural selection in termites

Camille Roux¹, Alice Ha², Arthur Weyna², Morgan Lodé¹, Jonathan Romiguier²

¹ Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France

² Institut des Sciences de l'Evolution (UMR 5554) University of Montpellier, CNRS Montpellier 34000 France

Correspondence: camille.roux@univ-lille.fr and jonathan.romiguier@umontpellier.fr

Abstract

In eusocial species, reproduction is monopolized by a few reproductive individuals. From the perspective of population genetics, this implies that the effective population size (*Ne*) of these organisms is likely to be smaller compared to solitary species, as has been proposed in the literature for eusocial hymenoptera. In this study, we investigate the genomic consequences of eusociality in termites (Isoptera) on two different timescales. First, by analyzing transcriptome data from 66 Blattodea species, we focus on the ratio of non-synonymous to synonymous mutations (d_N/d_S) as a marker of natural selection efficiency and effective population size. Our results demonstrate an elevated d_N/d_S ratio in termites compared to other members of Blattodea, further generalizing the idea that convergent evolution toward eusociality strongly reduces the effective population size and the genome-wide efficiency of natural selection. Then, by comparing 68 termite transcriptomes, we show that this decrease in natural selection efficiency is even more pronounced in termites displaying high levels of social complexity. This study contributes to understanding the complex interplay between social structures and natural selection patterns, highlighting the genetic footprint of eusociality in shaping the evolution of termites.

2

8

q

10

11

12

13

14

15

16 17

18

Keywords: Eusociality; Genome Evolution; Natural Selection; Termites; Blattodea

Introduction

19

Eusociality represents the pinnacle highest level of social organization within the animal kingdom, char-20 acterized by a clear division of reproductive labor among different castes, cooperative care for young and 21 the presence of overlapping generations within a colony (Keller and Chapuisat, 2001). Various forms of so-22 cial organizations have independently emerged emerged independently in several taxa, such as Coleoptera, 23 Thysanoptera (Choe and Crespi, 1997), crustaceans (Duffy, 1996), spiders (Lubin and Bilde, 2007), or mam-24 mals (Jarvis et al., 1994), but the most complex forms of eusociality appeared only within Hymenoptera (e.g. 25 -bees, wasps, ants) and Isoptera (termites: Howard and Thorne, 2011). In social insects such as ants and 26 termites, a caste is defined as a subset of individuals within a colony that perform specialized roles, often 27 with distinct morphological traits. Both ants and termites display sharp contrasts in terms of levels of social 28 complexity, ranging from small colonies of hundred-hundreds of individuals with low caste polymorphism -to 29 large colonies of several millions of individuals and extreme caste differentiations. 30

For a given number of individuals making that make up a population, the shift from solitary living to eusocial-31 ity corresponds with to a notable decrease in the effective population size Ne, mainly because reproduction be-32 comes confined to a limited limited to a reduced number of individuals within a colony (Romiguier, Lourenco, 33 et al., 2014). Such reduction of Ne has important consequences on genome evolution because of the interplay 34 between the efficiency of natural selection for genome evolution due to the interaction between natural 35 selection efficiency and random genetic drift (Kimura, 1983). The potency of selection in either promoting to 36 promote the fixation of advantageous mutations or removing deleterious ones hinges to remove deleterious 37 ones depends on the selection coefficient vis-à-vis the influence of genetic drift, whose intensity is increased 38 for lower N_e values. When the influence of selection weakens in comparison to genetic drift ($|N_e.s| < 1$, 39 s being the selective coefficient), alleles behave as if they are effectively neutral. Thus, genomes of species 40 with a large effective population size are characterized by a higher relative accumulation rate of slightly ad-41 vantageous mutations compared to species with a small N_e (Galtier, 2016). In the same direction, weakly 42 deleterious mutations are not effectively eliminated from the genomes of low N_e species because genetic 43 drift is stronger than purifying selection for them (Galtier, 2016). 44

This phenomenon sets a theoretical threshold dubbed the "drift barrier" (Lynch and Walsh, 2007), delin-45 eating the boundary where random genetic drift limits the ability of selection to forestall the fixation of sub-46 optimal alleles (Kimura et al., 1963; Ohta, 1973). The empirical demonstration of the drift barrier has estab-47 lished it as a key factor shaping the genetic architectures of living organisms. The central involvement of the 48 N_e effect has since been empirically demonstrated to explain the evolution of different genomic components: 49 mutation rate (Lynch, Ackerman, et al., 2016), intron emergence (Lynch, 2002), precision of intron splicing (Ben-50 itiere et al., 2022), optimization of codon usage (Galtier et al., 2018), complexity of protein-protein interactions 51 (Lynch, 2012), protein optimization (Huber et al., 2017) and rate of adaptive evolution (Galtier, 2016). 52

The evolution of coding regions themselves is shaped by the mutation-selection-drift equilibrium, with life 53 history traits significantly impacting the rates of nonsynonymous substitutions relative to synonymous sub-54 stitutions (d_N/d_S ; Botero-Castro et al., 2017; Figuet et al., 2016; Nikolaev et al., 2007; Popadin et al., 2007; 55 Rolland et al., 2020; Romiguier, Ranwez, et al., 2013; Weyna and Romiguier, 2021). At synonymous positions, 56 the majority of mutations are presumed to be neutral, although some exceptions exist (Galtier et al., 2018). 57 This implies that the substitution rate d_S is a result of the number of mutations emerging per generation in the 58 population (2. N_e . μ , where μ represents the mutation rate per nucleotide per generation) multiplied by the 59 probability of fixing a new neutral mutation $(\frac{1}{2.N_c})$. Hence, in absence of selective pressure on synonymous 60 positions, the evolution of d_S is solely predominantly driven by the mutation rate. Conversely, the fixation 61 probability of new nonsynonymous mutations is directly reliant on the $N_{e.s}$ product: the smaller the $N_{e.s}$ the 62 greater the accumulation of weakly deleterious nonsynonymous mutations in genomes. Consequently, any 63 life-history trait impacting N_e is likely to increase the relative amount of deleterious nonsynonymous muta-64 tions within genomes by intensifying the role of genetic drift 65

Eusociality in ants, bees, waspsand termites, termites, shrimps and spiders appears to be such a life-history 66 trait by restricting reproduction to few individuals. However, a recent study using an extensive dataset In 67 spiders of the genus *Stegodyphus*, where only a small fraction of females lay eggs, whole-genome analyses 68 have shown that the shift towards higher sociality is linked to a continuous reduction in effective population 69 size and an increase in d_N/d_S (Ma et al., 2024). However, the analysis of 169 Hymenopteran species pro-70 vide a more slightly nuanced view of the link between eusociality and effective population size (Weyna and 71 Romiguier, 2021). While social Hymenoptera featured an increase of d_N/d_S compared to solitary species, the 72 results highlighted the notable exception of solitary bees displaying the same level of d_N/d_S than their social 73 counterparts. This-Also, another recent study suggests that low division of reproductive labour (i.e. worker 74 reproduction) may not necessarily translate into lower d_N/d_S (i.e increased strength of natural selection, 75 Barkdull and Moreau (2023)). These results highlighted that strong decreases of effective population size is 76 not necessarily a direct consequence of the emergence of eusociality division of reproductive labour, but might 77 also as well predate it. 78

In this study, we aim to ascertain whether the negative impact of eusociality on the efficacy of natural 79 selection applies to termites. Similarly to ants despite pprox 383 my of divergence (Kumar et al., 2017), termites 80 features various level of eusociality, the most complex forms being characterized by particularly large colonies 81 (up to $> 10^6$ individuals; Porter and Hawkins, 2001) and high caste specialization. We thus hypothesize further 82 that termite species with the highest levels of social organization might feature the lowest effective population 83 size, in a similar way than in . This would mean that large superorganisms (i.e. large colonies) are analogous 84 in terms of Ne with large organisms, reflecting previous works in mammals or birds where species with large 85 body size feature lower effective population size than small body size species high dN/dS ratio (Botero-Castro 86 et al., 2017; Romiguier, Ranwez, et al., 2013). 87

To explore this inquiry, we leverage two publicly accessible sequencing datasets delineating phylogenetic information at two different evolutionary levels:

- 1. across Blattodea, allowing for the comparison between 6 species of termites and 60 non-termites species (Evangelista et al., 2019).
- 2. across 68 species of termites, to study the effect of variation in levels of social complexity on d_N/d_S (Bucek et al., 2019).

Our findings reveal that termites (*i.e.* eusocial Blattodea) exhibit higher d_N/d_S ratios than solitary Blattodea species, interpreted as a relaxation of purifying selection. This finding aligns with a recently published study that compared three termite species with five cockroach species (Ewart et al., 2024). Furthermore, among termites, species displaying the highest levels of social complexity tend to exhibit higher d_N/d_S ratio in comparison to those considered to exhibit simpler social organization.

Material and methods

99

104

88

89

90

91

The analysis presented here focuses on two phylogenetic scales: within the Blattodea in first, then a zoom on the Isoptera. For both scales, all the data including molecular alignments, phylogenetic trees and life history traits were taken from the literature. d_N/d_S by branch was then inferred in this study, based on the available aligned transcriptomes and the reconstructed phylogenetic trees.

Blattodea dataset

The molecular data (sequence alignments + phylogenetic tree) for the Blattodea come entirely from the study by Evangelista et al. (2019). This dataset corresponds to 3,244 coding genes aligned in 66 species, and is from the Genbank Umbrella Bioproject (ID PRJNA183205). The 66 Blattodea species had been chosen by the authors to represent the major lineages (except the Anaplectidae). Evangelista et al. (2019) sequenced the transcriptomes of 31 Blattodea species, and complemented this dataset by transcriptomic data coming from 109 Misof et al. (2014) and Wipfler et al. (2019), consisting of 14 additional Blattodea and 21 outgroups. RNA extrac-110 tion, library construction and paired-end sequencing (Illumina HiSeg 2000) are part of the 1KITE project (www. 111 1kite.org). The used phylogenetic tree corresponds to the file Blattodea_FigTree_95_aa_run1_clean.treefile 112 (Supplementary Material), was produced by Evangelista et al. (2019) using a maximum-likelihood approach 113 implemented in IQ-TREE (Haeseler et al., 2014; Kalyaanamoorthy et al., 2017). The final dataset we used for 114 the d_N/d_S analysis is composed over the 66 surveyed species by a median number of 2,102 coding genes per 115 species, ranging from 1,243 in Nyctibora to 2,573 in Zootermopsis nevadensis. 116

Before carrying out an ANOVA analysis to test an effect of social organization on d_N/d_{S_L} we checked 117 whether this ratio followed a normal distribution in each social group using a Shapiro-Wilk test (P-values 118 ranging from 0.077 in the gregarious group to 0.838 in the eusocial group). Then we checked that variances 119 of the d_N/d_S ratios are homogeneous between the different social systems using a Levene's test (P = 0.3). 120 Once the normality of the d_N/d_S and the homogeneity of the variances between groups had been confirmed, 121 we performed an ANOVA test to check an effect of sociality. To identify specific differences between groups, 122 we used a Tukey-HSD (Honest Significant Difference) test, which tests the differences in means between each 123 pair of groups 124

Isoptera dataset

The Isoptera dataset comes from the study carried out by Bucek et al. (2019). They sequenced the transcrip-126 tomes of 53 termite species and two entire genomes. These data were used to complete publicly available 127 genomes and transcriptomes for 13 termite species and 7 dictyopteran outgroups (Blaberus atropos, Blattella 128 germanica, Cryptocercus wrighti, Empusa pennata, Mantis religiosa, Metallyticus splendidus, Periplaneta americana; 129 Bourguignon, Šobotník, et al., 2016; Dedeine et al., 2015; Harrison et al., 2018; Hayashi et al., 2013; Huang et 130 al., 2012; Misof et al., 2014; Mitaka et al., 2016; Poulsen et al., 2014; Terrapon et al., 2014; Wu et al., 2016). 131 Transcriptomes of workers were sequenced by Bucek et al. (2019) using the Illumina HiSeq 4000 platform. 132 The authors then aligned the assembled orthologous genes using MAFFTv7.305 (Katoh and Standley, 2013). 133 They inferred the phylogenetic tree using IQ-TREE 1.6.7 (Nguyen et al., 2015). The used phylogenetic tree cor-134 responds to the file Isoptera Bucek.treefile (Supplementary Material). The final dataset we used to estimate 135 d_N/d_S corresponds to a median number of 3,604 coding genes per species, ranging from 2,391 (*Reticulitermes* 136 grassei) to 3,927 (Blattella germanica). 137

Phylogenetic estimation of the d_N/d_S ratio

 d_N/d_S values were computed using the mappin program within the TestNH suite (] Dutheil and Boussau, 139 2008; JY Dutheil et al., 2012; Guéguen and Duret, 2018; Romiguier, Figuet, et al., 2012; https://github.com/ 140 BioPP/testnh) from the publicly available cleaned alignments, and from the tree topologies available for both 141 the Blattodea and Isoptera datasets. Each $\frac{1}{10 \text{ ct}}$ locus which had sequences with over 90% non-informative sites 142 were removed. mappin estimates d_N and d_S for four substitution categories ($W \to S, S \to W, W \to W$, 143 $S \rightarrow S$, referring to nucleotides affected by substitutions, AT = W for Weak and CG = S for Strong). These 144 estimates were then associated with each terminal branch of the available phylogenies. Non-synonymous and 145 synonymous substitution counts are estimated for each branch in the phylogeny. However, for downstream 146 analyses, we use the d_N/d_S ratio estimated from the terminal branches as representative for each species. 147 Alignments with fewer than 30 species were discarded. 148

Testing for relaxation of natural selection

To assess the relaxation of selective pressure, we employed the RELAX model within the HyPhy v.2.5 software 150 (Schrader et al., 2021; Wertheim et al., 2015). The RELAX model estimates the selection intensity parameter 151

4

125

138

(k), allowing us to compare a null model (k = 1) with an alternative model, thereby evaluating the strength of natural selection.

A k value greater than 1 indicates intensified natural selection, while a k value less than 1 suggests relaxed natural selection in the test branches (six termite species) relative to the reference branches (60 non-termite species) using the dataset from Evangelista et al. (2019). We assessed the statistical significance of the k value (p<0.05) using a Bonferroni correction.

Social traits

The data from Evangelista et al. (2019) were utilized to investigate potential variations in d_N/d_S within Blattodea associated with eusociality. Each species was correlated with its social category following Michener's classification in 1969 Michener (1969) and average individual size. Sociality data were compiled from various bibliographic (Bohn, 1989; Cabrera and Scheffrahn, 2001; Legendre, 2007; Lihoreau, 2009; Picker, 2012; Roth, 1986, 2000) and online (Bugguide; Cockroachcare; Collections.museumvictoria; Jasa; Ozanimals; Padil; Roachcrossing; Virginiacheeseman; Wikipedia) sources. When species-level information was lacking, we utilized the average observation from within genera or subfamilies.

The data sourced from Bucek et al. (2019) were employed to identify potential variations in d_N/d_S within 166 Isoptera linked to varying degrees of sociality. Each species was detailed with various characteristics, including 167 category (Neoisoptera or which is a clade grouping most families with high level of sociality vs Basal Isoptera), 168 taxonomic family, queen(s) egg-laying count, approximate colony size, colony type (monogynous, polygynous, 169 or both), polygyny type, worker type ("true workers" than are completely sterile vs "pseudergates" that can 170 become reproductives), dietary habits, geographical distribution, soldier and queen morphometrics, and inva-171 sive status. Notably, the Termitidae and Rhinotermitidae families, encompassing several paraphyletic clades 172 in the dataset, were arbitrarily divided into Termitidae A and B and Rhinotermitidae A to E to study mono-173 phyletic groups. However, this division doesn't align with established subfamilies in taxonomy. Data on 174 species characteristics were collected from various literature sources (Ahmad, 1963; Atkinson and ES Adams, 175 1997; Barbosa and Constantino, 2017; Bourguignon, Scheffrahn, et al., 2010; Chhotani, 1975; Constantino and 176 De Souza, 1997; Constantino, 1990; De Saeger, 1954; Dejean and Fénéron, 1996; Dupont et al., 2009; Emerson 177 and Banks, 1965; Evans, 2011; Florian et al., 2019; Fougeyrollas et al., 2015; F Gay, 1974; F Gay and Barrett, 178 1983; Fl Gay and IA Watson, 1982; Ghesini and Marini, 2013; Goodisman and Crozier, 2002; Hanus et al., 2006; 179 Hellemans et al., 2017; Husseneder et al., 1998; Krishna, 1963; Krishna and CL Adams, 1982; Krishna and 180 Araujo, 1968; Lewis, 2009; Liang et al., 2017; Maistrello and Sbrenna, 1996; Martius and Ribeiro, 1996; Mat-181 suura, 2002; Miller, 1994; Miura et al., 2003; Noirot, 1959; Noirot, 1989; Parmentier and Roisin, 2003; Rasib 182 and Saeed Akhtar, 2012; Scheffrahn and Krecek, 1999; Scheffrahn, Su, et al., 1999; Snyder, 1924; Soleyma-183 ninejadian et al., 2014; Thorne, 1984; Vargo, 2019; Vargo et al., 2006; J Watson, Brown, et al., 1989; J Watson, 184 Metcalf, et al., 1977; Williams, 1966). Similar to the dataset in Evangelista et al. (2019) Evangelista et al. (2019) 185 , the search scope was extended to include closely related genera and subfamilies because of shared charac-186 teristics among closely related species. 187

Results and discussion

 d_N/d_S evolution in Blattodea

We estimated the d_N/d_S ratio as a proxy of natural selection efficiency across a phylogenetic tree of 66 ¹⁹⁰ Blattodea species, including 6 termites (Isoptera). The dataset and phylogenetic tree employed in this investigation are derived from the study by Evangelista et al. (2019) encompassing 3,244 coding genes (Fig. 1). ¹⁹²

152 153

158

188

Figure 1. Distribution of the d_N/d_S ratio in Blattodea.

A. The phylogenetic tree employed in this study was produced by Evangelista et al. (2019), constructed from sequenced transcriptomes. Utilizing the identical same set of coding genes, we estimated the d_N/d_S ratios along each phylogenetic branch by mapnh. In this study, we exclusively report the d_N/d_S values corresponding to the terminal branches, represented here by a gradient of colours between 0.055 (dark blue) and 0.115(dark red). Two color palettes are used here to include the diversity of color perception. The clade encompassing termites is highlighted by a yellow rectangle. **B.** Boxplot representing the distribution of d_N/d_S ratios in the terminal branches of BlattodaeBlattodea. In grey: estimated values for non-termite species. In yellow: estimated values for termites. Horizontal lines indicate median values. Statistical significance is denoted as follows: ns (P > 0.05), * (P < 0.05), ** (P < 0.01), **** (P < 0.001).

Upon comparing the mean genomic d_N/d_S ratios calculated for the external branches leading to the 66 ¹⁹³ species under study, we observe a notably higher d_N/d_S ratio that can be interpreted as lower efficiency of natural selection within the clade that includes termites (mean=0.107; standard deviation=0.00687) as opposed ¹⁹⁵ to outside this group (mean=0.0675; standard deviation=0.00756). This disparity is statistically significant, as ¹⁹⁶ confirmed by a Wilcoxon signed-sum test (V = 2211; $P = 1.679 \times 10^{-12} W = 0$; $P = 6.235 \times 10^{-5}$). The two ¹⁹⁷ distributions do not overlap, with the highest d_N/d_S for non-termites (0.092 in *Catara rugosicollis*) being lower ¹⁹⁸ than the lowest d_N/d_S for termites (0.097 in *Incisitermes marginipennis*). ¹⁹⁹

In mammals, body size is known to strongly influence the d_N/d_S ratio because of its negative relationship with Ne. Thus, large and long-lived species display on average a higher d_N/d_S ratio than small and short-lived mammals (Nikolaev et al., 2007). Here we test whether a similar relationship is found in **Blattodae Blattodea** (Fig. 2-A; Table S1).

Figure 2. Comparative analysis of body size and social system influences on d_N/d_S ratios Panel A: relationship between organism body size reported for adults (in mm) and d_N/d_S . Termite data points are shown in orange, while non-termite points are displayed in grey. Panel B: distribution of d_N/d_S ratios within different social systems according to Michener (1969). Bonferroni-adjusted statistical significance is denoted as follows: ns (P > 0.05), * $(P \le 0.05)$, ** $(P \le 0.01)$, **** $(P \le 0.001)$, **** $(P \le 0.001)$.

To do this, we take advantage of the information available on adult body length in Blattodae Blattodea and test its impact on the effectiveness d_N/d_S which is interpreted as a measure of the efficiency of purifying selection. Contrary to mammals, where an equivalent relationship is strong, we found no relationship be-

blattodea (spearman's $\rho = 0.1045$, $P = 0.2439$). This result converges with what has been observed in an- other insect clade where eusociality has evolved, the Hymenoptera, whose d_N/d_S is explained by colony size (Rubin, 2022) and not affected by body size (Benitiere et al., 2022; Weyna and Romiguier, 2021). We then test the hypothesis that an increase in social organization within the Blattodea Blattodea would reduce the effectiveness of natural selection by reducing the number of reproductive individuals. To do this, we assigned each of the 66 species studied to one of the social categories defined by Michener (1969).	09 10 .11 !12 !13
• Solitary = no social behaviour, individuals live separately from each other. 21	14
• Gregarious = individuals live together but do not co-operate or care for young. 21	15
• Subsocial = individuals take care of their young for a certain period of time. 21	.16
• Communal = individuals of the same generation cooperate in nest building but not in the care of young. $_{21}$:17
• Quasisocial = individuals from the same generation use the same nest and cooperate in the caring for the young.	18 19
• Semisocial = individuals from the same generation cooperate in caring for young and sharing reproduc- tive tasks.	20
• Eusocial = individuals from several generations cooperate in caring for the young and where reproduc- tive tasks are shared.	22 23
Throughout the explored dataset, we found 24 solitary species, 31 gregarious, 3 subsocial and 6 eusocial $\frac{22}{10000000000000000000000000000000000$	24 25 26 27 28 29 30 31 32 33 33 234

Table 1. Tukey multiple comparisons of means for d_N/d_S ratios across different social systems. The table displays the pairwise comparisons between each social system. The *difference* column shows the difference in mean d_N/d_S ratios between the two groups being compared. The *lower* and *upper* columns represent the lower and upper bounds of the 95% confidence interval for these mean differences, respectively. The *adjusted p*-values indicate the significance of these differences after adjusting for multiple comparisons. Significant p-values (p < 0.05) are highlighted in bold.

comparison Comparison	difference Difference in Means	lower-Lower Bound	upper-Upper Bound	adjusted Adjus
Subsocial - Gregarious	0.0011	-0.0110	0.0133	0.9948
Solitary - Gregarious	-0.0028	-0.0083	0.0027	0.5327
Eusocial - Gregarious	0.0386	0.0296	0.0475	<0.0001
Eusocial - Subsocial	0.0374	0.0232	0.0517	<0.0001
Eusocial - Solitary	0.0414	0.0322	0.0506	<0.0001
Solitary - Subsocial	-0.0039	-0.0163	0.0084	0.8338

The results of the a Tukey-HSD test (Table 1) suggest that the eusocial social system is associated with a higher d_N/d_S than the other groups (gregarious, subsocial, and solitary). The other comparisons (subsocial 236

versus gregarious, solitary versus gregarious, and solitary versus subsocial) did not show statistically significant237differences, indicating that d_N/d_S is only increased for eusocial species. At this phylogenetic scale, our analy-238sis is potentially influenced by a pronounced phylogenetic bias, given the fact that only termites are classified239as eusocial in Blattodea. We therefore note:240

- 1. d_N/d_S is a rate along a branch and is estimated in a phylogenetic framework, which means that technically two neighbouring branches are independent and should not have similar values due to phylogenetic inertia in the same way than two neighbouring nodes for other statistics (such as %GC or body mass).
- 2. When adding this result with those obtained in a very phylogenetically distant group, Hymenoptera (Weyna and Romiguier, 2021), this is the fourth observation of strongly increased d_N/d_S associated to the emergence of eusociality. 245 246 247 248

Our results reinforce the notion further support the idea that eusociality is associated with linked to a genome-wide reduction in natural selection efficiency, an effect not exclusive to eusocial Hymenoptera. the efficiency of natural selection. This is evidenced by the RELAX analysis, which indicates that approximately 32% of the 3,166 coding genes studied are strongly consistent with a model of relaxed selection, whereas only about 0.72% of the genes are strongly supported by a model of positive selection (Fig. S1).

Interestingly, we note that the closest relative of termites, Cryptocercus wrighti, displays an intermediate 253 d_N/d_S ratio between other highter to non-social species and relatively close to eusocial ones ($d_N/d_S = 0.0905$ 254 compared to an average of 0.0675 in non-social Blattodea and 0.107 in eusocial ones). The Cryptocercus 255 genus is characterized by biparental parental care of the brood (Evangelista et al., 2019), which likely pre-256 cede the evolution of eusociality where parental care is extended to sibling workers. This is reminiscent of 257 the situation in Anthophila bees, where solitary bees features high parental care (nest building and pollen 258 collection for few larvae) and display elevated d_N/d_{S_I} suggesting low effective population size preceding mul-259 tiple evolution of eusociality in this group (Weyna and Romiguier, 2021). Our Demographic inferences using 260 PSMC-like approaches (H Li and Durbin, 2011; Lynch, Haubold, et al., 2020; Terhorst et al., 2017) in non-social 261 species with high d_N/d_S ratios, such as *Cryptocercus* and solitary bees, as well as in closely related eusocial 262 groups, could provide a clearer understanding of the demographic context in which eusociality evolved. This 263 would be particularly valuable for pinpointing the timing of *Ne* variations associated with the emergence 264 of eusociality. This approach has already been applied to social spiders of the genus Stegodyphus, where 265 it revealed a reduction in Ne associated with increasing social complexity (Ma et al., 2024). Moreover, it could 266 help determine whether the reduction in *Ne* preceded the emergence of eusociality in bees (from solitary 267 species) and termites (from Cryptocercus), or if it resulted from the evolution toward more complex social 268 structures. 269

These results reinforce the idea that high parental care and low effective population size might facilitate 270 evolution towards eusociality. As eusociality is a reproductive strategy characterized by parental care care of 271 offspring shared by many sibling individuals siblings, high parental care is likely to be a first pre-requisite to its 272 evolution. High parental care has also been identified as the best ecological predictor of low genetic diversity 273 (Romiguier, Lourenco, et al., 2014), which theoretically increases inbreeding and the relative advantages species 274 with low effective population sizes (Romiguier, Lourenco, et al., 2014). As low effective population size increases 275 the probability of sharing common gene ancestry (Wang et al., 2016), it is expected to increase genetic relatedness₇₆ among individuals and thus amplify the benefits of kin selection (Tabadkani et al., 2012). Together with the 277 example of bees (Epplen et al., 1999; Tabadkani et al., 2012). In this regard, the evolution of eusociality in ter-278 mites might have been facilitated by the combination of high parental care and reduced effective population 279 size. Whether these are universal pre-requisites for eusociality emergence is still open to question, as: while 280 low effective population size seems to precede sociality in termite and bees, the same pattern is not observed 281 for has not been observed in ants and social wasps (Weyna and Romiguier, 2021). This can either mean that 282 eusociality can emerge without initial drop of effective population size, or just that we did not detect it because 283 of a lack of genomic data for closely related non-social species for ants and social wasps.284To further understand the influence of sociality on the effectiveness of natural selection in termites, we285

analyzed an additional dataset derived from transcriptome sequencing (Bucek et al., 2019). This dataset encompasses 68 termite species as well as 7 dictyopteran outgroups, allowing us to test whether the diversity in levels of eusociality among termites correlates with d_N/d_S variations.

Contrasting d_N/d_S ratios among eusocial Blattodea (Isoptera)

In the second part of our study, we investigated the evolution of the d_N/d_S ratio within Isoptera using transcriptome data from Bucek et al. Similarly to the approach adopted for Blattodea, we computed the median genomic d_N/d_S for all branches of the Isopteran phylogenetic tree. The reported d_N/d_S per species corresponds to their respective terminal branch value (Fig. 3).

Figure 3. Distribution of the d_N/d_S ratio in Isoptera (and outgroup species).

The phylogenetic tree employed in this study was produced by Bucek et al. (2019), constructed from sequenced transcriptomes. Utilizing the identical coding genes, we estimated the d_N/d_S ratios along each phylogenetic branch by mapnh. In this study, we exclusively report the d_N/d_S values corresponding to the terminal branches, represented here by a gradient of colours between 0.0925 (dark blue for the outgroup *Periplaneta americana*) and 0.256 (dark red for *Occasitermes*). Two color palettes are used here to include the diversity of color perception.

The transcriptomes were available for a total of 75 species. Of these, 68 belong to the Isoptera, exhibiting 294

a d_N/d_S variation range from 0.132 (*Glossotermes oculatus*) to 0.256 (*Occasitermes*). The remaining seven species constitute the outgroup, showing a d_N/d_S variation range from 0.0925 (*Periplaneta americana*) to 0.125 (*Cryptocercus wrighti*). This second dataset thus corroborates the overall trend we previously identified using the first dataset (Evangelista et al., 2019), also indicating an increased d_N/d_S in Isoptera, with values that do not overlap with the range found in non-eusocial Blattodea.

We then tried to explain the large variations of d_N/d_S across termites. More particularly, we hypothesized 300 that the effect of eusociality on d_N/d_S could be modulated by the level of social complexity (Table S2). As 301 in ants (Romiguier, Borowiec, et al., 2022), termite societies can be more or less complex, with some species 302 featuring extreme forms of eusociality with highly specialized division of labour, large and long-lived colonies. 303 To test whether social complexity increase the effect of eusociality on effective population size (Ne), we tested 304 the effect on d_N/d_S of two social traits recognized as two good proxies for social complexity in the literature: 305 nesting strategies and developmental pathways (Mizumoto and Bourguignon, 2021). Nesting strategies are 306 typically divided in three categories following Abe (1987); OP (One Piece), MP (Multiple Pieces Multiple-Piece), 307 and SP (Separated PiecesSeparated-Piece). In the One Piece One-Piece strategy, termites live in inhabit a sin-308 gle piece of wood used as both that serves as both their nest and food source, which means that colonies 309 are typically smalland resulting in typically small, short-lived - Multiple Piece nests are typically larger colonies. 310 Multiple-Piece nests involve colonies that occupy and connect several pieces of wood via excavated tunnels or 311 constructed shelter tubes, allowing safe travel between different nest sites. In contrast, Separated-Piece nests 312 are physically detached from the food sources, often featuring complex internal structures like chambers and 313 corridors, and are commonly found in subterranean, mound, or arboreal forms (Mizumoto and Bourguignon, 2020) . MP and SP colonies are typically larger than OP, but social complexity is at its highest in Separated Piece 315 strategies, with large nests distinct from food source, meaning that they do not reduce in size over time and 316 can growth in size over extended period of time. We conducted a Mann-Whitney U test between each pair of 317 nesting strategies, and always found significant differences except for the MP versus SP comparison (W=211; 318 adjusted P=1; Table S3). Although termites, collectively, exhibit a higher d_N/d_S ratio compared to non-social 319 Blattodae Blattodea species, the variations within termites are strongly associated with the complexity of their 320 eusocial structures. Larger colonies, characterized by multiple pieces (MP) and separated pieces (SP) strate-321 gies, display higher d_N/d_S values than the smaller, single-piece (OP) colonies (Fig. 4-A). Within the same 322 termite family, different species tend to exhibit identical nesting strategies, complicating the attribution of a 323 direct correlation between nesting strategy and d_N/d_S . Nonetheless, a minimum level of variation in nesting 324 strategies is at least observed within two families: Archotermopsidae, with two OP species and one MP species, 325 and Rhinotermitidae B, comprising two OP species and three MP species. Despite the limited number of data 326 points, we observed that within these families, the d_N/d_S ratio is consistently higher in MP species compared 327 to OP (Fig. <u>5152</u>). This preponderance of species with less complex sociality in the Archotermopsidae could 328 explain why it is the termite family with the lowest d_N/d_S (median=0.149) over the 11 surveyed families (Table 329 S4). 330

Figure 4. Relationship between social complexity in termites and d_N/d_S ratio. **A.** Social complexity, as approximated by nesting strategy, following Mizumoto and Bourguignon (2021).

Non-social species are represented solely by the outgroup. OP denotes One-Piece nesters, MP signifies Multiple-Pieces nesters, and SP refers to Separate-Pieces nesters. **B.** Social complexity, as approximated by the working castes, following Mizumoto and Bourguignon (2021). Pseudergates are workers with the plasticity to transition between castes, including reproductive roles, whereas true workers lack this ability to change castes. Bonferroni-adjusted statistical significance is denoted as follows: ns (P > 0.05), * ($P \le 0.05$), ** ($P \le 0.001$), *** ($P \le 0.001$), *** ($P \le 0.001$), *** ($P \le 0.001$).

This intricate social structure likely leads to higher d_N/d_S values due to the formation of larger colonies, 331 which in turn reduces the number of breeding individuals, significantly affecting Ne and thus natural selec-332 tion efficiency. Such association between advanced sociality and high d_N/d_S ratio has been retrieved in two 333 empirical studies (Romiguier, Gayral, et al., 2014; Rubin, 2022) but not in a recent study in ants (Barkdull and Moreau, 2023) In contrast, colonies that inhabit a single piece of wood, referred to as OP (One Piece strategy; see Fig. 4-A), 335 are typically smaller. Consequently, these are anticipated to exhibit lower d_N/d_S values, stemming from de-336 creased reproductive variance among females. Here, we classify the nesting strategies of termites as OP (One 337 Piece), MP (Multiple Pieces), and SP (Separated Pieces) following the categorization in the termite literature 338 (Mizumoto and Bourguignon, 2021). 339

Mizumoto and Bourguignon (2021) suggests an alternative method for gauging the complexity of eusociality in termites by classifying species based on the developmental pathways of their worker caste, which are either pseudergates or true workers. Pseudergates are developmentally immature reproductive individuals, and can perform the colony's labor tasks but also differentiate later into either soldiers or reproductives. In contrast, true workers lack such developmental plasticity and are highly specialized to the colony's tasks. This specialization of true workers, as opposed to pseudergates, results in a higher division of labor, thereby indicating increased social complexity. Both species possessing pseudergates or true workers exhibit higher d_N/d_S 346 ratios compared to non-social species (Mann-Whitney U test: W=0 in both comparisons; Adjusted P-value 347 of 1.22×10^{-3} and 2.15×10^{-4} respectively). Interestingly, species with true workers display significantly 348 higher d_N/d_S ratios than those with pseudergates (W=117; Adjusted P-value= $1.87 \times 10^{-5} 6.26 \times 10^{-4}$ and 349 6.29×10^{-5} respectively; Fig. 4-B). This reinforces the idea that effective population size is not only affected 350 by eusociality, but also at a more finer scale by the different levels of social complexity --that affect effective 351 population size. One potential effect increasing further d_N/d_S in "true workers" species is that worker being 352 sterile, worker-specific genes can not be directly selected but only *via* kin selection. Such an indirect selection is 353 predicted to be reduced compared to direct selection, an idea that has been supported by previous work in the 354 pharaoh ant (Warner et al., 2017). To better quantify the effect of indirect selection in termites and disentangle 355 it from the effect of Ne_i an interesting perspective would be to replicate our study on queen-biased genes vs. 356 worker-biased genes. 357

Our results suggest with An effect of worker reproduction has also been tested in a recent study in ants but $_{358}$ led to different results (Barkdull and Moreau, 2023). We suggest that this difference between ant and termites $_{359}$ can be explained by differences in turnover between these two groups. In termites, species with true workers $_{361}$ are highly represented in one clade which suggests that this trait is highly stable throughout their evolution. In $_{361}$ contrast, worker polymorphism in ant species may be less stable as suggested by Barkdull and Moreau (2023) $_{362}$. We therefore propose that worker polymorphism in ants might not be maintained over long enough periods $_{363}$ to have as clear effects as in termites on d_N/d_S ratio. $_{364}$

Overall, our results suggest with two different proxies of eusociality level that there is a molecular cost 365 to social complexity. Such a finding have been first suggested in ants, where a correlation between d_N/d_S 366 ratios and another proxy of social complexity (queen/worker dimorphism) have been reported (Romiguier, 367 Lourenco, et al., 2014). This finding was therefore based on only 7 species. Here, we confirmed this idea 368 on a larger dataset of the other major eusocial taxa. Taken independently, both results are therefore these 369 results in ants and termites are sensitive to correction for phylogenetic inertia, as species with high social 370 complexity tend to be clustered in few related clades within both ants and termites. Taken collectively, both 371 results therefore reinforce the conclusion of the other, as it seems unlikely that the association between high 372 d_N/d_S and high social complexity is due to chance in the two taxa. Supplementary analyses on more species, 373 including other eusocial clades such as beesor wasps will be useful to further confirm our conclusion.both 374 distant taxa. Further reinforcing this conclusion, an association between advanced sociality and a high d_N/d_S 375 ratio has also been observed in bees (Rubin, 2022), indicating that this pattern is present across all three 376 major eusocial taxa. A similar trend has been identified in social Synalpheus shrimps compared to their 377 non-social counterparts (Chak et al., 2021). These findings provide yet another example of the negative impact 378 of eusociality on the efficiency of natural selection. 379

Overall, this study confirms. We therefore note that less efficient purifying selection at low Ne does not 380 necessarily translate into less positive selection events. In bees, eusocial lineages appear to exhibit higher 381 d_N/d_S ratio (likely due to less efficient purifying selection), but also more positive selection events (Shell et al., 2024) . In a similar way, a positive selection hotspot is associated to the origin of advanced eusociality in ants 383 (Romiguier, Borowiec, et al., 2022). Such an apparent paradox can be explained because smaller populations 384 are predicted to have a larger proportion of beneficial mutations due to the increased fixation of deleterious 385 mutations in such populations, which in turn creates more opportunities for new beneficial back-mutations 386 (i.e, compensatory mutations; Weissman and Barton, 2012). This theoretical expectation of saturation in adaptives rates over the long term for species with large Ne has been empirically demonstrated across various animal 388 groups (Rousselle et al., 2020), including insects, mollusks, annelids, birds, and mammals. In this study, the 389 relationship between effective population size and ω_A , the rate of adaptive amino-acid substitution is indeed 390 positive only in taxa with low Ne. 391

To conclude, our study supports that eusociality is associated to significant decreases in terms of effective population size natural selection efficiency, which validates population genetic theory and highlights that euso-393

Figure S1. Test for the relaxation of purifying selection (k < 1) and positive selection (k > 1) against a null model for 3,166 orthologous codon-aligned genes in the Evangelista et al. (2019) dataset. Blue: loci that do not reject the null model (p-value > 0.05 after Bonferroni correction). Orange: loci supporting a positive selection model in termites (k > 1, p-value < 0.05 after Bonferroni correction). Red: loci supporting a relaxation of purifying selection in termites (k < 1, p-value < 0.05 after Bonferroni correction). Red: loci supporting a

cial insects undergo molecular evolution that is closer to large vertabrates vertebrates than other insects. This support the view that social insects should be considered as superorganisms (Boomsma and Gawne, 2018), and that their population size vary depending on their social complexity in the same way than population size vary depending on life history traits for non-social species (Romiguier, Gayral, et al., 2014). 397

Conflict of interest disclosure

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in relation ³⁹⁹ to the content of the article. ⁴⁰⁰

Data, script, code, and supplementary information availability

Data and scripts are available online from a Zenodo depository: https://doi.org/10.5281/zenodo.11057544

Table S1. Relationship between d_N/d_S values for termite families ratios, social traits and adult body size in the Blattodea dataset (Evangelista et al., 2019)

Species	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\frac{\min d_N/d_S}{\log Genes}$	$\max d_N/d_S \operatorname{\underline{dN/dS}}$	Social System
<u>Anallacta_methanoides</u>	Blattellinae	1562	0.0682	gregarious
<u>Antipaluria_urichi</u>	Embioptera	2114	0.0622	subsocial

Continued on

Table S1 continued from previous page					
Species	Order	Nb Genes	dN/dS	Social System	
Antongilia_madagassa	Phasmatodea	1602	0.0711	solitary	
Asiablatta_kyotensis_	Blattellinae	1714	0.0750	gregarious	
Aularches_miliaris	Orthoptera	2171	0.0580	gregarious	
Balta_vilis	Pseudophyllodromiinae	2362	0.0688	gregarious	
Blaberus_atropos	Blaberidae	2010	0.0726	gregarious	
Blattella_germanica	Blattellinae	2409	0.0636	gregarious	
Cariblatta_sp	Pseudophyllodromiinae	1850	0.0671	solitary	
Catara_rugosicollis	Blattidae	2039	0.0919	gregarious	
Coptotermes_sp	Isoptera	1819	0.113	eusocial	
Cosmioperla_kuna	Plecoptera	1679	0.0618	solitary	
Cryptocercus_wrighti	Cryptocericidae	2505	0.0905	subsocial	
Deropeltis erythrocephala	Blattidae	2105	0.0819	gregarious	
Diplatys sp	Dermaptera	2222	0.0597	gregarious	
Diploptera punctata	Blaberidae	1537	0.0669	gregarious	
Ectobius sylvestris	Ectobiinae	1770	0.0608	solitary	
Ellipsidion sp	Pseudophyllodromiinae	2426	0.0714	solitary	
Empusa pennata	Mantodea	2144	0.0628	solitary	
Enisymploce sundaica	Blattellinae	1690	0.0702	gregarious	
Ergaula capucina	Convdiidae	1991	0.0794	solitary	
	Convdiidae	2071	0.0692	solitary	
	Plattidae	1012	0.0002	gragarious	
Eurycous_nonuana	Diattitude	2024	0.0727	gregarious	
	Pseudophyliodronninae	2034	0.0619	gregarious	
	Dermaptera	2281	0.0612	Solitary	
Galloisiana yuasai	Grylloblattodea	2339	0.0734	solitary	
Grylloblatta_bifratrilecta	Grylloblattodea	2096	0.0768	solitary	
<u>Gyna_lurida</u>	Blaberidae	1601	0.0690	gregarious	
Haploembia_palaui	Embioptera	2225	0.0611	solitary	
Incisitermes_marginipennis	Isoptera	2010	0.0968	eusocial	
Ischnoptera_deropeltiformis	Blattellinae	2099	0.0712	gregarious	
Lamproblatta_albipalpus	Lamproblattidae	2439	0.0649	gregarious	
Loboptera_decipiens	Blattellinae	2396	0.0728	gregarious	
Lobopterella_dimidiatipes	Blattellinae	<u>1918</u>	0.0653	gregarious	
<u>Mantoida_sp</u>	Mantodea	<u>1861</u>	0.0643	solitary	
<u>Mantophasma_sp</u>	Mantophasmatodea	1769	0.0689	gregarious	
Mastotermes_darwiniensis	Isoptera	2398	0.103	eusocial	
Metallyticus_splendidus_	Mantodea	2180	0.0695	solitary	
<u>Methana_parva</u>	Blattidae	1893	0.0716	gregarious	
Nauphoeta_cinerea	Blaberidae	2068	0.0726	gregarious	
Nippancistroger_testaceus	Orthoptera	2379	0.0619	solitary	
Nocticola_sp	Nocticolidae	2350	0.0611	gregarious	
Nyctibora_sp	Nyctiborinae	1349	0.0666	solitary	
Orestes_mouhotii	Phasmatodea	2192	0.0651	solitary	
Panchlora_nivea	Blaberidae	1942	0.0677	gregarious	
Paratemnopteryx couloniana	Blattellinae	1909	0.0774	gregarious	
Periplaneta americana	Blattidae	2194	0.0554	gregarious	
Phaeophilacris_bredoides	Orthoptera	2283	0.0571	solitary	

Continued on

Table S1 continued from previous page					
Species	Order	Nb Genes	<u>dN/dS</u>	Social System	
Polyphaga_aegyptiaca	Corydiidae	1847	0.0674	solitary	
Princisia_vanwaerebeki	Blaberidae	<u>1793</u>	0.0697	gregarious	
Prorhinotermes_simplex	Isoptera	2507	0.106	eusocial	
Protonemura_ausonia	Plecoptera	2295	0.0573	solitary	
Reticulitermes_santonensis	Isoptera	<u>1892</u>	0.115	eusocial	
Schultesia_lampyridiformis	Blaberidae	2466	0.0696	gregarious	
Shelfordella_lateralis	Blattidae	2317	0.0602	gregarious	
Sundablatta_sexpunctata	Pseudophyllodromiinae	2516	0.0680	gregarious	
<u>Supella_longipalpa</u>	Pseudophyllodromiinae	2431	0.0606	gregarious	
Symploce_sp	Blattellinae	2464	0.0729	gregarious	
Tanzaniophasma_sp	Mantophasmatodea	2127	0.0654	NA	
<u>Therea_bernhardti</u>	Corydiidae	<u>1778</u>	0.0779	solitary	
<u>Timema_cristinae</u>	Phasmatodea	<u>1958</u>	0.0587	solitary	
<u>Tivia_sp</u>	Corydiidae	<u>1592</u>	0.0643	solitary	
<u>Tryonicus_parvus</u>	Tryonicidae	2149	0.0658	NA	
<u>Xya_variegata</u>	Orthoptera	2423	0.0568	solitary	
Zootermopsis_nevadensis	Isoptera	2573	0.111	eusocial	
Zorotypus_caudelli	Zoraptera	2298	0.0568	subsocial	

Table S2. Relationship between d_N/d_S ratios and social traits in the Isoptera dataset (Bucek et al., 2019)

Species	Family	Nb Genes	dN/dS	Abe Nesti
Agnathotermes_crassinasus	Nasutitermitinae	3481	0.147	SP
Amitermes_sp	Termitinae	3613	0.163	SP
Anoplotermes_banksi	Apicotermitinae	0.179_3732	0.178	SP
Aparatermes_sp	Apicotermitinae	3768	0.182	SP
Astratotermes_sp	Apicotermitinae	3648	0.170	SP
Atlantitermes_osborni	Nasutitermitinae	3727	0.162	SP
Basidentitermes_aurivillii	<u>Termitidae_B</u>	3745	0.175	SP
Bifiditermes_mutubae	Kalotermitidae	3397	0.163	OP
Blaberus_atropos	outgroup	2483	0.106	<u>non_social</u>
Blattella_germanica	outgroup	3927	0.105	<u>non_social</u>
<u>Cavitermes_tuberosus</u>	<u>Termitidae_B</u>	3711	0.171	SP
Cephalotermes_rectangularis	<u>Termitidae_A</u>	3479	0.160	SP
Constrictotermes_cavifrons	Nasutitermitinae	3701	0.164	SP
Coptotermes_acinaciformis_	<u>Rhinotermitidae_E</u>	3803	0.161	MP
Cornitermes_pugnax	Syntermitinae	3721	0.161	SP
Cryptocercus_wrighti	outgroup	3491	0.125	<u>non_social</u>
Cryptotermes_domesticus	Kalotermitidae	3800	0.144	OP
Cryptotermes_secundus	Kalotermitidae	3707	0.161	<u>OP</u>
<u>Cubitermes_sp</u>	<u>Termitidae_B</u>	<u>3616</u>	0.168	0.211_<u>SP</u>
Archotermopsidae Dentispicotermes brevicarinatus	0.149 Termitinae	3805	0.175	SP
Dicuspiditermes_cf_laetus	Termitinae	3510	0.171	SP
Embiratermes_neotenicus	Syntermitinae	3787	0.188	SP
Empusa_pennata	outgroup	2690	0.0971	<u>non_social</u>

Table S2 continued from previous page					
Species	Family	Nb Genes	dN/dS	Abe Nesti	
Epicalotermes_kempae	Kalotermitidae	3505	0.145	0.155 OP	
Euhamitermes_sp1	Apicotermitinae	3451	0.211	SP	
Foraminitermes_rhinoceros	Foraminitermitinae	2394	0.151	SP	
Globitermes_sulphureus	Termitinae	3719	0.158	SP	
Glossotermes oculatus	Rhinotermitidae B	3824	0.132	OP	
Glyptotermes parvulus	Kalotermitidae	0.149 3 616	0.140	0.163 OP	
Heterotermes ferox	Rhinotermitidae E	3483	0.224	MP	
Heterotermes malabaricus	Rhinotermitidae E	3391	0.165	MP	
Heterotermes tenuior	Rhinotermitidae E	3629	0.169	MP	
Heterotermes tenuis	Rhinotermitidae E	3569	0.173	MP	
Hodotermonsis siostedti	Archotermonsidae	2927	0.155	MP	
Hospitalitermes sp	Nasutitermitinae	3563	0.164	SD	
Indotermes sn1	Anicotermitinae	3107	0.164	یارہ د	
Indotermos sp2	Apicotermitinae	2047	0.171	یتہ دD	
lugositermes tuberculatus	Apicotermitinae	2547	0.171	ىتى دە	
Veletermes flevicellie	Keletermitidee	2012	0.170		
Kalotermes_flavicollis	Kalotermitidae	3812	0.144		
	Syntermitinae	3/53	0.187	SP CD	
Labritermes_butteireepeni	Foraminitermitinae	2559	0.150	SP an	
Leptomyxotermes_doriae	Nasutitermitinae	3522	0.162	SP ~~~~	
Macrotermes_natalensis	Macrotermitinae	0.167_<u>3863</u>	0.181	SP	
<u>Mantis_religiosa</u>	outgroup	2936	0.103	<u>non_social</u>	
<u>Mastotermes_darwiniensis</u>	Mastotermitidae	3266	0.144	<u>MP</u>	
Metallyticus_splendidus	outgroup	2878	0.103	non_social	
<u>Microcerotermes_sp</u>	Syntermitinae	3804	0.156	0.181_SP_	
Nasutitermes	Nasutitermitinae	0.170_3465	0.147<u>0.150</u>	<u>SP</u>	
Nasutitermes_takasagoensis	Nasutitermitinae	2588	0.159	SP	
Neocapritermes_taracua	<u>Termitidae_A</u>	3770	0.171	<u>SP</u>	
Neotermes_castaneus	Kalotermitidae	3757	0.148	<u>OP</u>	
Occasitermes_sp1	Nasutitermitinae	3604	0.256	SP	
Rhinotermitidae_Odontotermes_formosanus	Macrotermitinae	3713	0.156	SP	
Palmitermes_impostor	Termitidae_B	3680	0.185	SP	
Pericapritermes_sp7	Termitinae	3804	0.185	SP	
Periplaneta_americana	outgroup	3085	0.0925	non_social	
Porotermes_quadricollis	Archotermopsidae	3842	0.147	OP	
Promirotermes sp	Termitidae B	3516	0.169	SP	
Prorhinotermes inopiinatus	Rhinotermitidae C	3370	0.167	OP	
Prorhinotermes simplex	Rhinotermitidae C	3262	0.180	OP	
Pseudacanthotermes militaris	Macrotermitinae	3450	0.164	SP	
Quasitermes incisus	Termitidae B	0.154 3572	0.132 0.176	0.190 SP	
Reticulitermes flavines	Rhinotermitidae D	0 161 3 276	0.166	MP	
Reticulitermes grassei	Rhipotermitidae D	2391	0.152	MP	
Reticulitermes lucifugus	Rhipotermitidae D	2599	0.154	MP	
Reticulitermes speratus	Rhinotermitidae D	2825	0 171	MP	
Phinotormitidae E Phinotormos hispidus		<u>2025</u>	0.171		
Suptormitingo Schoderbinetermen internedius	0.172 Deineterreitides D	0.156.2002	0.100.100		
Schederbinetermes and	Dhipotormitida - D	0.100 2003	0.150		
Schedorninotermes_sp4	Kninotermitidae_B	3702	0.158	IVIP	

Con

	Table S2 continued from pro	evious page			
Species	Family	Nb Genes	dN/dS	Abe Nesti	
Serritermes_serrifer	<u>Rhinotermitidae_B</u>	3786	0.133	<u>OP</u>	
Sphaerotermes_sphaerothorax	Sphaerotermitinae	<u>3315</u>	0.161	<u>SP</u>	
Spinitermes_trispinosus	Termitidae_B	0.173_3783	0.168_0.169	0.185 <u>S</u>P	
Termitinae Stylotermes_halumicus	0.170-Stylotermitidae	0.158_3855 _	0.185_0.135	<u>OP</u>	
Termitogeton_planus	<u>Rhinotermitidae_A</u>	3517	0.140	<u>OP</u>	
Zootermopsis_nevadensis	Archotermopsidae	3786	0.145	<u>OP</u>	

Table S3. Pairwise comparisons of differences in $\frac{dNdS}{dN}/dS$ between alternative nesting strategies

Pair	W	Adjusted <i>P</i> -value
Non-social vs. OP	0	$\frac{2.77 \times 10^{-3}}{1.48 \times 10^{-3}}$
Non-social <i>vs.</i> MP	0	$\frac{3.72 \times 10^{-3}}{1.78 \times 10^{-3}}$
Non-social <i>vs.</i> SP	0	$\underline{6.02 \times 10^{-4}} \underline{1.91 \times 10^{-4}}$
OP vs. MP	40	$\frac{1.77 \times 10^{-2}}{2.93 \times 10^{-2}}$
OP vs. SP	74	$\underline{6.46 \times 10^{-5}} \underline{1.53 \times 10^{-4}}$
MP vs. SP	211	1.00

Adjusted *p*-values from Mann-Whitney U tests comparing the d_N/d_S values between different nesting strategies of termite species. Adjustments were made using the Bonferroni method to correct for multiple comparisons.

Table S4. d_N/d_S values for termite families

Family	$\underline{mean} d_N / d_S$	$\min d_N/d_S$	$\max_{M \to M} \frac{d_N}{d_{S_{\sim}}}$
Apicotermitinae	<u>0.179</u>	0.168	0.211
Archotermopsidae	0.149	0.145	0.155
Kalotermitidae	0.149	0.140	0.163
Macrotermitinae	0.167	0.156	0.181
Nasutitermitinae	0.170	0.147	0.256
<u>Rhinotermitidae_B</u>	0.154	0.132	0.190
<u>Rhinotermitidae_D</u>	0.161	0.152	0.171
<u>Rhinotermitidae_E</u>	0.178	0.161	0.224
Syntermitinae	0.173	0.156	0.188
<u>Termitidae_B</u>	0.173	0.168	0.185
Termitinae	0.170	0.158	0.185

Figure S2. Association between social complexity and d_N/d_S ratios in Archotermopsidae and Rhinotermitidae B using the nesting strategy as proxy.

References

Abe T (1987). Evolution of life types in termites. Evolution and coadaptation in biotic communities.	404
Ahmad M (1963). On the phylogenetic position of Indotermes, with description of a new species (Isoptera,	405
Termitidae). <i>Journal of Natural History</i> 6, 395–399.	406
Atkinson L and ES Adams (1997). The origins and relatedness of multiple reproductives in colonies of the	407
termite Nasutitermes corniger. Proceedings of the Royal Society of London. Series B: Biological Sciences 264,	408
1131–1136.	409
Barbosa JRC and R Constantino (2017). Polymorphism in the neotropical termite S erritermes serrifer. Ento-	410
mologia Experimentalis et Applicata 163, 43–50.	411
Barkdull M and CS Moreau (2023). Worker reproduction and caste polymorphism impact genome evolution	412
and social genes across the ants. <i>Genome Biology and Evolution</i> 15, evad095.	413
Benitiere F, A Necsulea, and L Duret (2022). Random genetic drift sets an upper limit on mRNA splicing accuracy	414
in metazoans. <i>bioRxiv</i> , 2022–12.	415
Bohn H (1989). Revision of the sylvestris group of Ectobius Stephens in Europe (Blattaria: Blattellidae). <i>Insect</i>	416
Systematics & Evolution 20, 317–342.	417
Boomsma II and R Gawne (2018). Superorganismality and caste differentiation as points of no return: how the	418
major evolutionary transitions were lost in translation. <i>Biological Reviews</i> 93, 28–54.	419
Botero-Castro F, E Figuet, MK Tilak, B Nabholz, and N Galtier (2017). Avian genomes revisited: hidden genes	420
uncovered and the rates versus traits paradox in birds. <i>Molecular biology and evolution</i> 34, 3123–3131.	421
Bourguignon T. RH Scheffrahn, I Křeček, ZT Nagy, G Sonet, and Y Roisin (2010). Towards a revision of the	422
Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and de-	423
scription of Longustitermes, gen. nov. <i>Invertebrate Systematics</i> 24, 357–370.	424
Bourguignon T. I Šobotník. I Brabcová. D Sillam-Dussès. A Buček. I Krasulová. B Vytisková. Z Demianová. M	425
Mareš, Y Roisin, et al. (2016). Molecular mechanism of the two-component suicidal weapon of Neocapriter-	426
mes taracua old workers. <i>Molecular biology and evolution</i> 33, 809–819.	427
Bucek A. I Šobotník. S He. M Shi. DP McMahon, EC Holmes, Y Roisin, N Lo, and T Bourguignon (2019). Evolution	428
of termite symbiosis informed by transcriptome-based phylogenies. <i>Current Biology</i> 29, 3728–3734.	429
Cabrera Bl and RH Scheffrahn (2001). Western drywood termite. Incisitermes minor (hagen)(insecta: Isoptera:	430
Kalotermitidae). (<i>IF/IFAS Extension FENY</i> 248, 1–7.	431
Chak ST_IA Baeza and P Barden (2021) Eusociality shapes convergent patterns of molecular evolution across	432
mitochondrial genomes of snapping shripps. <i>Molecular Biology and Evolution</i> 38, 1372–1383	432
Chhotani $O(1975)$ A new species of Fuhamitermes and the image of Nasutitermes garoensis from Arunachal	433
Pradesh (Isontera: Termtidae). Oriental Insects 9, 149–155	434
Chop IC and BI Crespi (1997) The evolution of social behaviour in insects and arachnids. Cambridge University	435
Press	430
Constanting P and O De Souza (1997). Key to the coldiers of Atlantitermes Fontes 1979, with a new species	437
from Brazil (Isontera Termitidae Nasutitermitinae). Tronical Zoology 10, 205–213	438
Constanting P (1990) Agrathetermes crassingues new species of termite from the Amazon basin (Isontera:	439
Termitidae: Nasutitermitinae)	440
Do Sager MH (1954) Exploration du Parc national de la Garamba Introduction Prussels: Institut des neres	441
netioneux du Congo Balgo	442
nucionaux au Congo Belge.	443
analysis of transsriptomes from according reproductives of three Deticulitermes termite species. <i>BLoC One</i>	444
analysis of transcriptomes from secondary reproductives of three Relicultermes termite species. PLos One	445
10, 20145550.	446
(Formicidae) Poperinae), reserve Cocievy 42, 97, 00	447
(ronnicide, rone nielity in a corel worf chains $Network 204, 512, 514$	448
Duily JE (1996). Eusociality in a corai-reet shrimp. <i>Nature</i> 381, 512–514.	449

Dupont L, V Roy, A Bakkali, M Harry, et al. (2009). Genetic variability of the soil-feeding termite Labiotermes	450
labralis (Termitidae, Nasutitermitinae) in the Amazonian primary forest and remnant patches. Insect Con-	451
servation and Diversity 2, 53–61.	452
Dutheil J and B Boussau (2008). Non-homogeneous models of sequence evolution in the Bio++ suite of libraries	453
and programs. <i>BMC evolutionary biology</i> 8, 1–12.	454
Dutheil JY, N Galtier, J Romiguier, EJ Douzery, V Ranwez, and B Boussau (2012). Efficient selection of branch-	455
specific models of sequence evolution. <i>Molecular biology and evolution</i> 29, 1861–1874.	456
Emerson AE and FA Banks (1965). The neotropical genus Labiotermes (Holmgren): its phylogeny, distribution,	457
and ecology (Isoptera, Termitidae, Nasutitermitinae). American Museum novitates; no. 2208.	458
Epplen J et al. (1999). Within-colony relatedness in a termite species: genetic roads to eusociality? <i>Behaviour</i>	459
136, 1045–1063.	460
Evangelista DA, B Wipfler, O Béthoux, A Donath, M Fujita, MK Kohli, F Legendre, S Liu, R Machida, B Misof,	461
et al. (2019). An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). <i>Proceedings of the Royal Society B</i> 286, 20182076.	462 463
Evans TA (2011). Invasive termites. <i>Biology of termites: a modern synthesis</i> , 519–562.	464
Ewart KM, SY Ho, AA Chowdhury, FR Jaya, Y Kinjo, J Bennett, T Bourguignon, HA Rose, and N Lo (2024). Pervasive	465
relaxed selection in termite genomes. <i>Proceedings of the Royal Society B</i> 291, 20232439.	466
Figuet E, B Nabholz, M Bonneau, E Mas Carrio, K Nadachowska-Brzyska, H Ellegren, and N Galtier (2016). Life	467
history traits, protein evolution, and the nearly neutral theory in amniotes. Molecular biology and evolution	468
33, 1517–1527.	469
Florian OP, RH Scheffrahn, and TF Carrijo (2019). Aparatermes thornatus (Isoptera: Termitidae: Apicotermiti-	470
nae), a new species of soldierless termite from northern Amazonia. <i>Florida Entomologist</i> 102, 141–146.	471
Fougeyrollas R, K Dolejšová, D Sillam-Dussès, V Roy, C Poteaux, R Hanus, and Y Roisin (2015). Asexual queen	472
succession in the higher termite Embiratermes neotenicus. Proceedings of the Royal Society B: Biological	473
Sciences 282, 20150260.	474
Galtier N (2016). Adaptive protein evolution in animals and the effective population size hypothesis. <i>PLoS</i>	475
<i>genetics</i> 12, e1005774.	476
Galtier N, C Roux, M Rousselle, J Romiguier, E Figuet, S Glémin, N Bierne, and L Duret (2018). Codon usage bias	477
in animals: disentangling the effects of natural selection, effective population size, and GC-biased gene	478
conversion. <i>Molecular biology and evolution</i> 35, 1092–1103.	479
Gay F (1974). The Australian termite genus Occasitermes (Isoptera: Termitidae: Nasutitermitinae). Australian	480
Journal of Entomology 13, 275–283.	481
Gay F and R Barrett (1983). The occurrence in Australia of Prorhinotermes inopinatus Silvestri (Isoptera: Rhinoter-	482
mitidae). Australian Journal of Entomology 22, 75–77.	483
Gay FJ and JA Watson (1982). The genus Cryptotermes in Australia (Isoptera: Kalotermitidae). Australian Journal	484
of Zoology Supplementary Series 30, 1–64.	485
Ghesini S and M Marini (2013). A dArk-necked drywood terMite (isopterA: kAloterMitidAe) in itAly: description	486
of KalotErmEs italicus SP. NOV. Florida Entomologist, 200–211.	487
Goodisman MA and RH Crozier (2002). Population and colony genetic structure of the primitive termite Mas-	488
totermes darwiniensis. <i>Evolution</i> 56, 70–83.	489
Guéguen L and L Duret (2018). Unbiased estimate of synonymous and nonsynonymous substitution rates	490
with nonstationary base composition. <i>Molecular Biology and Evolution</i> 35, 734–742.	491
Haeseler A von, HA Schmidt, MQ Bui, and LT Nguyen (2014). IQ-TREE: A fast and effective stochastic algorithm	492
for estimating maximum-likelihood phylogenies.	493
Hanus R, J Sobotník, I Valterová, and J Lukáš (2006). The ontogeny of soldiers in Prorhinotermes simplex	494
(Isoptera, Rhinotermitidae). <i>Insectes Sociaux</i> 53, 249–257.	495

Harrison MC, E Jongepier, HM Robertson, N Arning, T Bitard-Feildel, H Chao, CP Childers, H Dinh, H Dodda- paneni, S Dugan, et al. (2018). Hemimetabolous genomes reveal molecular basis of termite eusociality.	496 497
Nature ecology & evolution 2, 557–566.	498
Hayashi Y, S Shigenobu, D Watanabe, K Toga, R Saiki, K Shimada, T Bourguignon, N Lo, M Hojo, K Maekawa,	499
et al. (2013). Construction and characterization of normalized cDNA libraries by 454 pyrosequencing and	500
estimation of DNA methylation levels in three distantly related termite species. <i>PLoS One</i> 8, e76678.	501
Hellemans S, D Fournier, R Hanus, and Y Roisin (2017). Secondary queens in the parthenogenetic termite	502
Cavitermes tuberosus develop through a transitional helper stage. Evolution & development 19, 253–262.	503
Howard KJ and BL Thorne (2011). Eusocial evolution in termites and Hymenoptera. <i>Biology of termites: a modern</i>	504
synthesis, 97–132.	505
Huang Q, P Sun, X Zhou, and C Lei (2012). Characterization of head transcriptome and analysis of gene expres-	506
sion involved in caste differentiation and aggression in Odontotermes formosanus (Shiraki). PLoS One 7,	507
e50383.	508
Huber CD, BY Kim, CD Marsden, and KE Lohmueller (2017). Determining the factors driving selective effects	509
of new nonsynonymous mutations. Proceedings of the National Academy of Sciences 114, 4465–4470.	510
Husseneder C, R Brandl, C Epplen, JT Epplen, and M Kaib (1998). Variation between and within colonies in the	511
termite: morphology, genomic DNA, and behaviour. <i>Molecular Ecology</i> 7, 983–990.	512
Jarvis JU, MJ O'Riain, NC Bennett, and PW Sherman (1994). Mammalian eusociality: a family affair. Trends in	513
Ecology & Evolution 9, 47–51.	514
Kalyaanamoorthy S, BQ Minh, TK Wong, A Von Haeseler, and LS Jermiin (2017). ModelFinder: fast model selec-	515
tion for accurate phylogenetic estimates. Nature methods 14, 587–589.	516
Katoh K and DM Standley (2013). MAFFT multiple sequence alignment software version 7: improvements in	517
performance and usability. Molecular biology and evolution 30, 772–780.	518
Keller L and M Chapuisat (2001). Eusociality and cooperation. <i>Encyclopedia of life sciences</i> , 1–9.	519
Kimura M (1983). The neutral theory of molecular evolution. Cambridge University Press.	520
Kimura M, T Maruyama, and JF Crow (1963). The mutation load in small populations. <i>Genetics</i> 48, 1303.	521
Krishna K (1963). The African genus Foraminitermes Holmgren (Isoptera, Termitidae, Termitinae). American	522
Museum novitates; no. 2161.	523
Krishna K and CL Adams (1982). The Oriental termite genus Labritermes Holmgren (Isoptera, Termitidae, Ter-	524
mitinae). American Museum novitates; no. 2735.	525
Krishna K and R Araujo (1968). A revision of the neotropical termite genus Neocapritermes (Isoptera, Termiti-	526
dae, Termitinae). Bulletin of the AMNH; v. 138, article 3.	527
Kumar S, G Stecher, M Suleski, and SB Hedges (2017). TimeTree: a resource for timelines, timetrees, and di-	528
vergence times. <i>Molecular biology and evolution</i> 34, 1812–1819.	529
Legendre F (2007). Phylogénie et Évolution du Comportement social chez les Blattes et les Termites. PhD thesis.	530
Paris 6.	531
Lewis VR (2009). Isoptera:(Termites). In: <i>Encyclopedia of insects</i> . Elsevier, pp. 535–538.	532
Li H and R Durbin (2011). Inference of human population history from individual whole-genome sequences. <i>Nature</i> 475, 493–496.	533 534
Liang WR, CC Wu, and HF Li (2017). Discovery of a cryptic termite genus, Stylotermes (Isoptera: Stylotermitidae),	535
in Taiwan, with the description of a new species. Annals of the Entomological Society of America 110, 360-	536
373.	537
Lihoreau M (2009). Organisation et fonctionnement des groupes sociaux chez une blatte grégaire: un autre	538
modèle de société d'insectes. PhD thesis. Université de Rennes 1.	539
Lubin Y and T Bilde (2007). The evolution of sociality in spiders. <i>Advances in the Study of Behavior</i> 37, 83–145.	540
Lynch M (2002). Intron evolution as a population-genetic process. <i>Proceedings of the National Academy of Sciences</i> 99, 6118–6123.	541 542
— (2012). The evolution of multimeric protein assemblages. <i>Molecular biology and evolution</i> 29, 1353–1366.	543

Lynch M, MS Ackerman, JF Gout, H Long, W Sung, WK Thomas, and PL Foster (2016). Genetic drift, selection	544
Lynch M B Haubold P Pfaffelbuber and T Maruki (2020) Inference of historical population-size changes with	545
allele-frequency data G3: Genes Genomes Genetics 10, 211–223	540
Lynch M and B Walsh (2007) The origins of genome architecture Vol. 98 Sinauer associates Sunderland MA	547
Ma L L Bechsgaard A Aagaard P Villesen T Bilde and M Schierun (2024) Sociality in spiders is an evolutionary	540
dead-end <i>bioRxiv</i> 2024–04	549
Maistrello L and G Shrenna (1996). Frequency of some behavioural natterns in colonies of Kalotermes flavi-	550
collis (Isoptera Kalotermitidae): the importance of social interactions and vibratory movements as mecha-	551
nisms for social integration. <i>Ethology Ecology & Evolution</i> 8, 365–375	553
Martius C and J d'Arc Ribeiro (1996). Colony populations and biomass in nests of the Amazonian forest termite	554
Anoplotermes banksi Emerson (Isoptera: Termitidae). Studies on Neotropical Fauna and Environment 31, 82–	555
86.	556
Matsuura K (2002). Colony-level stabilization of soldier head width for head-plug defense in the termite Retic-	557
ulitermes speratus (Isoptera: Rhinotermitidae). <i>Behavioral Ecology and Sociobiology</i> 51, 172–179.	558
Michener CD (1969). Comparative social behavior of bees. Annual review of entomology 14, 299–342.	559
Miller L (1994). Dimorphic minor soldiers in Schedorhinotermes breinli (Hill)(Isoptera: Rhinotermitidae). Aus-	560
tralian Journal of Entomology 33, 319–320.	561
Misof B, S Liu, K Meusemann, RS Peters, A Donath, C Mayer, PB Frandsen, J Ware, T Flouri, RG Beutel, et al.	562
(2014). Phylogenomics resolves the timing and pattern of insect evolution. <i>Science</i> 346, 763–767.	563
Mitaka Y, K Kobayashi, A Mikheyev, MM Tin, Y Watanabe, and K Matsuura (2016). Caste-specific and sex-specific	564
expression of chemoreceptor genes in a termite. <i>PLoS One</i> 11, e0146125.	565
Miura T, S Koshikawa, and T Matsumoto (2003). Winged presoldiers induced by a juvenile hormone analog	566
in Zootermopsis nevadensis: implications for plasticity and evolution of caste differentiation in termites.	567
Journal of Morphology 257, 22–32.	568
Mizumoto N and T Bourguignon (2020). Modern termites inherited the potential of collective construction	569
from their common ancestor. <i>Ecology and Evolution</i> 10, 6775–6784.	570
— (2021). The evolution of body size in termites. <i>Proceedings of the Royal Society B</i> 288, 20211458.	571
Nguyen LT, HA Schmidt, A Von Haeseler, and BQ Minh (2015). IQ-TREE: a fast and effective stochastic algorithm	572
for estimating maximum-likelihood phylogenies. Molecular biology and evolution 32, 268–274.	573
Nikolaev SI, JI Montoya-Burgos, K Popadin, L Parand, EH Margulies, NI of Health Intramural Sequencing Cen-	574
ter Comparative Sequencing Program, and SE Antonarakis (2007). Life-history traits drive the evolutionary	575
rates of mammalian coding and noncoding genomic elements. Proceedings of the National Academy of Sci-	576
ences 104, 20443–20448.	577
Noirot C (1959). Les nids de Globitermes sulphureus Haviland au Cambodge. <i>Insectes Sociaux</i> 6, 259–268.	578
Noirot C (1989). Social structure in termite societies. <i>Ethology ecology & evolution</i> 1, 1–17.	579
Ohta T (1973). Slightly deleterious mutant substitutions in evolution. <i>Nature</i> 246, 96–98.	580
Parmentier D and Y Roisin (2003). Caste morphology and development in Termitogeton nr. planus (Insecta,	581
Isoptera, Rhinotermitidae). <i>Journal of Morpholog</i> y 255, 69–79.	582
Picker M (2012). Field guide to insects of South Africa. Penguin Random House South Africa.	583
Popadin K, LV Polishchuk, L Mamirova, D Knorre, and K Gunbin (2007). Accumulation of slightly deleterious mu-	584
tations in mitochondrial protein-coding genes of large versus small mammals. Proceedings of the National	585
Academy of Sciences 104, 13390–13395.	586
Porter EE and BA Hawkins (2001). Latitudinal gradients in colony size for social insects: termites and ants show	587
different patterns. The American Naturalist 157, 97–106.	588
Poulsen M, H Hu, C Li, Z Chen, L Xu, S Otani, S Nygaard, T Nobre, S Klaubauf, PM Schindler, et al. (2014).	589
Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings	590
of the National Academy of Sciences 111, 14500–14505.	591

Rasib KZ and M Saeed Akhtar (2012). Caste Developmental Pathways in Populations of Microcerotermes cham	- 592
pioni (Isoptera: Termitidae, Microcerotermitinae). International Journal of Agriculture & Biology 14.	593
Rolland J, D Schluter, and J Romiguier (2020). Vulnerability to fishing and life history traits correlate with the	594
load of deleterious mutations in teleosts. <i>Molecular Biology and Evolution</i> 37, 2192–2196.	595
Romiguier J, ML Borowiec, A Weyna, Q Helleu, E Loire, C La Mendola, C Rabeling, BL Fisher, PS Ward, and	596
L Keller (2022). Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex	597
eusociality. <i>Current Biology</i> 32, 2942–2947.	598
Romiguier J, E Figuet, N Galtier, EJ Douzery, B Boussau, JY Dutheil, and V Ranwez (2012). Fast and robust charac	- 599
terization of time-heterogeneous sequence evolutionary processes using substitution mapping. <i>PLoS One</i> 7, e33852.	2 600 601
Romiguier J, P Gayral, M Ballenghien, A Bernard, V Cahais, A Chenuil, Y Chiari, R Dernat, L Duret, N Faivre	602
et al. (2014). Comparative population genomics in animals uncovers the determinants of genetic diversity <i>Nature</i> 515, 261–263.	. 603 604
Romiguier J, J Lourenco, P Gayral, N Faivre, LA Weinert, S Ravel, M Ballenghien, V Cahais, A Bernard, E Loire	, 605
et al. (2014). Population genomics of eusocial insects: the costs of a vertebrate-like effective population	I 606
Size. Journal of Evolutionary Biology 27, 595-605.	607
nlacental mammals. Molecular biology and evolution 30, 5–13	608
Roth I M (1986). The genus Symploce Hebard, VII. African species (continued) (Dictyontera: Blattaria, Blattelli	- 610
dae). Insect Systematics & Evolution 17, 433–454.	611
— (2000). Episymploce sundaica australiensis, a new subspecies from Australia and Papua New Guinea (Blat	- 612
tellidae: Blattellinae). Oriental Insects 34, 239–243.	613
Rousselle M, P Simion, MK Tilak, E Figuet, B Nabholz, and N Galtier (2020). Is adaptation limited by mutation? A	614
timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. <i>PLoS Genetics</i>	615
16, e1008668.	616
Rubin B (2022). Social insect colony size is correlated with rates of molecular evolution. <i>Insectes Sociaux</i> 69	, 617
	618
Scheffrahn RH and J Krecek (1999). Termites of the genus Cryptotermes Banks (Isoptera: Kalotermitidae) from the West Indies.	619 620
Scheffrahn RH, NY Su, and TG Myles (1999). Amitermes amicki, a new subterranean termite (Isoptera: Termi	- 621
tidae: Termitinae) from Aruba. <i>Florida Entomologist</i> , 7–14.	622
Schrader L, H Pan, M Bollazzi, M Schiøtt, FJ Larabee, X Bi, Y Deng, G Zhang, JJ Boomsma, and C Rabeling (2021)	. 623
Relaxed selection underlies genome erosion in socially parasitic ant species. <i>Nature Communications</i> 12	624
2918.	625
Shell WA, MA Steffen, HK Pare, AS Seetharam, AJ Severin, AL Toth, and SM Rehan (2021). Sociality sculpts similar	626
patterns of molecular evolution in two independently evolved lineages of eusocial bees. <i>Communications</i>	627
Biology 4, 253.	628
Snyder TE (1924). Descriptions of new species and hitherto unknown castes of termites from America and	629
Hawaii. Proceedings of the United States National Museum.	630
Soleymaninejadian E, B Ji, S Liu, J Yang, and X Zhang (2014). Foraging polyethism in Odontotermes formosanus	631
Shiraki. Journal of Advanced Agricultural Technologies Vol 1.	632
Tabadkani SM, J Nozari, and M Lihoreau (2012). Inbreeding and the evolution of sociality in arthropods. <i>Natur</i>	- 633
Wisserischaften 99, 779-788. Terberet LIA Kamm and VS Song (2017) Debugt and scalable information of non-violation bioten from the dual	634
of upphased whole generation Neture genetics 40, 202, 200	, 635
or unprised whole genomes. <i>Nature genetics</i> 49, 303-309.	636
Molecular traces of alternative social organization in a termite genome. <i>Nature communications</i> 5, 2626	. 637
molecular fraces of alternative social organization in a termite genome, nature communications 3, 3030.	038

Thorne BL (1984). Polygyny in the Neotropical termite Nasutitermes corniger: life history consequences of	639
queen mutualism. Behavioral Ecology and Sociobiology 14, 117–136.	640
Vargo EL (2019). Diversity of termite breeding systems. <i>Insects</i> 10, 52.	641
Vargo EL, TR Juba, and CJ Deheer (2006). Relative abundance and comparative breeding structure of subter-	642
ranean termite colonies (Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes virginicus, and Cop-	643
totermes formosanus) in a South Carolina lowcountry site as revealed by molecular markers. Annals of the	644
Entomological Society of America 99, 1101–1109.	645
Wang J, E Santiago, and A Caballero (2016). Prediction and estimation of effective population size. <i>Heredity</i> 117,	646
193–206. Marrier MD, AC Milderener and TA Liebergeren (2017). Concerning in state of this colorities in our outwith obligately.	647
warner MR, AS Mikneyev, and TA Linksvayer (2017). Genomic signature of kin selection in an ant with obligately	648
sterile workers. <i>Molecular Biology and Evolution</i> 34, 1780–1787.	649
Watson J, W Brown, LR Miller, FL Carter, and MJ Lacey (1989). Taxonomy of Heterotermes (Isoptera: Rhinoter-	650
mitidae) in south-eastern Australia: cuticular hydrocarbons of workers, and soldier and alate morphology.	651
Systematic Entomology 14, 299–325.	652
Watson J, E Metcalf, and J Sewell (1977). A re-examination of the development of castes in Mastotermes dar-	653
winiensis Froggatt (Isoptera). <i>Australian Journal of Zoology</i> 25, 25–42.	654
Weissman DB and NH Barton (2012). Limits to the rate of adaptive substitution in sexual populations. <i>PLoS</i>	655
<i>genetics</i> 8, e1002740.	656
Wertheim JO, B Murrell, MD Smith, SL Kosakovsky Pond, and K Scheffler (2015). RELAX: detecting relaxed	657
selection in a phylogenetic framework. <i>Molecular biology and evolution</i> 32, 820–832.	658
Weyna A and J Romiguier (2021). Relaxation of purifying selection suggests low effective population size in	659
eusocial Hymenoptera and solitary pollinating bees. Peer Community Journal 1.	660
Williams R (1966). The east African termites of the genus Cubitermes (Isoptera: Termitidae). <i>Transactions of the</i>	661
Royal Entomological Society of London 118, 73–118.	662
Wipfler B, H Letsch, PB Frandsen, P Kapli, C Mayer, D Bartel, TR Buckley, A Donath, JS Edgerly-Rooks, M Fujita, et	663
al. (2019). Evolutionary history of Polyneoptera and its implications for our understanding of early winged	664
insects. Proceedings of the National Academy of Sciences 116, 3024–3029.	665
Wu W, Z Huang, Z Li, S Zhang, X Liu, and D Gu (2016). De novo transcriptome sequencing of Cryptotermes	666
domesticus and comparative analysis of gene expression in response to different wood species. Gene 575,	667
655–666.	668