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1 Introduction
In the manuscript "Probabilities of tree topologies with temporal constraints and
diversification shifts", the author Gilles Didier presents recursive formulae to
calculate the probability of a time-like, labeled, rooted, bifurcating trees (simply
called topologies hereafter) assuming the piecewise-constant, birth, death, and
sampling diversification model. Additionally, for a set of temporal constraints
on node ages, a recursive method is presented to calculate the joint probability
of a given topology with nodes following temporal constraints. Furthermore,
the probability of a model shift with different birth, death, and sampling rates
on one arbitrary interior node of a given topology is derived. This probability
can be used to test for model shifts using the maximum likelihood ratio test.
The complexity of the calculations is quadratic with the number of leaves and
linear with the number of time coefficients — allowing for fast computations.

2 Opinion
In my opinion, the manuscript is an impressive demonstration of the power of
combinatorics and algebra, and presents several new findings to the phylogenetic
community. Especially, the possibility to obtain model based priors for time
constrained phylogeny nodes will be of high interest to phylogeneticists working
on dating with fossils, or fast evolving species with time series data such as
pathogens.

Nevertheless, I still feel that improvements to the readability and possibility
to understand the results can be made, and I think that the results are a bit
hidden behind a variety of mathematical symbols and definitions. This is also,
why I was not able to completely follow the proofs of the theorems, although I
understood the examples.

I would also appreciate a more detailed discussion of the results and impli-
cations. Especially, the interpretation of the presented applications could be
elongated. With respect to this, one could describe in more detail, how your
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results can used on data sets involving sequence data. To me it is not com-
pletely clear, if one should use your model to replace other prior distributions,
or to assess the likelihood of a specific sample during Bayesian (or maximum
likleihood) analysis.

Minor comments can be found as digital annotations on the PDF; comments
related to the English language are recommendations, but I am also not a native.
Below I list other suggestions in the order they appear in the main text.

3 Suggestions
• Abstract, page 1, page 4: size of phylogeny. Could you please be more
specific and move the definition of size from page 4 before the first use of
this term?

• Abstract: divergence time. When reading the manuscript for the first
time, the exact meaning of this term was not clear to me. It could refer to
the divergence time between 2, or any number of leaves on a tree (possibly
also the height of a tree). It could also refer to the divergence time between
inner nodes on a tree. It may be good to be more specific. Would it be
precise to just state that the divergence times are the branch lengths of
the tree?

• Abstract and Page 2: exact divergence time distributions. Exact sounds
very strong in this context. Do you mean exact when assuming the
piecewise-constant, birth, death, and sampling model?

• Chapter 2, first paragraph: I am confused about the meaning of ρi. Ac-
cording to Tanja Stadlers paper [29], it is the survival probability when not
at the present, and the sampling probability when at the present. Could
you please explain the meaning of ρi in more detail here? Especially,
the sentence: "The samplings of ancestral lineages .. are interpreted as
extinction events .." confuses me. How can ancestral lineages be extinct?

• Chapter 3, first sentence: I do not understand this sentence. Trees ob-
tained from the piecewise constant birth, death and sampling process are
rooted and binary, but I can think of diversification processes that do not
yield binary trees.

• Section 3.1.: Why does the reconstructed birth-death-sampling process
not have extinction? Do I mis-understand something here?

• Chapter 4; Figure 2: Could you please explain what a special lineage is
before referencing Figure 2?

• Section 5.1: To me it is not clear what the events τni
< ui are. As far as

I can see, we restrict the node (event?) ni, to be younger than ui. Isn’t it
clearer to write: node ages τni

, instead of events?
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• Section 5.1: At this point, I also got confused about the nomenclature
(which is very consistent but involves many different, new symbols). Let
me summarize:

– Bold symbols denote probabilities. Especially, the symbol P denotes
"probability of".

– The symbol T for instance, is just P(T |n), where n are the number
of tips of the topology T .

– Subscripts denote model parameters (mostly Θ). Why are the times
ui, and u′i not part of Θ?

• Theorem 2: So the time constraints are not part of the model?

• Theorem 2: "ΩT,n if s1 = o". What is ΩT,n? It does not form part of the
definitions from before. I guess you mean ΩT ? What if s1 6= o?

• Theorem 2: "s′k′+1 = sk". Why introduce a new symbol, when it is just
the same as a symbol that was already introduced before?

• Theorem 2: "Θ’". Let the earliest time constraint be at time u. Is it
correct, that if u < s1, just another slice is introduced at u? Can you
please describe in words what is being done here?

• Proof of Theorem 2: "being a divergence time assignation of T ": I do not
understand this sentence.

• Proof of Theorem 3: "The set of subsets of internal nodes with divergence
time anterior to t, and consistent with the assumptions of the Theorem is
thus exactly Ω×T,m".

Ω×T ,m is the set of all start-sets A of T such that m is a tip of ΓT ,A. I
argue that Ω×T ,m is the "set of subsets of internal nodes with divergence
time anterior to t, and consistent with the assumptions of the Theorem"
together with start-sets including nodes in Tm.

• Figure 7 and paragraph afterwards: The abbreviation receiver operating
characteristic (ROC) was not defined.
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Abstract

Dating the tree of life is a task far more complicated that only determining the evolutionary relationships
between species. It is therefore of interest to develop approaches able to deal with undated phylogenetic trees.

The main result of this work is a method to compute probabilities of undated phylogenetic trees under piecewise-
constant-birth-death-sampling models by constraining some of the divergence times to belong to given time intervals
and by allowing diversification shifts on certain clades. The computation is quite fast since its time complexity is
quadratic with the size of the tree topology and linear with the number of time constraints and of “pieces” in the
model.

The interest of this computation method is illustrated with three applications, namely,

• to compute the exact distribution of the divergence times of a tree topology with temporal constraints,

• to directly sample the divergence times of a tree topology, and

• to test for a diversification shift at a given clade.

Keywords: Phylogenetics, Datation, Shift Detection, Diversification, Birth-death process

1 Introduction

Estimating divergence times is an essential and difficult stage of phylogenetic inference [22, 23, 17, 4, 20]. In order
to perform this estimation, current approaches use stochastic models for combining different types of information:
molecular and/or morphological data, fossil calibrations, evolutionary assumptions etc [31, 24, 8, 13]. An important
point here is that dating speciation events is far more complicated and requires stronger assumptions on the evolu-
tionary process than just determining the evolutionary relationships between species, not to mention the uncertainty
with which divergence times can be estimated. It is therefore preferable to use, as much as possible, methods that
do not require the exact knowledge of the divergence times. This is in particular true for studying questions related
to the diversification process since diversification process and divergence times are intricately linked. Diversification
models are used in order to provide “prior” probability distributions of divergence times (i.e., which does not take
into account information about genotype or phenotype of species [33, 15, 13]) [5, 14, 33]. Conversely, estimating pa-
rameters of diversification models requires temporal information about phylogenies. The birth-death-sampling model
is arguably the simplest realistic diversification model since it includes three important features shaping phylogenetic
trees [34, 35]. Namely, it models cladogenesis and extinction of species by a birth-death process and takes account of
the incompleteness of data by assuming an uniform sampling of extant taxa. The birth-death-sampling model has been
further studied and is currently used for phylogenetic inference [28, 30, 14, 5]. Since assuming constant diversification
rates along time is sometimes unrealistic, the birth-death-sampling model has been extended in [29] in order to allow
a finite number of shifts in diversification rates through time, i.e., the diversification time is split into time intervals
over which the diversification rates are constant (they may differ between intervals). This “piecewise-constant-birth-
death-sampling model” also allows to model past extinction events. The main goal of this work is to devise methods
to compute probabilities of undated phylogenies under certain assumptions about divergence times and about the
diversification process under piecewise-constant-birth-death-sampling models from [29]. Though this study focuses on
methodological and computational aspects, three applications illustrating its practical interest are provided.

The first result is a method to compute the probability, under a piecewise-constant-birth-death-sampling model,
of a tree topology in which the divergence times are not exactly known but can be “constrained” to belong to given
time intervals. This computation is performed by splitting the tree topology into small parts involving the times of
the temporal constraints and of the shifts of the model, called patterns, and by combining their probabilities in order
to get that of whole tree topology. The total time complexity of this computation is quadratic with the size of the
phylogeny and linear with the total number of constraints and shifts of the model. Its memory space complexity is
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quadratic with the size of the phylogeny. In practice, it can deal with phylogenetic trees with hundreds of tips on
standard desktop computers.

This computation can be used to obtain the exact divergence time distributions of a given undated phylogeny with
temporal constraints, which can be applied to various questions. First, it can be used for dating phylogenetic trees
from their topology only, as the method implemented in the function compute.brlen of the R-package APE [11, 21]. It
also allows to visualize the effects of the birth-death-sampling parameters on the prior divergence times distributions,
to investigate consequences of evolutionary assumptions etc. Last, it can provide prior distributions in phylogenetic
inference frameworks. Note that the ability to take into account temporal constraints on the divergence times is
particularly interesting in this context since in the calibration process, fossil ages are generally used for bracketing
some of the divergence times [18]. The computation of the divergence time distribution is illustrated with a contrived
example in order to show the influence of the temporal constraints and of the model shifts and on a real phylogenetic
tree in order to show the influence of the parameters of a simple birth-death-sampling model on the divergence time
distributions. A previous method for computing divergence time distributions under the birth-death model [9] is
briefly recalled in Section 7.1. It is based on a different idea and it seems difficult to extend it in order to take into
account temporal constraints,

The computation of the probability of a tree topology under a piecewise-constant-birth-death-sampling model
allows us to sample all its divergence times under this model. In particular, this sampling procedure can easily be
integrated into phylogenetic inference software [7, 25], e.g., for proposing accurate MCMC moves.

A second result shows how to calculate the probability of a tree topology in which a given clade is assumed to
diversify following a birth-death-sampling model different from that of the rest of the phylogeny. A natural application
of this computation is to test diversification shift in undated phylogenies. It is used to define a likelihood ratio test
for diversification shift which is compared with three previous approaches studied in [32].

Last, the approach presented here can be extended in order to take into account fossils. In [3], we started to
work in this direction by determining divergence time distributions from tree topologies and fossil ages under the
fossilized-birth-death model in order to obtain better node-calibrations for phylogenetic inference.

C-source code of the software performing the computation of divergence time distributions and their sampling
under a piecewise-constant-birth-death-sampling model and the shift detection test is available at https://github.

com/gilles-didier/DateBDS.
The rest of the paper is organized as follows. Piecewise-constant-birth-death-sampling models are formally intro-

duced in Section 2. Section 3 presents definitions and some results about tree topologies. The standard and special
patterns, i.e., the subparts of the diversification process from which are computed our probabilities, are introduced in
Section 4. Sections 5 and 6 describe the computation of the probabilities of tree topologies with temporal constraints
and diversification shifts, and show that this computation is quadratic with the size of the tree topology. Divergence
time distributions obtained on two examples are displayed and discussed in Section 7. The method for directly sam-
pling the divergence times is described in Section 8. Last, Section 9 presents a likelihood ratio test derived from the
computation devised here, for determining if a diversification shift occurred in a tree topology. Its accuracy is assessed
and compared with three previous tests of diversification shift.

2 Piecewise-constant-birth-death-sampling models

The dynamics of speciation and extinction of species is assumed following a piecewise-constant-birth-death-sampling
model ((si, λi, µi, ρi)0≤i<k, sk) where s0 < s1 < . . . < sk are times, λ0, . . . , λk−1 and µ0, . . . , µk−1 are speciation
and extinction rates and ρ0, . . . , ρk−1 are sampling probabilities. This model was introduced in [29] for modeling a
diversification process starting with a single lineage at s0 and ending at sk, which is usually the present time. Under
model ((si, λi, µi, ρi)0≤i<k, sk), the diversification time [s0, sk] is sliced in periods [si, si+1) during which the speciation
and extinction rates are constant and equal to λi and µi respectively. At each time si with i = 1, . . . , k the lineages
alive are uniformly sampled with probability ρi. The samplings of ancestral lineages at times si with i < k (i.e.,
anterior to the the ending time sk) are interpreted as extinction events while the last one, if sk is the present time,
accounts for our incomplete knowledge of extant species.

A important point is to distinguish between the part of the process that actually happened, which will be referred
to as the whole or the complete process (Fig. 1-Left) and the part that can be observed from the available information
at the present time (i.e., from the sampled extant taxa), which will be referred to as the observed or the reconstructed
process (Fig. 1-Right). More formally, for all times t ∈ [s0, sk], a lineage alive at time t is observable if itself or one
of its descendants is both alive and sampled at the ending time sk. The probability for a lineage alive at a time
t ∈ [si, si+1] to have no sampled descendant at the ending time sk under the piecewise-constant-birth-death-sampling
model Θ = ((si, λi, µi, ρi)0≤i<k, sk) was provided in [29]. It is

pi0(t) =
µi(ci − 1)e−(λi−µi)(sk−si+1) + (µi − ciλi)e−(λi−µi)(sk−t)

λi(ci − 1)e−(λi−µi)(sk−si+1) + (µi − ciλi)e−(λi−µi)(sk−t)
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Figure 1: Left: the whole diversification process (sampled extant species are those with ‘X’); Center: the part of the
process that can be reconstructed is represented in plain – the dotted parts are lost; Right: the resulting phylogenetic
tree.

where ci = (1−ρi)+ρip
i+1
0 (si+1) if i < k−1 and ck−1 = 1−ρk−1. The formula was slightly adapted since we consider

here the “from past to present” direction of time, opposite to that of [29].
Basically, the probability OΘ(t) for a lineage living at time t ∈ [si, si+1] in the complete diversification process (as

in Figure 1-Left) to be observable at the ending time sk is the complementary probability of having no descendant
sampled at time sk. We have that

OΘ(t) = 1− pi0(t)

=
(λi − µi)(ci − 1)e−(λi−µi)(sk−si+1)

λi(ci − 1)e−(λi−µi)(sk−si+1) + (µi − ciλi)e−(λi−µi)(sk−t)
.

The probability that a lineage alive at time t ∈ [si, si+1) has exactly one sampled descendant at time sk was
provided in [29]. The probability IΘ(t, t′) that a lineage alive at time t ∈ [si, si+1) has a single descendant at a
posterior time t′ ∈ (sj , sj+1] can be derived in the very same way to get that

IΘ(t, t′) =
ĝi(t)

∏j−1
`=i ρ`(λ` − µ`)2ĝ`+1(s`+1)

ĝj(t′)
δ,

where ĝi(t) =
e−(λi−µi)(2sk−(si+1+t))(

λi(ci − 1)e−(λi−µi)(sk−si+1) + (µi − ciλi)e−(λi−µi)(sk−t)
)2 and δ =

{
ρj if t′ = sj+1,
1 otherwise.

Birth-death-sampling models studied in [34], are basically piecewise-birth-death-sampling models with a single
“time-slice”, i.e., of the form ((s0, λ0, µ0, ρ0), s1). In the case where the ending lineages are all sampled, one talks
about birth-death models. Under the simple birth-death model with birth rate λ and death rate µ, the probability
Q(λ,µ)(n, t) that a single lineage at time 0 has exactly n descendants at time t is [16, 19],

Q(λ,µ)(0, t) =
µ
(
1− e−(λ−µ)t

)
λ− µe−(λ−µ)t

,

and, for all n > 0,

Q(λ,µ)(n, t) = (λ− µ)2e−(λ−µ)t

(
λ(1− e−(λ−µ)t)

)n−1(
λ− µe−(λ−µ)t

)n+1 .

3 Tree topologies

Tree topologies arising from diversification processes are rooted and binary thus so are all the tree topologies considered
here. Moreover, all the tree topologies considered below will be labeled, which means their tips, and consequently all
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their nodes, are unambiguously identified. From now on, “tree topology” has to be understood as “labeled-rooted-
binary tree topology”.

Since the context will avoid any confusion, we still write T for the set of nodes of any tree topology T . For all tree
topologies T , we put LT for the set of tips of T and, for all nodes n of T , Tn for the subtree of T rooted at n.

For all sets S, |S| denotes the cardinality of S. In particular, |T | denotes the size of the tree topology T (i.e., its
total number of nodes, internal or tips) and |LT | its number of tips.

3.1 Probability

Let us define T(T ) as the probability of a tree topology T given its number of tips under a lineage-homogeneous
process with no extinction, such as the reconstructed birth-death-sampling process.

Theorem 1 ([12]). Given its number of tips, a tree topology T resulting from a pure-birth realization of a lineage-
homogeneous process has probability T(T ) = 1 if |T |= 1, i.e., T is a single lineage. Otherwise, by putting a and b for
the two direct descendants of the root of T , the probability of the tree topology T is

T(T ) =
2|LTa |! |LTb |!

(|LT |−1)|LT |!
T(Ta)T(Tb).

Assumptions of [12] are slightly different from those of Theorem 1 but its arguments still holds. The probability
provided in [2, Supp. Mat., Appendix 2] is actually the same as that just above though it was derived in a different
way from [12] and expressed in a slightly different form (see [3, Appendix 1]).

Theorem 1 implies in particular that T(T ) can be computed in linear time through a post-order traversal of the
tree topology T .

3.2 Start-sets

A start-set of a tree topology T is a possibly empty subset A of internal nodes of T which is such that if an internal
node of T belongs to A then so do all its ancestors. Remark that, basically, the empty set ∅ is start-set of any tree
topology and that if A and A′ are two start-sets of T then both A ∪A′ and A ∩A′ are start-sets of T .

Being given a tree topology T and a non-empty start-set A, we define the start-tree ΓT,A as the subtree topology
of T made of all nodes in A and their direct descendants. By convention, ΓT,∅, the start-tree associated to the empty
start-set, is the subtree topology made only of the root of T .

For all tree topologies T , we define

• ΩT as the set of all start-sets of T , and, for all internal nodes n,

• Ω•T,n as the set of all start-sets A of T such that n ∈ A,

• Ω◦T,n as the set of all start-sets A of T such that n /∈ A, and

• Ω×T,n as the set of all start-sets A of T such that n is a tip of ΓT,A.

4 Patterns

In this section, we shall consider diversification processes starting at origin time s0 and ending at time sk by evolving
following a piecewise-constant-birth-death-sampling model Θ = ((si, λi, µi, ρi)0≤i<k, sk). A pattern is a part of the
observed diversification process starting from a single lineage at a given time and ending with a certain number of
lineages at another given time. It consists of a 3-tuple (t, t′, T ) where t and t′ are the start and ending times of the
pattern and T is the resulting tree topology. We shall consider two types of patterns: standard and special patterns
(Fig. 2). Standard and special patterns are very similar to patterns defined in [2] for the fossilized-birth-death process.
Proofs of Lemmas 1 and 2 are essentially the same as those of the corresponding claims in [2].

4.1 Standard patterns

Definition 1. A standard pattern (t, t′, T ) starts with a single lineage at time t and ends with a tree topology T and
|LT | observable lineages at time t′ (Fig. 2-left).

Let us compute the probability XΘ(t, t′, n) that a single lineage at time t ∈ [s0, s1) has n descendants observable
from sk at time t′ ∈ (t, s1] under the piecewise-constant-birth-death-sampling model Θ = ((si, λi, µi, ρi)0≤i<k, sk).
This probability is the sum over all numbers j ≥ 0, of the probability that the lineage at t has j + n descendants at
t′ in the whole process (i.e., without sampling, which is equal to Q(λ0,µ0)(j + n, t′ − t)), among which exactly n ones

are observable (i.e.,
(
j+n
n

)
OΘ(t′)n (1−OΘ(t′))

j
). We thus have
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Figure 2: The two types of patterns used to compute probability distributions.

XΘ(t, t′, n) =
∞∑
j=0

Q(λ0,µ0)(j + n, t′ − t)
(
j + n

n

)
OΘ(t′)n (1−OΘ(t′))

j

=
(λ0 − µ0)2e−(λ0−µ0)(t′−t)

(
λ0(1− e−(λ0−µ0)(t′−t))

)n−1

OΘ(t′)n(
λ0OΘ(t′) + (λ0(1−OΘ(t′))− µ0)e−(λ0−µ0)(t′−t)

)n+1

Lemma 1. Under the piecewise-constant-birth-death-sampling model Θ = [(si, λi, µi, ρi)]0≤i<k, the probability of the
standard pattern (t, t′, T ) with s0 ≤ t < t′ ≤ s1 is

T(T )XΘ(t, t′, |LT |).

Proof. The probability of the standard pattern (t, t′, T ) is the probability of the tree topology T conditioned on its
number of tips, which is T(T ) from Theorem 1 and since a piecewise-constant-birth-death-sampling model is lineage
homogeneous, multiplied by the probability of observing this number of tips in a standard pattern, which is that of
getting |LT | observable lineages at t′ from a single lineage at t, which is XΘ(t, t′, |LT |).

4.2 Special patterns

Definition 2. A special pattern (t, t′, T ) starts with a single lineage at time t ∈ (s0, s1] and ends with the tree topology
T at t′, thus with |LT | descendants at t′ among which |LT |−1 are observable and one is a distinguished “special”
lineage of fate a priori unknown after t′ (Fig. 2-right).

Let us now compute the probability YΘ(t, t′, n + 1) that a single lineage at time t ∈ [s0, s1) has one special
descendant and n descendants observable from sk at time t′ ∈ (t, s1]. This probability is the sum over all numbers j,
of the probability that the lineage at t has j + n + 1 descendants at t′ in the whole process (i.e., without sampling,
which is equal to Q(λ0,µ0)(j + n+ 1, t′ − t)), among which the special one is picked, exactly n ones are observable and

j ones are not observable, which leads to (j + n+ 1)
(
j+n
n

)
= (n+ 1)

(
j+n+1
n+1

)
possibilities. We have that

YΘ(t, t′, n+ 1) =
∞∑
j=0

Q(λ0,µ0)(j + n+ 1, t′ − t)(n+ 1)

(
j + n+ 1

n+ 1

)
OΘ(t′)n (1−OΘ(t′))

j

=
(n+ 1)(λ0 − µ0)2e−(λ0−µ0)(t′−t)

(
λ0(1− e−(λ0−µ0)(t′−t))OΘ(t′)

)n
(
λ0OΘ(t′) + (λ0(1−OΘ(t′))− µ0)e−(λ0−µ0)(t′−t)

)n+2

Lemma 2. Under the the piecewise-constant-birth-death-sampling model Θ = [(si, λi, µi, ρi)]0≤i<k, the probability of
the special pattern (t, t′, T ) with s0 ≤ t < t′ ≤ s1 is

T(T )YΘ(t, t′, |LT |).

Proof. The probability of the special pattern (t, t′, T ) is the probability of the tree topology T conditioned on its
number of tips, which is T(T ) from Theorem 1 and since a piecewise-constant-birth-death-sampling model is lineage
homogeneous, multiplied by the probability of observing this ending configuration in a special pattern, which is
YΘ(t, t′, |LT |).

5 Probability densities of topologies with temporal constraints and shifts

5.1 Temporal constraints

We shall see how to compute the probability density of a tree topology T with times constraints under a piecewise-
constant-birth-death-sampling model Θ = ((si, λi, µi, ρi)0<i<k, sk). Namely, given internal nodes n1, . . . ,n`, n

′
1, . . . ,n′`′
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Figure 3: Schematic of the computation of the probability D((s0,λ0,µ0,ρ0),s1)(T , {(b, t)}, ∅), i.e., that the divergence
time associated with node b is strictly anterior to t. Under the notation of Theorem 2, we have that S = Ω•T,b. Nothing
is known about divergence times in the gray part of the tree at the left. The only information about divergence times
in black parts of all trees is whether there are anterior or posterior to t.

of T and times u1, . . . , u`, u
′
1, . . . , u′`′ between s0 and sk (both not included), we aim to compute the joint probability

density of T and events τn1
< u1, . . . , τn`

< u`, τn′1 > u′1, . . . , τn′
`′
> u′`′ under the model Θ, i.e.,

DΘ(T ,U ,L) = PΘ(T , τn1
< u1, . . . , τn`

< u`, τn′1 > u′1, . . . , τn′`′ > u′`′).

The events τn1
≤ u1, . . . , τn`

≤ u` will be referred to as upper temporal constraints and resumed as the set of
pairs “node-time” U = {(n1, u1), . . . , (n`, u`)}, and the events τn′1 ≥ u′1, . . . , τn′

`′
≥ u′`′ , will be referred to as lower

temporal constraints and resumed as the set of pairs L = {(n′1, u′1), . . . , (n′`′ , u
′
`′)}. We assume that the temporal

constraints are consistent one with another (otherwise they would basically lead to a null probability). For all subsets
of internal nodes S of T , we write U[S] (resp. L[S]) for the set of upper (resp. lower) temporal constraints of U (resp.
of L) involving nodes in S, namely U[S] = {(nj , uj) | (nj , uj) ∈ U and nj ∈ S} (resp. L[S] = {(n′j , u′j) | (n′j , u

′
j) ∈

L and n′j ∈ S}). For all times t, we define U (t) (resp. L(t)) as the set of time constraints of U (resp. L) involving t,

namely, U (t) = {(nj , uj) | (nj , uj) ∈ U and uj = t} (resp. L(t) = {(n′j , u′j) | (n′j , u′j) ∈ L and u′j = t}).

Theorem 2. Let T be a tree topology, Θ = ((si, λi, µi, ρi)0≤i<k, sk) a piecewise-constant-birth-death-sampling model
from origin time s0 to end time sk and U = {(n1, u1), . . . , (n`, u`)} and L = {(n′1, u′1), . . . , (n′`′ , u

′
`′)} be two sets of

upper and lower temporal constraints respectively. Let us put o for the oldest time involved in the model or in a time
constraints, s0 excluded, namely,

o = min{s1,min{t | ∃n ∈ T such that (n, t) ∈ U},min{t | ∃n ∈ T such that (n, t) ∈ L}}.

Let us define the set S of internal node subsets of T as the intersection of

• ΩT,n if s1 = o,

•
⋂

(n,o)∈U(o) Ω•T,n if U (o) 6= ∅,

•
⋂

(n,o)∈L(o) Ω◦T,n if L(o) 6= ∅,

and let us set Θ′ = ((s′i, λ
′
i, µ
′
i, ρ
′
i)0≤i<k′ , s

′
k′+1) where s′k′+1 = sk and

• k′ = k − 1 and (s′i, λ
′
i, µ
′
i, ρ
′
i) = (si+1, λi+1, µi+1, ρi+1) for all 0 ≤ i ≤ k′ if s1 = o,

• k′ = k, (s′0, λ
′
0, µ
′
0, ρ
′
0) = (o, λ0, µ0, ρ0) and (s′i, λ

′
i, µ
′
i, ρ
′
i) = (si, λi, µi, ρi) for all 1 ≤ i ≤ k′ otherwise,

U ′ = U \ U (o) and L′ = L \ L(o).
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The joint probability DΘ(T ,U ,L) of observing the tree topology T with the temporal constraints U and L under Θ
verifies

DΘ(T ,U ,L) =


1

|LT |!
∑
A∈S
|LΓT,A |!T(ΓT,A)XΘ(s0, o, |LΓT,A |)

∏
n∈LΓT,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |!

OΘ(o)
if o < sk,

T(T )XΘ(s0, s1, |LT |) otherwise.

Proof. Let us start with the case where o = sk, i.e., the case where the oldest time is the ending time of the
diversification. By construction, we then have necessarily that k = 1 and that U and L are both empty. It follows
that (s0, s1, T ) is a standard pattern of probability T(T )XΘ(s0, s1, |LT |) from Lemma 1.

Let us now assume that o < sk. Under the notations of the theorem and being a divergence time assignation of T
consistent with the temporal constraints, let us define Ao as the set of nodes of T whose divergence times are anterior
to o (i.e. Ao = {m ∈ T | τm < o}). Since divergence times corresponding to ancestors of a given node are always
posterior to its own divergence time, all sets Ao are start-sets. By construction, the set S contains all the possible
configurations of nodes of T with divergence times anterior to o which are consistent with the time constraints U and
L. Since all these configurations are mutually exclusive, by putting DΘ,A(T ,U ,L) for the probability of observing the
topology T with Ao = A and the time constraints U and L, the law of total probabilities gives us that

(1)DΘ(T ,U ,L) =
∑
A∈S

DΘ,A(T ,U ,L).

For instance, the entries of the second column of Figure 3 (just after the sign sum) represent all the start-sets A in
Ω•T,b.

In order to compute the probability DΘ,A(T ,U ,L) for a start-set A ∈ S, we remark that

• the part of the diversification process anterior to o is the standard pattern (s0, o,ΓT,A) and that

• the part of the diversification process posterior to o consists of all the tree topologies Tn with times constraints
U[Tn],L[Tn] with n ∈ LΓT,A under the model Θ′ (i.e., the model Θ restricted to the interval of times [o, sk]), which
have probability DΘ′ (Tn,U[Tn],L[Tn])/OΘ(o) conditioned on the observability of their starting lineages.

Since piecewise-constant-birth-death-sampling models are Markovian, evolution of all the tree topologies Tn are
independent one to another and with regard to the part of the process anterior to o, conditional upon starting with
an observable lineage at time o.

From Lemma 1, the probability of the standard pattern (s0, o,ΓT,A) is T(ΓT,A)XΘ(s0, o, |LΓT,A |) under the assump-
tion that ΓT,A is labeled. This part is a little tricky since we don’t have a direct labeling of ΓT,A here (the tips of
ΓT,A are identified though the labels of their tip descendants in T , i.e., the tips of the subtrees pending from the tips
of ΓT,A). Since it assumes that ΓT,A is (exactly) labeled, we have to multiply the probability obtained from Lemma
1 with the number of ways of connecting the tips/labels of ΓT,A to the subtrees starting from o, which is |LΓT,A |!,
and with the probability of observing the groups of labels corresponding to the subtrees starting from o. Since all
labelings of T are equiprobable, the probability of the groups of labels corresponding to the subtrees starting from o
is the inverse of the number of ways of choosing a subset of |LTn | labels from |LT | ones for all tips n of ΓT,A without
replacement, i.e., the inverse of corresponding multinomial coefficient, which is∏

n ∈LΓT,A
|LTn |!

|LT |!
.

Putting all together, we eventually get that

DΘ,A(T ,U ,L) = |LΓT,A |!T(ΓT,A)XΘ(s0, o, |LΓT,A |)

∏
n∈LΓT,A

|LTn |!

|LT |!
∏

n∈LΓT,A

DΘ′(Tn,U[Tn],L[Tn])

OΘ(o)

=
|LΓT,A |!T(ΓT,A)XΘ(s0, o, |LΓT,A |)

|LT |!
∏

n∈LΓT,A

DΘ′(Tn,U[Tn],L[Tn])|LTn |!
OΘ(o)

,

which, with Equation 1, ends the proof. The whole computation of a toy example is schematized in Figure 3.

Theorem 2 states that DΘ(T ,U ,L) can be either calculated directly (if o = sk) or expressed as a sum-product
of probabilities of tree topologies with temporal constraints under piecewise-constant-birth-death-sampling models
whose starting time is strictly posterior to the starting time of Θ, on which Theorem 2 can be applied and so on.
Since each time that Theorem 2 is applied, we get tree topologies under models and temporal constraints in which
the starting time has been discarded, we eventually end up in the case where the oldest time is the ending time of the
diversification for which the probability can be calculated directly. To summarize, the probability density DΘ(T ,U ,L)
can be computed by recursively applying Theorem 2.
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Figure 4: A tree topology with a shift at time t for the clade {e, j, k}.

5.2 Shifts

We shall see how to compute the probability of a tree topology T under a simple birth-death-sampling model
((s0, λ, µ, ρ), s1) by assuming that one of its clades follows another birth-death-sampling model ((t, λ̃, µ̃, ρ̃), s1) from
a given time t ∈ [s0, s1] to the ending time s1. Note that this implicitly assumes that the lineage originating this
particular clade was alive at t (Fig. 4). For the sake of simplicity, we consider simple birth-death-sampling models
in this section. Computing probabilities under the general piecewise-constant-birth-death-sampling is possible but
requires some extra work since the probability for a clade to be observable depends on whether it contains the clade
following the other model.

Theorem 3. Let T be a tree topology, s0 ≤ t ≤ s1 be three times, Θ = ((s0, λ, µ, ρ), s1) and Θ̃ = ((t, λ̃, µ̃, ρ̃), s1) be
two birth-death-sampling models from origin times s0 and t respectively and both to end time s1, and m be an internal
node of T . By setting Θ′ = ((t, λ, µ, ρ), s1), the probability SΘ,Θ̃(T ,m, t) of observing the tree topology T assuming

that evolution follows Θ on T except on Tm on which it follows Θ̃ from time t verifies

SΘ,Θ̃(T ,m, t) =
1

|LT |!
∑

A∈Ω×T,m

(|LΓT,A |−1)!T(ΓT,A)YΘ(s0, t, |LΓT,A |)DΘ̃(Tm,U ,L)|LTm |!
∏

n∈LΓT,A\{m}

DΘ′(Tn,U ,L)|LTn |!
OΘ(t)

Proof. Assuming that a diversification shift of the clade originating at m occurs at time t implies that all the divergence
time of T are such that both the direct ancestor of m has a divergence time strictly anterior to t and the divergence
time of m is strictly posterior to t. Conversely any divergence time assignation verifying these two conditions is
consistent with this assumption. The set of subsets of internal nodes with divergence time anterior to t consistent
with the assumptions of the Theorem is thus exactly Ω×T,m.

We next follows the same outline as that of the proof of Theorem 2. For all subsets A of internal nodes of T , let
us put SΘ,Θ̃,A(T ,m, t) for the probability of observing the topology T with a shift at time t for the clade originating
at m and whose set of nodes with divergence time anterior to t is exactly A. We have that

(2)SΘ,Θ̃(T ,m, t) =
∑

A∈Ω×T,m

SΘ,Θ̃,A(T ,m, t).

From the Markov property, we have that the SΘ,Θ̃,A(T ,m, t) can be written as the product of the part of the

diversification anterior to t, which is the special pattern (s0, t,ΓT,A) where the special lineage is the one on which the
shift occurs, and the part of the diversification posterior to t which is a set of trees starting from time t and ending at
time s1 by following model Θ′ except the special one which follows Θ̃. By construction, the non-special trees starting
from t are conditioned on the observability of their starting lineage at t, thus have probability DΘ′ (Tn,U,L)/OΘ(t) while
the special one is not conditioned and has probability DΘ̃(Tm,U ,L).

From Lemma 2, the probability of the special pattern (s0, t,ΓT,A) is T(ΓT,A)YΘ(s0, t, |LΓT,A |) under the assumption
that ΓT,A is labeled. The situation slightly differs with the case of a standard pattern treated in the proof of Theorem
2 since the special tip of the special pattern is well identified and so is the subtree pending from it. In order to taking
into account the fact that ΓT,A is not directly labeled, we have to multiply the probability provided by Lemma 2 with
the number of ways of connecting the tips/labels of ΓT,A except m, the special one, to the subtrees starting from t, i.e.,
(|LΓT,A |−1)!, and with the probability of observing the groups of labels corresponding to the subtrees starting from t,
which is ∏

n ∈LΓT,A
|LTn |!

|LT |!
.
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We get that

SΘ,Θ̃,A(T ,m, t) = T(ΓT,A)YΘ(s0, t, |LΓT,A |)(|LΓT,A |−1)!

∏
n∈LΓT,A

|LTn |!

|LT |!
DΘ̃(Tm,U ,L)

∏
n∈LΓT,A\{m}

DΘ′(Tn,U ,L)

OΘ(o)

=
(|LΓT,A |−1)!T(ΓT,A)YΘ(s0, t, |LΓT,A |)DΘ̃(Tm,U ,L)|LTm |!

|LT |!
∏

n∈LΓT,A\{m}

DΘ′(Tn,U ,L)|LTn |!
OΘ(o)

,

which with Equation 2 ends the proof.
Let us remark that the trees starting from t are standard patterns. It follows that SΘ,Θ̃(T ,m, t) can be equivalently

written as

SΘ,Θ̃(T ,m, t)

=
1

|LT |!
∑

A∈Ω×T,m

(|LΓT,A |−1)!T(ΓT,A)YΘ(s0, t, |LΓT,A |)T(Tm)XΘ̃(t, s1, |LTm |)|LTm |!
∏

n∈LΓT,A\{m}

T(Tn)XΘ′(t, s1, |LTn |)|LTn |!
OΘ(t)

.

6 A quadratic computation

Since the number of start-sets may be exponential with the size of the tree, notably for balanced trees, Theorems 2
and 3 do not directly provide a polynomial algorithm for computing the probabilities. We shall show in this section
that the left-side of the equation of Theorem 2 can be factorized in order to obtain a polynomial computation. Under
the assumptions and notations of Theorem 2, we have that

DΘ(T ,U ,L) =


1

|LT |!
∑
A∈S
|LΓT,A |!T(ΓT,A)XΘ(s0, o, |LΓT,A |)

∏
n∈LΓT,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |!

OΘ(o)
if o < sk,

T(T )XΘ(s0, s1, |LT |) otherwise.

Since in the case where o = sk, the computation of DΘ(T ,U ,L) is performed in constant time, we focus on the
case where o < sk. Let us first introduce an additional notation. For all sets S of start sets of a tree topology T
and all numbers k between 1 and the number of tips of T , we put Υ

(k)
S for the set of start-sets A ∈ S such that the

corresponding start-tree ΓT,A has exactly k tips. By construction, a start-tree of T has at least one tip and at most
|LT | tips. We have:

DΘ(T ,U ,L) =
1

|LT |!
∑
A∈S
|LΓT,A |!T(ΓT,A)XΘ(s0, o, |LΓT,A |)

∏
n∈LΓT,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |!

OΘ(o)

=
1

|LT |!

|LT |∑
k=1

∑
A∈Υ

(k)
S

|LΓT,A |!T(ΓT,A)XΘ(s0, o, |LΓT,A |)
∏

n∈LΓT,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |!

OΘ(o)

=
1

|LT |!

|LT |∑
k=1

XΘ(s0, o, k)k!

OΘ(o)k

∑
A∈Υ

(k)
S

T(ΓT,A)
∏

n∈LΓT,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! .

Let us set for all nodes m of T ,
ΥS,m =

⋃
A∈S
{A ∩ Tm},

where Tm stands here for the set of nodes of the subtree topology rooted at m. In plain English, elements of ΥS,m
are elements of S restricted to Tm. Since, by construction, the elements of ΥS,m are start-sets of the tree topology

Tm, the start-tree ΓTm,A is well-defined for all A ∈ ΥS,m. For all numbers 1 ≤ k ≤ |LTm |, we put Υ
(k)
S,m for the set of

start-sets A ∈ ΥS,m such that the corresponding start-tree ΓTm,A has exactly k tips.
Let us now define for all nodes m of T and all 1 ≤ k ≤ |LTm |, the quantity

Wm,k =
∑

A∈Υ
(k)
S,m

T(ΓT,A)
∏

n∈LΓT,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! .

Basically, by putting r for the root of T , we have that

(3)DΘ(T ,U ,L) =
1

|LT |!

|LT |∑
k=1

XΘ(s0, o, k)k!

OΘ(o)k
Wr,k.
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We shall see how to compute (Wm,k)k=1,...,|LTm | for all nodes m of T .
Let us first consider the case where k = 1. We have that

(4)Wm,1 = DΘ′(Tm,U ′[Tm],L
′
[Tm])|LTm |! .

Let us now assume that k > 1 and let a and b be the two direct descendants of m. Since we assume k > 1, all

start-sets of Υ
(k)
S,m contain m. It follows that we have A ∈ Υ

(k)
S,m if and only if there exist two start-sets I ∈ ΥS,a and

J ∈ ΥS,b with {m} ∪ I ∪ J = A. The tree topology ΓTm,A has root m with two child-subtrees ΓTa,I and ΓTb,J . In
particular, we have |LΓTa,I

|+|LΓTb,J
|= |LΓTm,A

|= k.
From Theorem 1, we have that

T(ΓTm,A) =
2|LΓTa,I

|! |LΓTb,J
|!

(|LΓTm,A
|−1)|LΓTm,A

|!
T(ΓTa,I)T(ΓTb,J) =

2|LΓTa,I
|! |LΓTb,J

|!
(k − 1)k!

T(ΓTa,I)T(ΓTb,J).

Moreover, since by construction LΓTm,A
= LΓTa,I

∪ LΓTb,J
, we get that

T(ΓTm,A)
∏

n∈LΓTm,A

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! =

2|LΓTa,I
|! |LΓTb,J

|!
(k − 1)k!

T(ΓTa,I)T(ΓTb,J)(
∏

n∈LΓTa,I

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! )(

∏
n∈LΓTb,J

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! ).

More generally, the start-sets of Υ
(k)
S,m are in one-to-one correspondence with the set of pairs (I, J) of ΥS,a ×ΥS,b

such that |LΓTa,I
|+|LΓTb,I

|= k. This set of pairs is exactly the union over all pairs of positive numbers (i, j) such that

i+ j = k, of the product sets of Υ
(i)
S,a ×Υ

(j)
S,b. It follows that

Wm,k =
∑
i,j

i+j=k

∑
(I,J)∈

Υ
(i)
S,a×Υ

(j)
S,b

2i! j!

(k − 1)k!
T(ΓTa,I)T(ΓTb,J)(

∏
n∈LΓTa,I

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! )(

∏
n∈LΓTb,J

DΘ′(Tn,U ′[Tn],L
′
[Tn])|LTn |! ).

After factorizing the left hand side of the equation just above, we eventually get that for all k > 1,

(5)Wm,k =
∑
i,j

i+j=k

2i! j!

(k − 1)k!
Wa,iWb,j .

The following remark is straightforward to prove by induction.

Remark 1. Let T be a binary tree topology and, for all internal nodes n of T , let a(n) and b(n) denote the two direct
descendants of n. We have that ∑

n ∈T \LT

|LTa(n)
|×|LTb(n)

|= |LT |(|LT |−1)

2
.

From Equation 5 and for all internal nodes m of T with children a and b, computing the quantities Wm,k for all
1 < k ≤ |LTm | involves exactly |LTa |×|LTb | terms of the form Wa,iWb,j . It follows that Remark 1 implies that if the
quantities Wm,1 are given for all nodes m of T , the quantities Wm,k for all m ∈ T and all 1 < k ≤ |LTm | can be
recursively computed in a time proportional to |LT |(|LT |−1)/2, thus with time complexity O(|T |2).

Theorem 4. Let T be a tree topology, Θ = ((si, λi, µi, ρi)0≤i<k, sk) be a piecewise-constant-birth-death-sampling
model and U and L be two sets of upper and lower temporal constraints respectively. By setting ∆ = k + |U|+|L|, the
probability DΘ(T ,U ,L) can be computed with time complexity O(∆× |T |2) and memory space complexity O(|T |2).

Proof. We shall proceed by induction on ∆, i.e., the total number of times involved in the model and the temporal
constraints, by proving that at each stage, all the probabilities DΘ(Tm,U[Tm],L[Tm]) for all internal nodes m of T can
be calculated with a total time complexity O(|T |2).

In the base case where ∆ = 1, we have necessarily that Θ is a simple birth-death-sampling model ((s0, λ0, µ0, ρ0), s1)
and that both U and L are empty. From Theorem 2, the probability DΘ(T ,U ,L) can then be calculated in constant
time since, under the notations of the theorem, we have o = s1. In the same way, the probabilities DΘ(Tm,U[Tm],L[Tm])
for all internal nodes m of T can be calculated with a total time complexity O(|T |).

Let us now assume that ∆ > 1 and that we have already computed the probabilities DΘ′(Tm,U ′[Tm],L
′
[Tm]) for all

internal nodes m of T (under the notations of Theorem 2). From Equation 4, the quantities Wm,1 for all internal
nodes m are calculated directly from the probabilities DΘ′(Tm,U ′[Tm],L

′
[Tm]), thus in O(|T |). From Remark 1, all the

quantities Wm,k for all internal nodes m of T and all 1 < k ≤ |LTm | can be calculated with time complexity O(|T |2).
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Equation 3 can then be applied to all subtrees of T in order to compute the probabilities DΘ(Tm,U[Tm],L[Tm]) from
the quantities Wm,k for all internal nodes m of T . Since computing each DΘ(Tm,U[Tm],L[Tm]) requires to sum |LTm |
terms, computing all the DΘ(Tm,U[Tm],L[Tm]) has total time complexity O(|T |2).

To sum up, being given the probabilities DΘ′(Tm,U ′[Tm],L
′
[Tm]), computing the probabilities DΘ(Tm,U[Tm],L[Tm])

for all internal nodes m of T has total time complexity O(|T |2). Since we have that k′ + |U ′|+|L′|< k + |U|+|L|= ∆,
it requires at most ∆ − 1 stages to end up with the base case which has time complexity O(|T |). The total time
complexity is thus O(∆× |T |2).

Last, since, at each stage, we have to store only the quantities (Wm,k)m∈T ,k=1,...,|LTm | and the probabilities
DΘ′(Tm,U ′[Tm],L

′
[Tm]) and DΘ(Tm,U[Tm],L[Tm]) for all internal nodes m of T , the total memory space complexity is

O(|T |2).

It can be proved in the same way that the shift probability SΘ,Θ̃(T ,m, t) of Theorem 3 can be computed with time

and memory space complexity O(|T |2).

7 Divergence time distributions

We shall apply Theorem 2 to compute divergence time distributions of tree topologies with time constraints under
piecewise-constant-birth-death-sampling models.

Corollary 1. Let T be a tree topology, Θ = ((si, λi, µi, ρi)0≤i<k, sk) a piecewise-constant-birth-death-sampling model
from origin time s0 to end time sk, U = {(n1, u1), . . . , (n`, u`)} and L = {(n′1, u′1), . . . , (n′`′ , u

′
`′)} be two sets of upper

and lower temporal constraints respectively and m be an internal node of T . The probability that the divergence time
τm associated with m is anterior to a time t ∈ [s0, sk] conditioned on observing the tree topology T with the temporal
constraints U and L under Θ is

PΘ(T , τm < t, τn1 < u1, . . . , τn′1 > u′1, . . . | T , τn1 < u1, . . . , τn′1 > u′1, . . .) =
DΘ(T ,U ∪ {(m, t)},L)

DΘ(T ,U ,L)
.

The computation of the divergence time distributions was performed on a contrived tree topology and on the
Hominoidea subtree. Results are displayed in Figures 5 and 6 where the probability densities are computed from the
corresponding distributions by finite difference approximations.

Figure 5 shows how considering models which are not time-homogeneous such as the piecewise-constant-birth-
death models and adding temporal constraints on some of the divergence times influences the shapes of the divergence
times distributions of all the nodes of the tree topology. In particular, divergence time distributions may become
multimodal, thus hard to sample. Let us remark that a temporal constraint on the divergence time of a node influences
the divergence time distributions of the other nodes of the tree topology, even if they are not among its ascendants or
descendants.

In order to illustrate the computation of the divergence time distributions on a real topology, let us consider the
Hominoidea subtree from the Primates tree of [6]. The approach can actually compute the divergence time distributions
of the whole Primates tree of [6] but they cannot be displayed legibly because of its size.

The divergence time distributions were computed under several (simple) birth-death-sampling models, namely all
parameter combinations with λ = 0.1 or 1, µ = λ − 0.09 or λ − 0.01 and ρ = 0.1 or 0.9. Since the difference λ − µ
appears in the probability formulas, several sets of parameters are chosen in such a way that they have the same
difference between their birth and death rates.

Divergence time distributions obtained in this way are displayed in Figure 6 around their internal nodes (literally,
since nodes are positioned at the median of their divergence times). Each distribution is plotted at its own scale in
order to be optimally displayed. This representation allows to visualize the effects of each parameter on the shape and
the position of distributions, to investigate which parameter values are consistent with a given evolutionary assumption
etc.

We observe on Figure 6 that, all other parameters being fixed, the greater the speciation/birth rate λ (resp. the
sampling probability ρ), the closer are the divergence time distributions to the ending time

Influence of the extinction/death rate on the divergence time distributions is more subtle and ambiguous, at least
for this set of parameters. All other parameters being fixed, it seems that an increase of the extinction rate tends to
push distributions of nodes close to the root towards the starting time and, conversely, those of nodes close to the tips
towards the ending time.

The divergence time distributions obtained for λ = 0.1, µ = 0.01 and ρ = 0.9 (Fig. 6, column 2, top) and for
λ = 1, µ = 0.91 and ρ = 0.1 (Fig. 6, column 1, bottom) are very close one to another. The same remark holds for
λ = 0.1, µ = 0.09 and ρ = 0.9 (Fig. 6, column 4, top) and for λ = 1, µ = 0.99 and ρ = 0.1 (Fig. 6, column 3, bottom).
This point suggests that estimating the birth-death-sampling parameters from the divergence times might be difficult,
even if the divergence times are accurately determined.

The variety of shapes of divergence times probability densities observed in Figures 5 and 6 exceeds that of standard
prior distributions used in phylogenetic inference, e.g., uniform, lognormal, gamma, exponential [15, 13].

11

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/376756doi: bioRxiv preprint first posted online Jul. 24, 2018; 

http://dx.doi.org/10.1101/376756


a

b

c

d

e

f

g

h

i

j

k

0 10

node a
node b
node c
node d
node e

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

Time

Figure 5: Divergence time probability densities of the tree displayed at the first row, in the second row by assuming
a diversification process running from time 0 to 10 under a birth-death-sampling model with parameters λ = 0.2,
µ = 0.02 and ρ = 0.5 between times 0 and 10 and in the third row by assuming a piecewise constant birth-death-
sampling model with parameters λ0 = 0.1, µ0 = 0.02 and ρ0 = 0.1 between times 0 and 4 (only 10% of the lineages
survives to time 4) and parameters λ1 = 0.2, µ1 = 0.02 and ρ1 = 0.5 between times 4 and 10. Plots of the first
column are computed with no constraint on the divergence times and those of the second column by constraining the
divergence time associated to node e to be anterior to 7. Densities of nodes d and e are confounded in the plots of the
first column.
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Figure 6: Divergence time probability densities of the Hominoidea tree from [6] under birth-death-sampling models
with parameters λ = 0.1 or 1, µ = 0.01 or 0.09 and ρ = 0.1 or 0.9. Internal nodes are positioned at their median
divergence time.
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7.1 A previous approach

A previous approach for computing the probability density of a given divergence time is provided in [9]. It is based
on the explicit computation of the probability density fAk

n,t
of the kth divergence time of a tree topology with n tips

starting at t from the present, provided in [9], and the computation of the probability P(r(v) = k) for the rank r(v)
of the divergence time associated to the vertex v to be the kth which was given in [10]. The probability density fv of
the divergence time associated to a vertex v of a tree topology with n tips is then given for all times s by

fv(s) =
n−1∑
k=1

P(r(v) = k)fAk
n,t

(s).

The probability density fAk
n,t

is computed in constant time and the probabilities P(r(v) = k) for all nodes v are

computed in a time quadratic with the size of the tree.
The computation of the probability density of the kth divergence time of tree relies on the fact that, under

some homogeneity assumption, the divergence times are independent and identically distributed random variables.
Approach provided in [9] was described in the case of birth-death models. It can be easily adapted to deal with
piecewise-constant-birth-death-sampling models but extending this approach in order to compute divergence times
distribution with temporal constraints seems not straightforward.

8 Direct sampling of divergence times

Theorems 2 and 4 and Corollary 1 show how to compute the marginal (with regard to the other divergence times)
of the divergence time distribution of any internal node of a phylogenetic tree from a given piecewise-constant-birth-
death-sampling model. It allows in particular to sample any divergence time of the phylogenetic tree disregarding
the other divergence times. We shall see in this section how to draw a sample of all the divergence times of any tree
topology from a given piecewise-constant-birth-death-sampling model.

Lemma 3. Let T be a tree topology of root r, Θ = ((si, λi, µi, ρi)0≤i<k, sk) be a piecewise-constant-birth-death-sampling
model from origin time s0 to end time sk and t be a time in (si, si+1]. By setting Θ′ = ((s′i, λ

′
i, µ
′
i, ρ
′
i)0≤i<k′ , s

′
k′+1)

where s′k′+1 = sk, k′ = k− i+ 1 and (s′0, λ
′
0, µ
′
0, ρ
′
0) = (t, λ0, µ0, ρ0) and (s′j , λ

′
j , µ
′
j , ρ
′
j) = (si+j , λi+j , µi+j , ρi+j) for all

1 ≤ j ≤ k′. The probability that the root divergence time τr is anterior to a time t ∈ [s0, sk] conditioned on observing
the tree topology T under the birth-death-sampling model (λ, µ, ρ) is

PΘ(T , τr < t | T ) = 1− IΘ(s0, t)DΘ′(T , ∅, ∅)
DΘ(T , ∅, ∅)

.

Proof. The probability that the divergence time τr associated with r is anterior to a time t ∈ [s0, sk] is the complemen-
tary probability that τr > t. Observing τr > t means that the starting lineage at s0 has a single descendant observable
at t from which descends the tree topology T sampled at sk. It follows that

PΘ(T , τr < t | T ) = 1−PΘ(T , τr > t | T )

= 1− IΘ(s0, t)DΘ′(T , ∅, ∅)
DΘ(T , ∅, ∅)

.

The probability PΘ(T , τr < t | T ) can be directly written as DΘ(T ,(r,t),∅)/DΘ(T ,∅,∅). Lemma 3 allows to avoid
considering a temporal constraint, which is particularly interesting in the simple birth-death-sampling case.

Remark 2. Under the birth-death-sampling model ((s0, λ0, µ0, ρ0), s1), we have that

P((s0,λ0,µ0,ρ0),s1)(T , τr < t | T ) = 1−
[

(1− e−(λ0−µ0)(s1−t))(ρ0λ0 + (λ0(1− ρ0)− µ0)e−(λ0−µ0)(s1−s0))

(1− e−(λ0−µ0)(s1−s0))(ρ0λ0 + (λ0(1− ρ0)− µ0)e−(λ0−µ0)(s1−t))

]|LT |−1

,

which can be computed in constant time.

Let us first show how to sample the divergence time of the root of a tree topology. The marginal, with regard to
the other divergence times, of the distribution of the root-divergence time conditioned on the tree topology T is the
cumulative distribution function (CDF) Fr : t → PΘ(T , τr < t | T ). In order to sample τr under this distribution,
we shall use inverse transform sampling which is based on the fact that if a random variable U is uniform over
[0, 1] then F−1

r (U) has distribution function Fr (e.g., [1, chapter 2]). Since finding an explicit formula for F−1
r is

not straightforward, we have to rely on numerical inversion at a given precision level in order to get a sample of
the distribution Fr from an uniform sample on [0, 1]. The current implementation uses the bisection method, which
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computes an approximate inverse with a number of Fr-computations smaller than minus the logarithm of the required
precision [1, p 32].

In order to sample the other divergence times, let us remark that by putting a and b for the two direct descendants
of the root of T and t for the time sampled for the root-divergence, we have two independent diversification processes
both starting at t and giving the two subtree topologies Ta and Tb at sk. By applying Lemma ?? to Ta and Tb between
t and sk, the divergence times of the roots of these subtrees, i.e., a and b, can thus be sampled in the same way as
above. The very same steps can then be performed recursively in order to sample all the divergence times of T . If
Θ = ((si, λi, µi, ρi)0≤i<k, sk) with k > 1, each sampling of a divergence time of T has complexity O(− log(ε)k|T |2),
where ε is the precision required on the samples. The total complexity for sampling all the divergence times is therefore
O(− log(ε)k|T |3).

From Remark 2, under the simple birth-death-sampling model Θ = ((s0, λ0, µ0, ρ0), s1), the computation of
PΘ(τr < t | T ) requires only the number of tips of T (in particular, the shape of T does not matter). In this
case, the CDF Fr can be computed at any time t with complexity O(1) and a pre-order traversal of T allows to sample
all its divergence times in a time linear in |T | with a multiplicative factor proportional to minus the logarithm of the
precision required for the samples.

For the sake of simplicity, we showed how to sample divergence times under a piecewise-constant-birth-death-
sampling model only but the same approach can be applied in order to sample divergence times with temporal
constraints and/or shifts, still under a piecewise-constant-birth-death-sampling model.

9 Testing diversification shifts

Theorem 3 yields the computation of the probability density of a tree topology in which a given clade diversifies from a
given “shift time” according a (simple) birth-death-sampling model different from that of the rest of the topology. This
allows us to estimate the likelihood-ratio test for comparing the null model assuming a single birth-death-sampling
model for the whole topology with the alternative model including a shift as displayed in Figure 4. Basically, being
given a tree topology, one of its clade and the shift time, we compute the ratio ΛN of the maximum likelihoods of this
topology with to without shift at the clade and shift time from Theorems 3 and 2 by using numerical optimization
whenever a direct determination is not possible. Namely, in order to test a diversification shift at time t on the clade
originating at node m of the tree topology T , we consider the ratio

ΛN =
SΘ1,Θ̃1

(T ,m, t)
DΘ0

(T , ∅, ∅)
,

where Θ0, Θ1, Θ̃1 are birth-death-sampling models with

Θ0 = arg max
Θ

DΘ(T , ∅, ∅) and (Θ1, Θ̃1) = arg max
(Θ,Θ̃)

SΘ,Θ̃(T ,m, t).

In order to assess the accuracy of ΛN , we compare it to three sister-group diversity tests considered in [32]. Namely,
for two sister groups originating at shift time t with N1 > N2 terminal taxa and total sums of branch lengths B1 and
B2 respectively, we have that

• the probability of observing this or greater difference between sister group diversities from [27] is P =
2N2

N1 +N2 − 1
,

• the likelihood ratio alternative provided in [26] is
ΛA = 1.629× [h(N1 − 1)− h(N1) + h(N2 − 1)− h(N2)− h(2)− h(N1 +N2 − 2) + h(N1 +N2)],

where h(x) =

{
x log(x) if x > 0,
0 otherwise,

• the likelihood ratio from perfect-information given in [32] is ΛP = 2×

(
λ̂+

1

λ̂+

)N1−1(
λ̂+

2

λ̂+

)N2−1

,

where λ̂+ =
N1 +N2 − 2

B1 +B2
, λ̂+

1 =
N1 − 1

B1
and λ̂+

2 =
N2 − 1

B2
.

We simulated topologies with and without shift according to pure-birth models, a.k.a. Yule models which are
special cases of birth-death-sampling models with null death rate and full sampling, in the following way. Being given
a general birth rate, a shift birth rate and the shift time, we first simulated topologies without shift from the general
birth rate. Next, we filtered the simulated topologies by discarding those with less than 10 or more than 50000 nodes
and those with a single lineage alive at the shift time. For each remaining simulation, we randomly picked a lineage
alive at the shift time and replaced the clade originating from this lineage with a clade simulated with the shift rate
from the shift to the ending times in order to eventually obtain a topology with shift.
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Maybe use I instead of we (as stated above).
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Figure 7: ROC plots of different measures for shift detection at left (resp. at right) are obtained by simulated 50000
Yule topologies with birth rate 0.4 (resp. 0.6) from times 0 to 10 and birth rate 1.0 from the shift time 5 to 10 for one
of the clades present at time 5.

The quantities ΛN , the likelihood ratio obtained from Theorem 3, P , ΛA and ΛP are then evaluated with regard to
their ability to discriminate between tree topologies with or without shift. Figure 7 displays the ROC-plots obtained
for all these quantities. We first observe that ΛN significantly outperforms measures P and ΛA. In particular, in
the case where the difference between the general and the shift birth rates is small (e.g., 0.6 and 1.0 in Fig. 7-left),
performances of P and ΛA are close to that of a random guess while ΛN is still accurate. This was expected to at
least some extent since ΛN takes into account both the shift time and the whole tree topology while P and ΛA are
computed from the clade with the shift and its sister group. More surprisingly, ΛN is only partially outperformed by
ΛP , which is obtained from all the divergence times and the shift time. If one requires a false positive discovery rate
below 10%, the likelihood ratio test ΛN obtained from Theorem 3 is the most powerful.
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