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Abstract 21 

Dating population divergence within species from molecular data and relating such dating to 22 

climatic and biogeographic changes is not trivial. Yet it can help formulating evolutionary 23 

hypotheses regarding local adaptation and future responses to changing environments. Key issues 24 

include statistical selection of a demographic and historical scenario among a set of possible 25 

scenarios and estimation of the parameter(s) of interest under the chosen scenario. Such inferences 26 

greatly benefit from new statistical approaches including Approximate Bayesian Computation - 27 

Random Forest (ABC-RF), the later providing reliable inference at a low computational cost, with 28 

the possibility to take into account prior knowledge on both biogeographical history and genetic 29 

markers. Here, we used ABC-RF, including or not independent information on evolutionary rate 30 

and pattern at microsatellite markers, to decipher the evolutionary history of the African arid-31 

adapted pest locust, Schistocerca gregaria. We found that the evolutionary processes that have 32 

shaped the present geographical distribution of the species in two disjoint northern and southern 33 

regions of Africa were recent, dating back 2.6 Ky (90% CI: 0.9 – 6.6 Ky). ABC-RF inferences also 34 

supported a southern colonization of Africa from a low number of founders of northern origin. The 35 

inferred divergence history is better explained by the peculiar biology of S. gregaria, which 36 

involves a density-dependent swarming phase with some exceptional spectacular migrations, or by 37 

a brief fragmentation of the African forest core during the interglacial late Holocene, rather than a 38 

continuous colonization resulting from the continental expansion of open vegetation habitats during 39 

the past Quaternary glacial episodes.  40 
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Introduction 41 

As in other regions of the world, Africa has gone through several major episodes of climate change 42 

since the early Pleistocene (deMenocal 1995 and 2004). During glaciation periods, the prevalent 43 

climate was colder and drier than nowadays, and became more humid during warmer interglacial 44 

periods. These climatic phases resulted in shifts of vegetation (Vivo and Carmignotto 2004) and are 45 

most likely at the origin of the current isolation between northern and southern distributions of arid-46 

adapted species (Monod 1971). In Africa, at least fifty-six plant species show disjoint geographical 47 

distributions in southern and northern arid areas (Monod 1971; Jurgens 1997; Lebrun 2001). 48 

Similarly, a number of animal vertebrate species show meridian disjoint distributions on this 49 

continent, including eight mammals and 29 birds (Monod 1971; de Vivo and Carmignotto 2004; 50 

Lorenzen et al. 2012). The desert locust, Schistocerca gregaria, is among the few examples of 51 

insect species distributed in two distinct regions along the north-south axis of Africa. Other known 52 

disjunctions in insects are interspecific and concern species of the families Charilaidae (Orthoptera) 53 

and Mythicomyiidae (Diptera), and of the genus Fidelia (Hymenoptera) (Le Gall et al. 2010). 54 

Similarities in extant distributions of African arid-adapted species across divergent taxonomic 55 

groups point to a common climatic history and an important role of environmental factors. Yet, to 56 

our knowledge, studies relating evolutionary history and climatic history have rarely been carried 57 

out in this continent (but see mitochondrial studies by Miller et al. 2011 on the ostrich, Atickem et 58 

al. 2018 on the black-backed jackal, and Moodley et al. 2018 on the white rhinoceros). 59 

Dating population or subspecies divergence within a species and relating such dating to 60 

climatic and biogeographic changes in the species history is not trivial. First, global climate models 61 

have been largely calibrated using northern hemisphere drivers and validation datasets. Their 62 

quality has therefore been tested less often in Africa, even less so when it comes to hindcasting 63 

potential distributions using projections of such climate models into different past temporal 64 

windows. Recent comparisons between botanical and climate models have suggested that climate 65 

forcing in Africa may operate in a different way, and have therefore shed some doubts regarding the 66 
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validity of such projections, in particular into long time periods involving several thousand years 67 

into the past (Chase and Meadows 2007; Dupont 2011). Second, finding a reliable calibration to 68 

convert measures of genetic divergence into units of absolute time is challenging, especially so for 69 

recent evolutionary events (Ho et al. 2008). Extra-specific fossil calibration may lead to 70 

considerable overestimates of divergence times and internal fossil records are often lacking (Ho et 71 

al. 2008). A sensible approach when internal calibration is available for a related species is to 72 

import an evolutionary rate estimated from sequence data of this species (Ho et al. 2008). 73 

Unfortunately, on the African continent, fossils, such as radiocarbon-dated ancient samples, remain 74 

relatively rare and are often not representative of modern lineages (e.g., Le Gall 2010 for insects). 75 

The lack of paleontological and archaeological records is partly due to their fragility under the 76 

aridity conditions of the Sahara. The end-result is that the options to relate population divergence to 77 

biogeographic events in this region are very limited.  78 

In this context, the use of versatile molecular markers, such as microsatellite loci, for which 79 

evolutionary rates can be obtained from direct observation of germline mutations in the species of 80 

interest, represents a useful alternative. Microsatellite mutation rates exceed by several orders of 81 

magnitude that of point mutation in DNA sequences, ranging from 10
-6

 to 10
-2

 events per locus and 82 

per generation (Ellegren 2000). This providing allows both to observe mutation events in parent-83 

offspring segregation data of realistic sample size and work out the recent history of related 84 

populations. However, the use of microsatellite loci to estimate divergence times at recent 85 

evolutionary time-scales still needs overcoming significant challenges. Since microsatellite allele 86 

sizes result from the insertion or deletion of single or multiple repeat units and are tightly 87 

constrained, these markers can be characterized by high levels of homoplasy that can obscure 88 

inferences about gene history (e.g., Estoup et al. 2002). In particular, at large time scales (i.e., for 89 

distantly related populations), genetic distance values do not follow anymore a linear relationship 90 

with time, reach a plateau and hence provide biased unreliable estimation of divergence time 91 

(Takezaki and Nei 1996; Feldman et al. 1997; Pollock 1998). Microsatellites remain informative 92 
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with respect to divergence time only if the population split occurs within the period of linearity with 93 

time (Feldman et al. 1997; Pollock 1998). The exact value of the differentiation threshold above 94 

which microsatellite markers would no longer accurately reflect divergence times will depend on 95 

constraints on allele sizes and population-scaled mutation rates (Feldman et al. 1997; Pollock 96 

1998). For any inferential framework, including independent information on microsatellite allele 97 

size constraints and mutation rates (for instance into priors when using Bayesian methods) is 98 

expected to improve the accuracy of parameter estimation, especially when considering divergence 99 

times between populations. 100 

The desert locust, S. gregaria, is a generalist herbivore that can be found in arid grasslands 101 

and deserts in both northern and southern Africa (Figure 1a). In its northern range, the desert locust 102 

is one of the most widespread and harmful agricultural pest species with a huge potential outbreak 103 

area, spanning from West Africa to Southwest Asia. The desert locust is also present in the 104 

southwestern arid zone (SWA) of Africa, which includes South-Africa, Namibia, Botswana and 105 

south-western Angola. The southern populations of the desert locust are termed S. g. flaviventris 106 

and are geographically separated by nearly 2,500 km from populations of the nominal subspecies 107 

from northern Africa, S. g. gregaria (Uvarov 1977). The isolation of S. g. flaviventris and S. g. 108 

gregaria lineages was recently supported by highlighting distinctive mitochondrial DNA 109 

haplotypes and male genitalia morphologies (Chapuis et al. 2016). Yet, the precise history of 110 

divergence remains elusive.  111 

The main objective of the present study is to unravel the historical and evolutionary 112 

processes that have shaped the present disjoint geographical distribution of the desert locust and the 113 

genetic variation observed both within and between populations of its two subspecies. To this aim, 114 

we first used paleo-vegetation maps to construct biogeographic scenarios relevant to African 115 

species from arid grasslands and deserts. We then used molecular data obtained from microsatellite 116 

markers for which we could obtain independent information on evolutionary rates and allele size 117 

constraints in the species of interest from direct observation of germline mutations (Chapuis et al. 118 
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2015). We applied newly available algorithms of the Approximate Bayesian Computation - random 119 

forest method (ABC-RF; Pudlo et al. 2016; Estoup et al. 2018a; Raynal et al. 2019) on our 120 

microsatellite population genetic data to compare a set of thoroughly formalized and justified 121 

evolutionary scenarios and estimate the divergence time between S. g. gregaria and S. g. 122 

flaviventris under the most likely of our scenarios. Finally, we interpret our results in the light of the 123 

paleo-vegetation information we compiled and various biological features of the desert locust. 124 

 125 

New approaches 126 

Due to its great flexibility, Approximate Bayesian Computation (ABC, Beaumont et al. 2002) is an 127 

increasingly common statistical approach used to perform model-based inferences in a Bayesian 128 

setting, especially when complex models are considered (e.g., Beaumont 2010, Bertorelle et al. 129 

2010, Csilléry et al. 2010). However, both theoretical arguments and simulation experiments 130 

indicate that scenario’ posterior probabilities can be poorly evaluated by standard ABC methods, 131 

even though the numerical approximations of such probabilities can preserve classification (Robert 132 

et al. 2011). To overcome this problem, Pudlo et al. (2016) recently proposed a novel approach 133 

based on a machine learning tool named random forests (RF) (Breiman 2001), hence leading to the 134 

ABC-RF methodology. When compared with standard ABC methods, the ABC-RF approach 135 

enables efficient discrimination among scenarios and estimation of posterior probability of the best 136 

scenario while being computationally less intensive. Building on that success, Raynal et al. (2019) 137 

recently proposed an extension of the RF methodology applied in a (non-parametric) regression 138 

setting to estimate the posterior distributions of parameters of interest under a given scenario. When 139 

compared with various ABC solutions, this new RF method offers many advantages: a significant 140 

gain in terms of robustness to the choice of the summary statistics; independence from any type of 141 

tolerance level; and a good trade-off in term of quality of point estimator precision of parameters 142 

and credible interval estimations for a given computing time (Raynal et al. 2019). An overview of 143 

the ABC-RF methods used in the present paper is provided in Supplementary Material S1. Readers 144 
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can consult Pudlo et al. (2016), Fraimout et al. (2017), Estoup et al. (2018a,b) and Marin et al. 145 

(2018) for scenario choice, and Raynal et al. (2019) for parameter estimation to access to further 146 

detailed statistical descriptions, testing and applications of ABC-RF algorithms.  147 

To our knowledge, the present study is the first one using recently developed ABC-RF 148 

algorithms to carry out inferences about both scenario choice and parameter estimation, on a real 149 

multi-locus microsatellite dataset. It includes and illustrates three novelties in statistical analyses 150 

that were particularly useful for reconstructing the evolutionary history of the divergence between 151 

S. g. gregaria and S. g. flaviventris subspecies: model grouping analyses based on several key 152 

evolutionary events, assessment of the quality of predictions to evaluate the robustness of our 153 

inferences, and incorporation of previous information on the mutational setting of the used 154 

microsatellite markers.  155 

(1) Model grouping. Both the poor knowledge on the species history and the complex 156 

climatic history of Africa make it necessary to consider potentially complex evolutionary scenarios. 157 

We formalized eight competing scenarios including (or not) three key evolutionary events that we 158 

identified as having potentially played a role in setting up the disjoint distribution of the two locust 159 

subspecies (for details see the section Formalization of evolutionary scenarios in Materials and 160 

methods). Following the new approach proposed by Estoup et al. (2018a), we processed ABC-RF 161 

analyses grouping scenarios based on the presence or absence of each type of evolutionary event, 162 

before considering all scenarios separately. Such grouping approach in scenario choice is of great 163 

interest to disentangle the level of confidence of our approach to make inferences about each 164 

specific evolutionary event of interest.  165 

(2) Assessing the quality of predictions. For scenario choice and parameter estimation, we 166 

evaluated the robustness of our inferences at both a global (i.e., prior) and a local (i.e., posterior) 167 

scale. The global prior error was computed, using the computationally parsimonious out-of-bag 168 

prediction method for scenarios identity and parameter values covering the entire prior 169 

multidimensional space. Since error levels may differ depending on the location of an observed 170 
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dataset in the prior data space, prior-based indicators are poorly relevant, aside from their use to 171 

select the best classification method and set of predictors, here our summary statistics. Therefore, in 172 

addition to global prior errors, we computed local posterior errors, conditionally to the observed 173 

dataset. The latter errors measure prediction quality exactly at the position of the observed dataset. 174 

For model choice, we demonstrated that the error measure given the observation can be computed 175 

as 1 minus the posterior probability of the selected scenario. For parameter estimation, we propose 176 

an innovative way to approximate local posterior errors, again relying partly on out-of-bag 177 

predictions. See the section Local posterior errors in Supplementary Material S1 for details. These 178 

statistical novelties were implemented in a new version of the R library abcrf (version 1.8) available 179 

on R CRAN. Finally, for estimation of divergence time between the two subspecies, we evaluated 180 

how accurately the divergence time posterior distributions reflected true divergence time values and 181 

the threshold above which the divergence time posterior estimates reach a plateau. To do this, we 182 

used simulated pseudo-observed datasets to compute error measures conditionally to a subset of 183 

fixed divergence time values chosen to cover the entire prior interval. 184 

 (3) Incorporation of previous information into the microsatellite mutational setting. Our 185 

ABC-RF statistical treatments benefited from the incorporation of previous estimations of mutation 186 

rates and allele size constraints for the microsatellite loci used in this study. Microsatellite mutation 187 

rate and pattern of most eukaryotes remains to a large extent unknown, and, to our knowledge, the 188 

present study is a rare one where independent information on mutational features was incorporated 189 

into the microsatellite prior distributions. We thoroughly evaluated to which extent the 190 

incorporation of such independent information improved the performance of ABC-RF for choosing 191 

among evolutionary scenarios and for estimating the time of divergence between the two locust 192 

subspecies. 193 

 194 

  195 
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Results 196 

 197 

Formalization of evolutionary scenarios 198 

Using a rich corpus of (paleo-)vegetation data, we reconstructed the present time (Fig. 1C) and past 199 

time (Figs. 1D-F) distribution ranges of S. gregaria in Africa, going back to the Last Glacial 200 

Maximum period (LGM, 26 to 14.8 Ky ago). Maps of vegetation cover for glacial arid maximums 201 

(Figs. 1E and 1F) showed an expansion of open vegetation habitats sufficient to make the potential 202 

range of the species continuous from the Horn of Africa in the north-west to the Cape of Good 203 

Hope in the south. Maps of vegetation cover for interglacial humid maximums (Fig. 1D) showed a 204 

severe contraction of deserts. These maps helped us formalize eight competing evolutionary 205 

scenarios (Figure 2), as well as bounds of prior distributions for various parameters (see the section 206 

Prior setting for divergence parameters in Materials and methods). The eight competing scenarios 207 

included different combinations of three key evolutionary events that we identified as having 208 

potentially played a role in setting up the observed disjoint distribution of the two locust subspecies: 209 

(i) a long population size contraction in the ancestral population, due to the reduction of open 210 

vegetation habitats during the interglacial periods, (ii) a bottleneck in the southern subspecies S. g. 211 

flaviventris right after divergence, associated to a single long-distance migration event of a small 212 

fraction of the ancestral population, and (iii) a secondary contact with an asymmetrical genetic 213 

admixture from S. g. gregaria into S. g. flaviventris, in order to consider the many climatic 214 

transitions of the last Quaternary. 215 

 216 

Scenario choice 217 

ABC-RF analyses supported the same best scenario or group of scenarios for all ten replicate 218 

analyses (Table 1). The classification votes and posterior probabilities estimated for the observed 219 

microsatellite dataset were the highest for the groups of scenarios in which (i) S. g. flaviventris 220 

experienced a bottleneck event at the time of the split (average of 2890 votes out of 3,000 RF-trees; 221 
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posterior probability = 0.965), (ii) the ancestral population experienced a population size 222 

contraction (2245 of 3,000 RF-trees; posterior probability = 0.746), and (iii) no admixture event 223 

occurred between populations after the split (2370 of 3,000 RF-trees; posterior probability = 0.742). 224 

When considering the eight scenarios separately, the highest classification vote was for scenario 4, 225 

which congruently excludes secondary contact and includes a population size contraction in the 226 

ancestral population and a bottleneck event at the time of divergence in the S. g. flaviventris 227 

subspecies (1777 of 3,000 RF-trees). The posterior probability of scenario 4 averaged 0.584 over 228 

the ten replicate analyses (Table 1).  229 

Table S2.1 (Supplementary Material S2) shows that only two other scenarios obtained at 230 

least 5% of the votes: scenario 2 including only a single bottleneck event in S. g. flaviventris (mean 231 

of 537 votes) and scenario 8 with a bottleneck event in S. g. flaviventris, a population size 232 

contraction in the ancestral population and a secondary contact with admixture from S. g. gregaria 233 

into S. g. flaviventris (mean of 380 votes). All other scenarios obtained less than 5% of the votes 234 

and were hence even more weakly supported. Scenario 4 obtained the highest number of votes also 235 

for analyses based on a naive mutational prior setting for microsatellite markers, i.e., when drawing 236 

prior values for mean mutation parameters from uniform distributions instead of setting them to a 237 

fixed value as in our informed mutational prior setting (Table 1 and Table S3.1, Supplementary 238 

Material S3; see also the Materials and methods section Microsatellite dataset, mutation rate and 239 

mutation model for details about the microsatellite prior distributions for the informed and naive 240 

mutational settings). Posterior probability values for scenario 4 and for the best groups of scenarios 241 

were slightly lower when using a naive mutational prior setting, except for the group without any 242 

admixture event (Table 1). 243 

We found that posterior error rates (i.e., 1 minus the posterior probabilities) were lower than 244 

prior error rates for the analyses considering either groups of scenarios based on the presence (or 245 

not) of a bottleneck in S. g. flaviventris (i.e., 3.5% versus 10.2%) or the scenarios separately (i.e., 246 

41.6% versus 47.9%). For other groups of scenarios, the discrimination power was similar at both 247 
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the global (prior error rates) and local (posterior error rates) scales, with values ranging from 23.5% 248 

to 25.8% (Table 1). Altogether, these results indicate that the observed dataset belongs to a region 249 

of the data space where the power to discriminate among scenarios is higher than the global power 250 

computed over the whole prior data space, and that the presence or absence of a bottleneck in S. g. 251 

flaviventris is the demographic event with the most robust prediction in our ABC-RF treatments. 252 

These results hold true when using a naive mutational prior setting (Table 1). They can be visually 253 

illustrated by the projection of the reference table datasets and the observed one on a single (when 254 

analyzing pairwise groups of scenarios) or on the first two linear discriminant analysis (LDA) axes 255 

(when analyzing the eight scenarios considered separately) (Figure S2.1, Supplementary Material 256 

S2 and Figure S3.1, Supplementary Material S3).  257 

Figure S2.2, Supplementary Material S2, illustrates how RFs automatically rank the 258 

summary statistics according to their level of information. It shows that the set of most informative 259 

statistics is different depending on the comparisons (groups of scenarios or individual scenarios). 260 

Two sample statistics that measure the amount of genetic variation shared between populations 261 

(FST, LIK and DM2) were among the most informative when discriminating among groups of 262 

scenarios including or not an admixture event. For groups of scenarios differing by population size 263 

variation events, statistics summarizing variation between the two subspecies samples (FST and 264 

DM2 for the bottleneck event in S. g. flaviventris; DAS and LIK for the population size contraction 265 

in the ancestral population) and statistics summarizing genetic variation within subspecies samples 266 

(mean expected heterozygosity and mean number of alleles for both population size variation 267 

events) were among the most discriminative ones. Only eight single sample statistics were not 268 

informative (according to their position relatively to the noise statistics added to our treatments) 269 

when considering the eight individual scenarios separately. All those non informative statistics were 270 

associated to the set of transcribed microsatellites (Figure S2.3, Supplementary Material S2). When 271 

using a naive mutational prior setting, twice as many more summary statistics turned out to be non-272 

informative (Figure S3.2, Supplementary Material S3).  273 
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 274 

Parameter estimation  275 

Figure 3A shows point estimates with 90% credibility intervals of the posterior distribution of the 276 

divergence time between the two subspecies under the best supported scenario 4. Our estimations 277 

point to a young age of subspecies divergence, with a median divergence time of 2.6 Ky and a 90% 278 

credibility interval of 0.9 to 6.6 Ky, when using some informed mutational priors and assuming an 279 

average of three generations per year (Table 2 and Table S2.2, Supplementary Material S2). The 280 

naive mutational prior setting led to a median estimate of 1.7 Ky with a wider 90% credibility 281 

interval of 0.4 to 7.9 Ky (Fig. 3a, Table 2 and Table S3.2, Supplementary Material S3). Accuracy of 282 

divergence time estimation was similar at both the global and local scales (i.e., normalized mean 283 

absolute errors of 0.369 and 0.359, respectively; Table 3). The incorporation of independent 284 

information into prior distributions of mutational parameters allowed a more accurate estimation of 285 

the median divergence time (cf. NMAE values were 30 % higher when using the naive mutational 286 

prior setting; Table 3). This observation holds true for the three other demographic parameters, with 287 

NMAE values 4 to 35 % lower when using informed mutational priors (Table 3).  288 

 Using the median as a point estimate, we estimated that the population size contraction in 289 

the ancestor could have occurred at a time about three fold older than the divergence time between 290 

the subspecies (Table 2). Estimations of the ratio of stable effective sizes of the S. g. gregaria and S. 291 

g. flaviventris populations (i.e., Nf / Ng) showed large 90% credibility intervals and include the rate 292 

value of 1 (Table 2). Accuracy analysis indicates that our genetic data withhold little information on 293 

this composite parameter (Table 3). The bottleneck intensity during the colonization of south-294 

western Africa (i.e., dbf / Nbf) shows the highest accuracy of estimation (Table 3). The median of 1 295 

and the 90% credibility interval of 0.5 to 2.4 exclude severe and mild bottlenecks and rather sustain 296 

a strong to moderate event (Table 2). 297 

The most informative summary statistics were different depending on the parameter of 298 

interest (results not shown). For the time since divergence between the two subspecies, the most 299 
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informative statistics corresponded to the expected heterozygosity computed within the S. g. 300 

flaviventris sample and the mean index of classification from S .g. flaviventris to S. g. gregaria 301 

(Figure S2.4, Supplementary Material S2). The addition of noise variables in our treatments showed 302 

that most statistics characterizing genetic variation within the S. g. gregaria sample were not 303 

informative. These results hold true when using a naive mutational prior setting (Figure S3.3, 304 

Supplementary Material S3).  305 

 Constraints on allele sizes in conjunction with high population-scaled mutation rates 306 

potentially strongly affect the linearity of the relationship between mutation accumulation and time 307 

of divergence estimated from microsatellite data. We thus evaluated the accuracy of ABC-RF 308 

estimation of the population divergence time as a function of the time scale, under scenario 4. 309 

Analyses of pseudo-observed datasets using informed mutational priors showed that the ABC-RF 310 

median estimate of divergence time reached a plateau for time scales ≥ 100,000 generations (Figure 311 

4). Thus, the divergence time between S. g. flaviventris and S. g. gregaria estimated on our real 312 

microsatellite dataset (~10,000 generations) is positioned within the period of linearity with time, 313 

well before reaching a plateau reflecting a saturation of genetic information at microsatellite 314 

markers. It is hence expected to represent a sensible estimation of the actual divergence time. Figure 315 

4 also showed that the use of a naive mutational prior setting led to a downward bias of the point 316 

estimate and to a lower accuracy of estimations. As a result, the incorporation of independent 317 

information into the prior distributions of mutational parameters considerably decreased both the 318 

NMAE for median estimates and the relative amplitude for time-scales < 100,000 generations 319 

(Figure 5).  320 

 321 

Discussion 322 

 323 

A young age of subspecific divergence 324 
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With a 90% credibility interval of the posterior density distribution of the divergence time at 0.9 to 325 

6.6 Ky, our ABC-RF analyses clearly point to a divergence of the two desert locust subspecies 326 

occurring during the present Holocene geological epoch (0 to 11.7 Ky ago; Figure 3A). The 327 

posterior median estimate (2.6 Ky) and interquartile range (1.8 to 3.7 Ky) postdated the middle-late 328 

Holocene boundary (4.2 Ky). This past time boundary corresponds to the last transition from humid 329 

to arid conditions in the African continent (Figure 3B). This increasing aridity was shown to be a 330 

progressive change, with a concomitant maximum in northern and southern Africa at around 4 to 331 

4.2 Ky ago, where aridity caused a contraction of the forest at its northern and southern peripheries 332 

without affecting its core region (Guo et al. 2000; Maley et al. 2018). Interestingly, the earliest 333 

archeological records of the desert locust found in Tin Hanakaten (Algeria) and Saqqara (Egypt) 334 

archaeological sites date back to this period (see Figure 3B and references within). Pollen records 335 

also showed that during this period the plant community was dominated by the desert and semi-336 

desert taxa found today, including some species of prime importance for the current ecology of the 337 

desert locust (Kröpelin et al. 2008, Shi et al. 1998, Duranton et al. 2012). Then, the past 4 Ky are 338 

thought to have been under environmental stability and as dry as at present. One can therefore 339 

reasonably assume that, at the inferred divergence time between the two locust subspecies, the 340 

connectivity between the two African hemispheres was still limited by the moist equator, in 341 

particular at the west, and by the savannahs and woodlands of the eastern coast (Figure 1C). 342 

Consequently, contrary to most phylogeographic studies on other African arid-adapted species 343 

(Atickem et al. 2018, Moodley et al. 2018), it is unlikely that the rather ancient Quaternary climatic 344 

history explained the Southern range extension of the desert locust; see Supplementary Material S4 345 

for additional points of discussions on the influence of climatic cycles on S. gregaria. 346 

Recent geological and palynological research has shown that a brief fragmentation of the 347 

African primary forest occurred during the Holocene interglacial from 2.5 Ky to 2.0 Ky ago 348 

(reviewed in Maley et al. 2018). This forest fragmentation period is characterized by relatively 349 

warm temperatures and a lengthening of the dry season rather than an arid climate. Although this 350 
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period does not correspond to a phase of general expansion of savannas and grasslands, it led to the 351 

opening of the Sangha River Interval (SRI). The SRI corresponds to a 400 km wide (14–18° E) 352 

open strip composed of savannas and grasslands dividing the rainforest in a north-south direction. 353 

The SRI corridor is thought to have facilitated the southern migration of Bantu-speaking 354 

pastoralists, along with cultivation of the semi-arid sub-Saharan cereal, pearl millet, Pennisetum 355 

glaucum (Schwartz 1992; Bostoen et al. 2015). The Bantu expansion took place between 356 

approximately 5 and 1.5 Ky ago and reached the southern range of the desert locust, including 357 

northern Namibia for the Western Bantu branch and southern Botswana and eastern South Africa 358 

for the Eastern Bantu branch (Vansina 1995). We cannot exclude that the recent subspecific 359 

distribution of the desert locust has been mediated by this recent climatic disturbance, which 360 

included a north-south corridor of open vegetation habitats and the diffusion of agricultural 361 

landscapes through the Bantu expansion. The progressive reappearance of forest vegetation 2 Ky 362 

ago would have then led to the present-day isolation and subsequent genetic differentiation of the 363 

new southern populations from northern parental populations. 364 

Our ABC-RF results indicate that a demographic bottleneck (i.e., a strong transitory 365 

reduction of effective population size) occurred in the nascent southern subspecies of the desert 366 

locust. The high posterior probability value (96.5%) shows that this evolutionary event could be 367 

inferred with strong confidence. This result can be explained by the abovementioned colonization 368 

hypothesis if the proportion of suitable habitats for the desert locust in the SRI corridor was low, 369 

strongly limiting the carrying capacity during the time for range expansion. Alternatively, the 370 

bottleneck event in S. g. flaviventris can be explained by a southern colonization of Africa through a 371 

long-distance migration event. Long-distance migrations are possible in the gregarious phase of the 372 

desert locust, with swarms of winged adults that regularly travel up to 100 km in a day (Roffey and 373 

Magor 2003). However, since effective displacements are mostly downwind in this species, the 374 

likelihood of a southwestern transport of locusts depends on the dynamics of winds and pressure 375 

over Africa (Nicholson 1996, Waloff and Pedgley 1986). Because in southern Africa, winds blow 376 
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mostly from the north-east toward the extant south-western distribution of the desert locust (at least 377 

in southern winter, i.e., August; Figure 1A), only exceptional conditions of a major plague event 378 

may have brought a single or a few swarm(s) in East Africa (see Figure 1B) and sourced the 379 

colonization of south-western Africa. In agreement with this, rare southward movements of desert 380 

locust have been documented along the eastern coast of Africa, for instance in Mozambique in 381 

January 1945 during the peak of the major plague of 1941-1947 (Waloff 1966) 382 

 383 

Gain in statistical inferences when incorporating independent information into the mutational prior 384 

setting 385 

The mutational rate and spectrum at molecular markers are critical parameters for model-based 386 

population genetics inferences (e.g., Estoup et al. 2002). We found that the specification into prior 387 

distributions of previous estimations of microsatellite mutation rates and allele size constraints 388 

substantially improved the accuracy of the divergence time estimation. The using of a naive 389 

mutational prior setting, where values for mutational parameters were drawn from uniform 390 

distributions allowing for larger uncertainties with respect to mutation rates and allele size 391 

constraints, resulted in a larger credibility interval of the divergence time estimated from the 392 

observed dataset. The latter credibility interval did not include, however, another transition to a dry 393 

climatic period, such as the Younger Dryas (YD, 12.9 to 11.7 Ky) or the Last Glacial Maximum 394 

(LGM, 21.1 to 17.2 Ky), two periods with a more continuous potential ecological range for the 395 

desert locust. Simulation studies also showed that a naive mutational prior setting resulted in a 396 

downward bias in median estimate, which could have altered the historical interpretation of our 397 

results. For example, the down-biased estimate of the divergence time obtained when using a naive 398 

mutational prior setting (median of 1.7 Ky) agrees less with the timing of the aridity associated with 399 

the SRI opening (2.5 Ky to 2 Ky). For scenario choice, the inferential gain in incorporating 400 

independent information in mutational prior setting was weaker, with power and error rates 401 

decreasing by only a few percent.  402 
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It is legitimate to ask the question of whether the observed increases in confidence levels in 403 

scenario choice and parameter estimation are worth the substantial efforts required to estimate 404 

microsatellite mutation rates from direct observation of germline mutations in non-model species. 405 

As food for thought, the use of uniform prior rather than a log-uniform prior for time period 406 

parameters led to an absolute bias and increase in credibility interval in divergence time estimate 407 

similar to that observed when using a naive rather than an informed mutational prior setting 408 

(Supplementary Material S5). Using a log-uniform distribution remains a sensible choice for 409 

parameters with ranges of values covering several if not many log-intervals, as doing so allows 410 

assigning equal probabilities to each of the log-intervals. The observed effect of prior shape 411 

distributions highlights, once again, the well-known potential impacts of the prior settings assumed 412 

in Bayesian analyses, and calls for processing various error and accuracy analyses using different 413 

prior settings as done in the present study. 414 

 415 

Implication for the evolution of phase polyphenism 416 

Interestingly, the southern subspecies S. g. flaviventris lacks, at least partly, the capacity to mount 417 

some of the phase polyphenism responses associated with swarming observed in the northern 418 

subspecies S. g. gregaria (reviewed in Chapuis et al. 2017). Since the S. g. flaviventris lineage arose 419 

about 7,700 generations ago, it seems unlikely that a hard selective sweep from de novo mutation(s) 420 

is responsible for the loss of phase polyphenism, although the large effective population sizes may 421 

prevent their loss by genetic drift and increase the efficacy of selection (Kimura 1962). Selection on 422 

standing genetic variation may therefore better explain such a rapid evolution, since beneficial 423 

alleles are immediately available, less likely to be lost by drift than new mutations, and may have 424 

been pre-tested by selection in past environments (Barrett and Schluter 2008). Such a scenario 425 

would require that variants associated with the reduction of phase polyphenism in S. g. flaviventris 426 

were already present in past S. g. gregaria environments at relatively high frequencies, which may 427 

have occurred through prior adaptation. First, temporal heterogeneity in selection between low-428 
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density (solitarious) and high-density (gregarious) environments in the northern range may have 429 

contributed to retain a high level of genetic variance on this trait (Siepielski et al. 2009; Pélissié et 430 

al. 2016). Second, the southern colonization was preceded by a prolonged and severe contraction of 431 

northern deserts, providing ecological conditions favorable for the evolution of a solitarious phase 432 

in the native environment that may have facilitated adaptation in the novel southern range of the 433 

species. 434 

Hundreds to thousands of genes have been previously identified as differentially expressed 435 

between isolated (solitarious) and crowded (gregarious) phases of the desert locust but the challenge 436 

of targeting those relevant to the polyphenetic switch is daunting (Badisco et al. 2011, Bakkali and 437 

Martín-Blázquez 2018). In this context, a promising investigation axis to identify key genes (or 438 

transcripts) is to use population genomics (or transcriptomics) approaches comparing highly 439 

polyphenic S. g. gregaria populations and less polyphenic S. g. flaviventris. In particular, genomics 440 

studies based on genome scans (reviewed in Vitti et al. 2013) use population samples to measure 441 

genetic diversity and differentiation at many loci, with the goal of detecting loci under divergent 442 

selection. Since the variance in differentiation estimates across loci is expected to be lower in 443 

poorly differentiated populations (Hoban et al. 2016), the recent divergence between desert locust 444 

lineages should ease the detection of signatures of natural selection. Genome scans can lead to 445 

misleading signals of selection if the effects of geographical, temporal and demographic factors are 446 

not properly accounted for (Li et al. 2012; Vitti et al. 2013). For example, bottlenecks may create 447 

spurious signatures that mimic those left by positive selection. Future genome scan studies will 448 

therefore greatly benefit from the historical and demographic parameters inferred in the present 449 

study, as they could be explicitly included in the analytical process (e.g. Vitalis et al. 2001; Nielsen 450 

et al. 2009). 451 

 452 

Materials & Methods 453 

 454 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/671867doi: bioRxiv preprint first posted online Jun. 14, 2019; 



19 

 

Formalization of evolutionary scenarios 455 

 To help formalize the evolutionary scenarios to be compared, we relied on maps of vegetation 456 

cover in Africa from the Quaternary Environment Network Atlas (Adams and Faure 1997), 457 

considering more specifically the periods representative of arid maximums (LGM and YD; Fig.1E-458 

F, humid maximums (HCO; Fig.1D), and present-day arid conditions (Fig.1C). Desert and xeric 459 

shrubland cover fits well with the present-day species range during remission periods. Tropical and 460 

Mediterranean grasslands were added separately to the desert locust predicted range since the 461 

species inhabits such environments during outbreak periods only. The congruence between present 462 

maps of species distribution (Fig.1A) and of open vegetation habitats (Fig.1C) suggests that 463 

vegetation maps for more ancient periods could be considered as good approximations of the 464 

potential range of the desert locust in the past. Maps of vegetation cover during ice ages (Figs. 1E 465 

and 1F) show an expansion of open vegetation habitats (i.e., grasslands in the tropics and deserts in 466 

both the North and South of Africa) sufficient to make the potential range of the species continuous 467 

from the Horn of Africa in North-West to the Cape of Good Hope in the South. 468 

Based on the above climatic and paleo-vegetation map reconstructions, we considered a set 469 

of alternative biogeographic hypotheses formulated into different types of evolutionary scenarios. 470 

First, we considered scenarios involving a more or less continuous colonization of southern Africa 471 

by the ancestral population from a northern origin. In this type of scenario, effective population 472 

sizes were allowed to change after the divergence event, without requiring any bottleneck event 473 

(i.e., without any abrupt and strong reduction of population size) right after divergence. Second, we 474 

considered the situation where the colonization of Southern Africa occurred through a single (or a 475 

few) long-distance migration event(s) of a small fraction of the ancestral population. This situation 476 

was formalized through scenarios that differed from the formers by the occurrence of a bottleneck 477 

event in the newly founded population. The bottleneck event occurred into S. g. flaviventris right 478 

after divergence and was modelled through a limited number of founders during a short period.  479 
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Because the last Quaternary cycle includes several arid climatic periods, including the 480 

intense punctuation of the Younger Dryas (YD) and the last glacial maximum (LGM), we also 481 

considered scenarios that incorporated the possibility of secondary contact with asymmetrical 482 

genetic admixture from S. g. gregaria into S. g. flaviventris. Since previous tests based on simulated 483 

data showed a poor power to discriminate between a single versus several admixture events (results 484 

not shown), we considered only models including a single admixture event. 485 

Finally, at interglacial humid maximums, the map of vegetation cover showed a severe 486 

contraction of deserts, which were nearly completely vegetated with annual grasses and shrubs and 487 

supported numerous perennial lakes (Fig.1D; deMenocal et al. 2000). We thus envisaged the 488 

possibility that climatic-induced contractions of population sizes have pre-dated the separation of 489 

the two subspecies. Hence, whereas so far scenarios involved a constant effective population size in 490 

the ancestral population, we formalized alternative scenarios in which we assumed that a long 491 

population size contraction event occurred into the ancestral population at a time tca, with an 492 

effective population size Nca for a duration dca.  493 

Combining the presence or absence of the three above-mentioned key evolutionary events (a 494 

bottleneck in S. g. flaviventris, an asymmetrical genetic admixture from S. g. gregaria into S. g. 495 

flaviventris, and a population size contraction in the ancestral population) allowed defining a total 496 

of eight scenarios, that we compared using ABC-RF. The eight scenarios with their historical and 497 

demographic parameters are graphically depicted in Figure 2. All scenarios assumed a northern 498 

origin for the common ancestor of the two subspecies and a subsequent southern colonization of 499 

Africa. This assumption is supported by recent mitochondrial DNA data showing that S. g. gregaria 500 

have higher levels of genetic diversity and diagnostic bases shared with outgroup and congeneric 501 

species, whereas S. g. flaviventris clade was placed at the apical tip within the species tree (Chapuis 502 

et al. 2016). All scenarios considered three populations of current effective population sizes Nf for S. 503 

g. flaviventris, Ng for S. g. gregaria, and Na for the ancestral population, with S. g. flaviventris and 504 

S. g. gregaria diverging tdiv generations ago from the ancestral population. The bottleneck event 505 
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which potentially occurred into S. g. flaviventris was modelled through a limited number of 506 

founders Nbf during a short period dbf. The potential asymmetrical genetic admixture from S. g. 507 

gregaria into S. g. flaviventris occurred at a time tsc, with an effective population size Nca and a 508 

proportion rg of genes of S. g. gregaria origin. The potential population size contraction event 509 

occurred into the ancestral population at a time tca, with an effective population size Nca during a 510 

duration dca.  511 

 512 

Prior setting for historical and demographical parameters 513 

Prior values for time periods between sampling and secondary contact, divergence and/or ancestral 514 

population size contraction events (tca, tdiv and tsc, respectively) were drawn from log-uniform 515 

distributions bounded between 100 and 500,000 generations, with tca > tdiv > tsc. Assuming an 516 

average of three generations per year (Roffey and Magor 2003), this prior setting corresponds to a 517 

time period that goes back to the second-to-latest glacial maximum (150 Ky ago) (de Vivo and 518 

Carmignotto 2004, deMenocal et al. 2000). Preliminary analyses showed that assuming a uniform 519 

prior shape for all time periods (instead of log-uniform distributions) do not change scenario choice 520 

results, with posterior probabilities only moderately affected, and this despite a substantial increase 521 

of out-of-bag prior error rates (e.g., + 50% when considering the eight scenarios separately; Table 522 

S5.1, Supplementary Material S5). Analyses of simulated pseudo-observed datasets (pods) showed 523 

that assuming a uniform prior rather than a log-uniform prior for time period parameters would 524 

have also biased positively the median estimate of the divergence time and substantially increased 525 

its 90% credibility interval (Figure S5.1 and Table S5.2, Supplementary Material S5). 526 

We used uniform prior distributions bounded between 1x10
4
 and 1x10

6
 diploid individuals 527 

for the different stable effective population sizes Nf, Ng and Na (Chapuis et al. 2014). The admixture 528 

rate (rg; i.e., the proportion of S. g. gregaria genes entering into the S. g. flaviventris population), 529 

was drawn from a uniform prior distribution bounded between 0.05 and 0.5. We used uniform prior 530 

distributions bounded between 2 and 100 for both the numbers of founders (in diploid individuals) 531 
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and durations of bottleneck events (in number of generations). For the contraction event, we used 532 

uniform prior distributions bounded between 100 and 10,000 for both the population size Nca (in 533 

diploid individuals) and duration dca (in number of generations). Assuming an average of three 534 

generations per year (Roffey and Magor 2003), such prior choice allowed a reduction in population 535 

size for a short to a relatively long period, similar for instance to the whole duration of the HCO 536 

(from 9 to 5.5 Ky ago) which was characterized by a severe contraction of deserts. 537 

 538 

Microsatellite dataset, mutation rate and mutational model 539 

We carried out our statistical inference on the microsatellite datasets previously published in 540 

Chapuis et al. (2016). The 23 microsatellite loci genotyped in such datasets were derived from 541 

either genomic DNA (14 loci) or messenger RNA (9 loci) resources, and were hereafter referred to 542 

as untranscribed and transcribed microsatellite markers (following Blondin et al. 2013). These 543 

microsatellites were shown to be genetically independent, free of null alleles and at selective 544 

neutrality (Chapuis et al. 2016). Previous levels of FST (Weir 1996) and Bayesian clustering 545 

analyses (Pritchard et al. 2000) among populations showed a weak genetic structuring within each 546 

subspecies (Chapuis et al. 2014, 2017). For each subspecies, we selected and pooled three 547 

population samples in order to ensure both a large sample size (i.e., 80 and 90 individuals for S. g. 548 

gregaria and S. g. flaviventris, respectively), while ensuring a non-significant genetic structure 549 

within each subspecies pooled sample, as indicated by non-significant (i.e. p-value > 0.05; Genepop 550 

4.0; Rousset 2008) (i) Fisher’s exact tests of genotypic differentiation among the three initial 551 

population samples within subspecies and (ii) exact tests of Hardy-Weinberg equilibrium for each 552 

subspecies pooled sample. More precisely, the S. g. gregaria sample consisted in pooling the 553 

population samples 8, 15 and 22 of Chapuis et al. (2014) and the S. g. flaviventris sample included 554 

the population samples 1, 2 and 6 of Chapuis et al. (2017). 555 

Mutations occurring in the repeat region of each microsatellite locus were assumed to follow 556 

a symmetric generalized stepwise mutation model (GSM; Zhivotovsky et al. 1997; Estoup et al. 557 
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2002). Prior values for any mutation model settings were drawn independently for untranscribed 558 

and transcribed microsatellites in specific distributions. The informed mutational prior setting was 559 

defined as follows. Because allele size constraints exist at microsatellite markers, we informed for 560 

each microsatellite locus their lower and upper allele size bounds using values estimated in Chapuis 561 

et al. (2015), following the approach of Pollock et al. (1998) and microsatellite data from several 562 

species closely related to S. gregaria (Blondin et al. (2013). Prior values for the mean mutation 563 

rates (𝜇𝑅̅̅ ̅) were set to the empirical estimates inferred from observation of germline mutations in 564 

Chapuis et al. (2015), i.e., 2.8x10
-4

 and 9.1x10
-5

 for untranscribed and transcribed microsatellites, 565 

respectively. The parameters for individual microsatellites were then drawn from a Gamma 566 

distribution with mean = 𝜇𝑅̅̅ ̅ and shape = 0.7 (Estoup et al. 2001) for both types of microsatellites. 567 

We ensured that the chosen value of shape parameter generated the same inter-loci variance as 568 

estimated in Sun et al. (2012) from direct observations of thousands of human microsatellites. Prior 569 

values for the mean parameters of the geometric distributions of the length in number of repeats of 570 

mutation events (𝑃̅) were set to the proportions of multistep germline mutations observed in 571 

Chapuis et al. (2015), i.e., 0.14 and 0.67 for untranscribed and transcribed microsatellites, 572 

respectively. The P parameters for individual loci were then standardly drawn from a Gamma 573 

distribution (mean = 𝑃̅ and shape = 2). We also considered mutations that insert or delete a single 574 

nucleotide to the microsatellite sequence. To model this mutational feature, we used the DIYABC 575 

default setting values (i.e., a uniform distribution bounded between [10
-8

, 10
-5

] for the mean 576 

parameter 𝜇𝑆𝑁𝐼̅̅ ̅̅ ̅̅  and a Gamma distribution (mean = 𝜇𝑆𝑁𝐼̅̅ ̅̅ ̅̅  and shape = 2) for individual loci 577 

parameters; Cornuet et al. 2010; see also DIYABC user manual p. 13, 578 

http://www1.montpellier.inra.fr/CBGP/diyabc/). 579 

We evaluated how the incorporation of independent information on prior distributions for 580 

mutational parameters affected both the posterior probabilities of scenarios and the posterior 581 

parameter estimation under our inferential framework. To this aim, we re-processed our inferences 582 

using a naive mutational prior setting, often used in many ABC microsatellite studies (e.g., Estoup 583 
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et al. 2002). In this case, prior values for mean mutation parameters were drawn from uniform 584 

distributions instead of being set to a fixed value as in the informed mutational prior setting. For 585 

each set of untranscribed or transcribed microsatellites, all loci were free of allele size constraints 586 

(cf. allele size bounds were fixed to very different values such as 2 and 500 for the lower and upper 587 

bounds, respectively), prior values for 𝜇𝑅̅̅ ̅ were drawn from a uniform distribution bounded between 588 

10
-5

 and 10
-3

, 𝑃̅ values were drawn in a uniform distribution bounded between 0.1 and 0.3. Finally, 589 

the mean rate of single nucleotide indel mutations and all parameters for individual loci were set to 590 

the DIYABC default values (Chapuis et al. 2014; 2015).  591 

 592 

Analyses using ABC Random Forest 593 

We used the software DIYABC v.2.1.0 (Cornuet et al. 2014) to simulate datasets constituting the 594 

so-called reference tables (i.e. records of a given number of datasets simulated using the scenario ID 595 

and the evolutionary parameter values sampled from prior distributions and summarized with a pool 596 

of statistics). Random-forest computations were then performed using a new version of the R 597 

library ABCRF (version 1.8) available on the CRAN. This version includes all ABC-RF algorithms 598 

detailed in Pudlo et al. (2016), Raynal et al. (2019) and Estoup et al. (2018a) for scenario choice 599 

and parameter estimation, as well as several statistical novelties allowing to compute error rates in 600 

scenario choice and accuracy measures for parameter estimation (see details below).  601 

For scenario choice, the outcome of the first step of the ABC-RF statistical treatment applied 602 

to a given target dataset is a classification vote for each scenario which represents the number of 603 

times a scenario is selected in a forest of n trees. The scenario with the highest classification vote 604 

corresponds to the scenario best suited to the target dataset among the set of compared scenarios. 605 

This step also provides an error rate relevant to the entire prior sampling space, the global prior 606 

error. See the section Global prior errors in Supplementary Material S1 for details. The second RF 607 

analytical step provides a reliable estimation of the posterior probability of the best supported 608 

scenario. One minus such posterior probability yields the local posterior error associated to the 609 
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observed dataset (see the section Local posterior errors in Supplementary Material S1). In practice, 610 

ABC-RF analyses were processed by drawing parameter values into the prior distributions 611 

described in the two previous sections and by summarizing microsatellite data using a set of 32 612 

statistics (see Table S6.1, Supplementary Material S6, for details about such summary statistics as 613 

well as their values obtained from the observed dataset) and the one LDA axis or seven LDA axes 614 

(i.e. number of scenarios minus 1; Pudlo et al. 2016) computed when considering pairwise groups 615 

of scenarios or individual scenarios, respectively. We processed ABC-RF treatments on reference 616 

tables including 100,000 simulated datasets (i.e., 12,500 per scenario). Following Pudlo et al. 617 

(2016), we checked that 100,000 datasets was sufficient by evaluating the stability of prior error 618 

rates and posterior probabilities estimations of the best scenario on 50,000, 80,000 and 90,000 and 619 

100,000 simulated datasets (Table S6.2, Supplementary Material S6). The number of trees in the 620 

constructed random forests was fixed to n = 3,000, as this number turned out to be large enough to 621 

ensure a stable estimation of the prior error rate (Figure S6.1, Supplementary Material S6). We 622 

predicted the best scenario and estimated its posterior probability and prior error rate over ten 623 

replicate analyses based on ten different reference tables. 624 

In order to decipher the main evolutionary events that occurred during the evolutionary 625 

history of the two desert locust subspecies, we first conducted ABC-RF treatments on three 626 

pairwise groups of scenario (with four scenarios per group): groups of scenarios with vs. without a 627 

bottleneck in S. g. flaviventris, groups with vs. without a population size contraction in the ancestral 628 

population, and groups with vs. without a secondary contact with asymmetrical genetic admixture 629 

from S. g. gregaria into S. g. flaviventris. We then conducted ABC-RF treatments on the eight 630 

scenarios considered separately.  631 

For parameter estimation, we constructed ten independent replicate RF treatments based on 632 

ten different reference tables for each parameter of interest (Raynal et al. 2019): the time since 633 

divergence, the ratio of the time of the contraction event into the ancestral population on the time 634 

since divergence, the intensity of the bottleneck event in the sampled S. g. flaviventris population 635 
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(defined as the ratio of the bottleneck event of duration dbf on the effective population size Nbf ) and 636 

the ratio of the stable effective population size of the two sampled populations. For each RF 637 

treatment, we simulated a total of 100,000 datasets for the selected scenario (drawing parameter 638 

values into the prior distributions described in the two previous sections and using the same 32 639 

summary statistics). Following Raynal et al. (2019), we checked that 100,000 datasets was 640 

sufficient by evaluating the stability of the measure of accuracy on divergence time estimation using 641 

50,000, 80,000 and 90,000 simulated datasets (Table S6.3, Supplementary Material S6). The 642 

number of trees in the constructed random forests was fixed to n = 2,000, as such number turned out 643 

to be large enough to ensure a stable estimation of the measure of divergence time estimation 644 

accuracy (Figure S6.2, Supplementary Material S6). For each RF treatment, we estimated the 645 

median value and the 5% and 95% quantiles of the posterior distributions. It is worth noting that we 646 

considered median values as the later provided more accurate estimations (according to out-of-bag 647 

predictions) than when considering mean values (results not shown). Accuracy of parameter 648 

estimation was measured using out-of-bag predictions and the normalized mean absolute error 649 

(NMAE). NMAE corresponds to the mean of the absolute difference between the point estimate 650 

(here the median) and the (true) simulated value divided by the simulated value (formula detailed in 651 

Supplementary Material S1).  652 

Finally, because microsatellite markers tend to underestimate divergence time for large time 653 

scales due to allele size constraints, we evaluated how the accuracy of ABC-RF estimation of the 654 

time of divergence between the two subspecies was sensitive to the time scale. To this aim, we used 655 

DIYABC to produce pseudo-observed datasets assuming fixed divergence time values chosen to 656 

cover the prior interval (100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 100,000; 657 

250,000 generations) and using the best scenario with either the informed or the naive mutational 658 

prior setting. We simulated 5,000 of such test datasets for each of the eleven divergence time 659 

values. Each of these test dataset was treated using ABC-RF in the same way as the above target 660 
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observed dataset. In addition, we computed for each test dataset the relative amplitude of parameter 661 

estimation, as the 90% credibility interval divided by the (true) simulated value. 662 
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Supporting Material 887 

Additional supporting information may be found in the online version of this article. 888 

 889 

Figure legends 890 

 891 

Figure 1. Present time distribution range of Schistocerca gregaria in Africa under remission 892 

periods with winds in August A) and January B), and vegetation habitats suitable for the 893 

species during the present period C), the Holocene Climatic Optimum (HCO, 9 to 6 Ky ago) 894 

D), the Younger Dryas (YD, 12.9 to 11.7 Ky ago) E) and the Last Glacial Maximum (LGM, 26 895 

to 14.8 Ky ago) F).  896 

(A-B) Distribution range and winds are adapted from Sword et al. (2010) and Nicholson (1996), 897 

respectively. In northern Africa, at least since 2.7Ky, the strong northeast trade winds bring desert 898 

locust swarms equatorward in the moist intertropical convergence zone (Kröpelin et al. 1998). Most 899 

transports are westward, with records of windborne locusts in the Atlantic Ocean during plague 900 

events (Waloff 1960), including the exceptional trans-Atlantic crossing from West Africa to the 901 

Caribbean in 1988 (Lorenz 2009). Nevertheless, at least in northern winter (January), easterly winds 902 

flow more parallel to the eastern coast of Africa. (C-F) Vegetation habitats are adapted from Adams 903 

and Faure (1997). Open vegetation habitats suitable for the desert locust correspond to deserts (light 904 

orange), xeric shrublands (dark orange) and tropical - Mediterranean grasslands (pink). Other 905 

unsuitable habitat classes (white) are forests, woodlands and temperate shrublands and savannas. 906 

 907 

Figure 2. Evolutionary scenarios compared using ABC-RF.  908 

The subscripts g, f and a refer to the subspecies S. g. gregaria, S. g. flaviventris and their unsampled 909 

common ancestor, respectively. Eight scenarios are considered and identified by a number (from 1 910 

to 8). Such scenarios differ by the presence or absence of three evolutionary events: a bottleneck in 911 

S. g. flaviventris (b) right after divergence between the two subspecies, a population size contraction 912 
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in the ancestral population (ca) and a secondary contact with asymmetrical genetic admixture from 913 

S. g. gregaria into S. g. flaviventris (sc). For convenience, only the scenario 8 that includes all three 914 

evolutionary events is represented graphically. Looking forward in time, time periods are tca, the 915 

time of ancestral population size contraction, tdiv, the time of divergence between the two 916 

subspecies, and tsc, the time of the secondary contact between subspecies (with tca > tdiv > tsc). rg is 917 

the admixture rate, i.e. the proportion of genes from the S. g. gregaria lineage entering the S. g. 918 

flaviventris population at time tsc. Ng, Nf and Na are the stable effective population sizes of S. g. 919 

gregaria, S. g. flaviventris and the ancestor, respectively. Nca is the effective population size during 920 

the contraction event of duration dca in the ancestor. Nbf is the effective population size during the 921 

bottleneck event of duration dbf.  922 

 923 

Figure 3. Divergence time between S. g. gregaria and S. g. flaviventris inferred under the best 924 

supported scenario (scenario 4) A) in relation to bioclimatic changes in Northern and 925 

Southern Africa B).  926 

A) Dashed and solid lines represent the formal subdivision of the Holocene and Pleistocene epochs 927 

(Walker at al. 2012). Dotted lines with labels on the right side are the median value and 90% 928 

confidence interval of the posterior density distributions of the divergence time estimated using an 929 

informed or a naive mutation prior setting (assuming an average of three generations per year; 930 

Roffey and Magor 2003). Asterisks refer to earliest archeological records of the desert locust. In the 931 

Algerian Sahara, remains of locusts were found in a special oven dating back to about 6Ky ago, in 932 

the rock shelter of Tin Hanakaten (Aumassip 2002). In Egypt, locusts were depicted on daggers of 933 

the pharaoh Ahmose, founder of the Eighteenth Dynasty (about 3.5 Ky ago) (Malek 1997) and, at 934 

Saqqara, on tombs of the Sixth Dynasty (about 4.2 to 4.4 Ky ago) that is thought to have felt with 935 

the impact of severe droughts (Meinzingen 1993). B) Climatic episodes include major cycles and 936 

additional transitions of aridity (sandy brown) and humidity (steel blue). The grey coloration means 937 

that there is debate on the climatic status of the period (arid vs. humid). HCO: Holocene Climatic 938 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/671867doi: bioRxiv preprint first posted online Jun. 14, 2019; 



39 

 

Optimum; YD: Younger Dryas; LGM: Last Glacial Maximum; LIG: Last Inter Glacial. 939 

Delimitations of climatic periods were based on published paleoclimatic inferences from geological 940 

sediment sequences (e.g., eolian deposition, oxygen isotope data) and biological records (e.g., 941 

pollen or insect fossils assemblages) from marine cores or terrestrial lakes. References are Bond et 942 

al. (1997), Guo et al.(2000), Kröpelin et al. (2008), Roberts et al. (1993) and van Andel and 943 

Tzedakis (1996) for northern Africa, and Talma and Vogel (1992), Stokes et al. (1997), and Shi et 944 

al. (1998) for southern Africa. See also Gasse (2000) for a review.  945 

 946 

Figure 4. Point estimates of posterior distributions A) and differences in accuracy B-C) of 947 

ABC-RF estimations of the divergence time obtained using an informed or a naive mutational 948 

prior setting under the best supported scenario (scenario 4).  949 

Simulated pseudo-observed datasets (5,000 per divergence time) were generated for fixed 950 

divergence time values of 100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 100,000; 951 

and 250,000 generations (cf. x-axis with a log-scale). A) The estimated median (plain lines) and 952 

90% credibility interval (dashed lines), averaged over the 5,000 datasets, are represented (y-axis) 953 

using the informed (black color) or the naive (grey color) mutational prior setting. B) The difference 954 

in accuracy, the latter being measured by the normalized mean absolute error (NMAE) calculated 955 

from the estimated median values, is represented as NMAE-informed minus NMAE-naive. The 956 

negative values of NMAE differences indicate a higher accuracy of estimations based on the 957 

informed mutational prior setting. C) The difference in accuracy, here measured by the relative 958 

amplitude of estimation (averaged over the 5,000 datasets), is represented as relative amplitude-959 

informed minus relative amplitude-naïve. 960 

 961 

 962 
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Fig. 2 
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Tables 

 

Table 1. Scenario choice when analyzing groups of scenarios or scenarios separately. 

 

Mutational prior setting 

Analyses of groups of scenarios 

Analysis of scenarios 

separately 
Group 1=no b  

vs. 

group 2=b 

Group 1=no ca  

vs. 

group 2= ca 

Group 1=no sc 

vs. 

group 2= sc 

Informed      

Prior error rate 10.2% 24.9% 23.5% 47.9% 

Posterior probability 

(selected group or individual scenario) 

0.965 

(b) 

0.746 

(ca) 

0.742 

(no sc) 

0.584 

(scenario 4) 

Naive     

Prior error rate 11.1% 26.7% 24.4% 50.2% 

Posterior probability 

(selected group or individual scenario) 

0.950 

(b) 

0.704 

(ca) 

0.775 

(no sc) 

0.547 

(scenario 4) 

 

Scenarios were grouped based on the presence or not of a bottleneck in S. g. flaviventris (b or no b), a population size contraction in ancestor (ca or no ca) and a secondary 

contact with asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris (sc or no sc). We reported values for prior error rates and posterior probabilities of the 

selected group of scenarios or individual scenario, averaged over ten replicate analyses. The local posterior error rate (corresponding to a confidence measure of the selected 

scenario given the observation.) can be computed as 1 minus the posterior probability (see Supplementary material S1 for details). The number of records for each reference 

datasets simulated from DIYABC was set to 100,000 and the number of RF- trees was 3,000. 
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Table 2. Parameter estimation under the best supported scenario (scenario 4).  

 
 

 
Posterior values using an  

informed mutational prior setting 

Posterior values using a  

naive mutational prior setting 
Prior values 

  Median 90% CI Median 90% CI Median 90% CI 

tdiv 7,723 2,785 – 19,708 5,235 1,224 – 23,845 1,212 124 – 73,795 

tca / tdiv 2.75 1.11 – 35.47 4.55 1.24 – 51.66 12.17 1.24 – 762.26 

Nf  / Ng 5.43 0.52 – 25.56 4.71 0.37 – 31.45 1.00 0.12 – 8.11 

dbf  / Nbf 1.06 0.49 – 2.41 1.09 0.45 – 3.11 1.00 0.13 – 7.57 

 

tdiv: time of divergence between the two desert locust subspecies (in number of generations); tca: time of ancestral population size contraction; Nf : stable effective population 

size of S. g. flaviventris; Ng: stable effective population size of S. g. gregaria; dbf : duration of the bottleneck event; Nbf : effective population size during the bottleneck 

event. For each evolutionary parameter, we reported posterior point estimates averaged over ten replicate analyses. CI: credibility interval. The number of records for each 

reference datasets simulated from DIYABC was set to 100,000 and the number of RF-trees was 2,000. 
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Table 3. Accuracy in parameter estimation under the best supported scenario (scenario 4).  
 

 

Mutational prior setting tdiv tca / tdiv Nf  / Ng dbf  / Nbf 

Informed      

Prior NMAE 0.359 1.077 1.726 0.299 

Posterior NMAE 0.369 0.596 1.332 0.323 

Naive     

Prior NMAE 0.542 1.258 1.824 0.340 

Posterior NMAE 0.571 0.921 1.382 0.391 

 

Accuracy has been measured with the normalized mean absolute error (NMAE) which corresponds to the mean of the absolute difference between the point estimate of the 

parameter (here the median) and the (true) simulated value divided by the (true) simulated value. NMAE measures were computed using out-of-bag predictions either on the 

whole data space defined by the prior distributions (prior NMAE) or conditionally to the observed dataset (posterior NMAE); see Supplementary material S1 for details. tdiv: 

time of divergence between the two desert locust subspecies (in number of generations); tca: time of ancestral population size contraction; Nf : stable effective population size 

of S. g. flaviventris; Ng: stable effective population size of S. g. gregaria; dbf : duration of the bottleneck event; Nbf : effective population size during the bottleneck event. For 

each evolutionary parameter, reported error estimates were averaged over ten replicate analyses. The number of records for each reference datasets simulated from DIYABC 

was set to 100,000 and the number of RF-trees was 2,000.  
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Supplementary Material S1: Overview of the used ABC Ran-
dom Forest (ABC-RF) methods

In this supplementary material, we provide readers with an overview of the Approximate Bayesian
Computation Random Forest (hereafter ABC-RF) methods used in the present paper. We invite
the reader to consult Pudlo et al. (2016), Estoup et al. (2018), and Raynal et al. (2018) for more
in-depth explanations.

ABC framework

Let y denote the observed data and θ a vector of parameters associated to a statistical model whose
likelihood is f(. | θ). Under the Bayesian parametric paradigm the posterior distribution

π(θ | y) ∝ f(y | θ)π(θ)

is of prime interest. It characterizes the distribution of θ given the observation y and can be
interpreted as an update of the prior distribution π(θ) by the likelihood of y. The likelihood is
hence pivotal, but unfortunately intractable in the evolutionary scenarios (models) we consider in
the present study, as well as in many other evolutionary studies. As a matter of fact, the underlying
Kingman’s coalescent process (Kingman, 1982) does not allow a close expression for the likelihood
because all the possible genealogies and mutational process yielding y should be considered. To
solve this issue, some likelihood-free methods have been developed using the fact that, even though
the likelihood is not available, generating artificial (i.e. simulated) data for a given value of θ is
much easier if not feasible (e.g. Beaumont (2010). Approximate Bayesian computation (ABC) is
one of them (Beaumont et al., 2002).

In a nutshell, ABC consists in generating parameters θ′ and associated pseudo-data z from
the scenario, and accepting θ′ as a realization from an approximated posterior if z is similar to y.
In standard ABC treatments, the notion of similarity is defined through the use of a distance ρ
to compare η(z) and η(y), where η(.) is a projection of the data in a lower dimensional space of
summary statistics. Only pseudo-data providing distance lower than a threshold ε are retained.
The choice of ρ, η(.) and ε is a major issue in ABC (Beaumont, 2010).

ABC-RF is a recently derived ABC approach based on the supervised machine learning tool
named Random Forest (Breiman, 2001), which has as major advantage to avoid the three above-
mentioned difficulties. Initially introduced in Pudlo et al. (2016) for model choice and then extended
to parameter inference in Raynal et al. (2018), ABC-RF relies on the use of random forests on a
set of simulated pseudo-data according to the generative Bayesian models under consideration.
Let consider M Bayesian parametric models. For a given model index m ∈ {1, . . . ,M}, a prior
probability P(M = m) is defined, with θm its associated parameters and fm(y | θm) its likelihood.
The generation process of a reference table made of H elements is described in Algorithm 1.

Algorithm 1: Generation of a reference table with H elements

1 for j ← 1 to H do
2 Generate m(j) from the prior P(M = m)
3 Generate θm(j) from the prior πm(j)(.)

4 Generate z(j) from the model fm(j) (. | θm(j))

5 Compute η(z(j)) =
(
η1(z(j)), . . . , ηd(z

(j))
)

6 end

1
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The output takes the form of a matrix containing simulated model indexes, parameters and
summary statistics, as described below

m(1) θm(1) η1(z(1)) η2(z(1)) . . . ηd(z
(1))

m(2) θm(2) η1(z(2)) η2(z(2)) . . . ηd(z
(2))

...
...

...
...

...
...

m(H) θm(H) η1(z(H)) η2(z(H)) . . . ηd(z
(H))

 .

ABC-RF for model choice

The ABC-RF strategy for model choice is described in Algorithm 2. The output is the affectation
of y to a model (scenario), this decision being made based on the majority class of the RF tree
votes.

Algorithm 2: ABC-RF for model choice

Input : a reference table used as learning set, made of H elements, each one composed of a model
index m(H) and d summary statistics. A possibly large collection of summary statistics can
be used, including some obtained by machine-learning techniques, but also by scientific
theory and knowledge

Learning : construct a classification random forest m̂(·) to infer model indexes

Output : apply the random forest classifier to the observed data η(y) to obtain m̂(η(y))

The selected scenario is the one with the highest number of votes in his favor. In addition to
this majority vote, the posterior probability of the selected scenario can be computed as described
in Algorithm 3.

Algorithm 3: ABC-RF computation of the posterior probability of the selected scenario

Input : the values of I
{
m(h) 6= m̂(η(z(h)))

}
for the trained random forest and corresponding

summary statistics of the reference table, using the out-of-bag classifiers

Learning : construct a regression random forest Ê(.) to infer E (I {m 6= m̂(η(y))} | η(y))

Output : an estimate of the posterior probability of the selected model m̂(η(y))

P̂ (m = m̂(η(y)) | η(y)) = 1− Ê (I {m 6= m̂(η(y))} | η(y))

Such posterior probability provides a confidence measure of the previous prediction at the point
of interest η(y). It relies on the building of a regression random forest designed to explain the
model prediction error. More specifically, and as a first step, posterior probability computation
makes use of out-of-bag predictions of the training dataset. Because each tree of the random forest
is built on a bootstrap sampling of the H elements of the reference table (i.e. the training dataset),
there is about one third of the reference table that remains unused per tree, and this ensemble of
left aside datasets corresponds to the “out-of-bag”. Thus, for each pseudo-data of the reference

2
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table, one can obtain an out-of-bag prediction by aggregating all the classification trees in which
the pseudo-data was out-of-bag. In a second step, the out-of-bag predictions m̂(η(z(h))) are used
to compute the indicators I

{
m(h) 6= m̂(η(z(h)))

}
. These 0 - 1 values are used as response variables

for the regression random forest training, for which the explanatory variables are the summary
statistics of the reference table. Predicting the observed data thanks to this forest allows the
derivation of the posterior probability of the selected model (Algorithm 3). Note that using the
out-of-bag procedure prevents over-fitting issues and is computationally parsimonious as it avoids
the generation of a second reference table for the regression random forest training.

Model grouping A recent useful add-on to ABC-RF has been the model-grouping approach de-
veloped in Estoup et al. (2018), where pre-defined groups of scenarios are analysed using Algorithm
2 and 3. The model indexes used in the training reference table are modified in a preliminary step
to match the corresponding groups, which are then used during learning phase. When appropriate,
unused scenarios are discarded from the reference table. This improvement is particularly useful
when a high number of individual scenarios are considered and have been formalized through the
absence or presence of some key evolutionary events (e.g. admixture, bottleneck, ...). Such key
evolutionary events allow defining and further considering groups of scenarios including or not such
events. This grouping approach allows to evaluate the power of ABC-RF to make inferences about
evolutionary event(s) of interest over the entire prior space and assess (and quantify) whether or
not a particular evolutionary event is of prime importance to explain the observed dataset (see
Estoup et al. (2018) for details and illustrations).

ABC-RF for parameter estimation

Once the selected (i.e. best) scenario has been identified, the next step is the estimation of its
parameters of interest under this scenario. The ABC-RF parameter estimation strategy is described
in Algorithm 4 and takes a similar structure to Algorithm 2. The idea is to use a regression random
forest for each dimension of the parameter space (i.e. for each parameter). For a given parameter of
interest, the output of the algorithm is a vector of weights wy that can be used to compute posterior
quantities of interest such as expectation, variance and quantiles. wy provides an empirical posterior
distribution for θm,k; see Raynal et al. (2018) for more details.

Algorithm 4: ABC-RF for parameter estimation

Input : a vector of θm(h),k values (i.e. the k-th component of θm(h)) and d summary statistics

Learning : construct a regression random forest to infer parameter values

Output : apply the random forest to the observed data η(y), to deduce a vector of weights

wy = {w(1)
y , . . . , w

(H)
y }, which provides an empirical posterior distribution for θj,k

wy is used to compute the estimators of the mean, the variance and the quantiles of the
parameter of interest

Ê(θm,k | η(y)), V̂(θm,k | η(y)), Q̂α(θm,k | η(y))

3
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Global prior errors

In both contexts, model choice or parameter estimation, a global quality of the predictor can be
computed, which does not take the observed dataset (about which one wants to make inferences)
into account. Random forests make it possible the computation of errors on the training reference
table, using the out-of-bag predictions previously described in the section “ABC-RF for model
choice”.

For model choice, this type of error is called the prior error rate, which is the mis-classification
error rate computed over the entire multidimensional prior space. It can be computed as

1

H

H∑
h=1

I
{
m(h) 6= m̂(η(z(h)))

}
.

For parameter estimation, the equivalent is the prior mean squared error (MSE) or the nor-
malised mean absolute error (NMAE), the latter being less sensitive to extreme values. These
errors are computed as

MSE =
1

H

H∑
h=1

(
θm(h),k − θ̂m(h),k

)2
,

NMAE =
1

H

H∑
h=1

∣∣∣∣∣θm(h),k − θ̂m(h),k

θm(h),k

∣∣∣∣∣ .
They can be perceived as Monte Carlo approximation of expectations with respect to the prior
distribution.

Local posterior errors

In the present paper, we propose some posterior versions of errors, which target the quality of
prediction with respect to the posterior distribution. As such errors take the observed dataset η(y)
into account, we mention them as local posterior errors.

For model choice, the posterior probability provided by Algorithm 3 is a confidence measure of
the selected scenario given the observation. Therefore

1− P̂ (m = m̂(η(y)) | η(y))

directly yields the posterior error associated to η(y): P̂ (m 6= m̂(η(y)) | η(y)).

For parameter estimation, when trying to infer on θm,k, a point-wise analogous measure of a
local error can be computed as the posterior expectations

E
((

θm,k − θ̂m,k
)2
| η(y)

)
and E

(∣∣∣∣∣θm,k − θ̂m,kθm,k

∣∣∣∣∣ | η(y)

)
. (1)

We approximate these expectations by

H∑
i=1

w(h)
y

(
θm(h),k − θ̂m(h),k

)2
and

H∑
i=1

w(h)
y

∣∣∣∣∣θm(h),k − θ̂m(h),k

θm(h),k

∣∣∣∣∣ .
4
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We again uses the out-of-bag information to compute θ̂m(h),k, hence avoiding the (time consuming)
production of a second reference table, and assume that the weights wy from the regression random
forest are good enough to approximate any posterior expectations of functions of θm,k:
E(g(θm,k) | η(y)).

Another more expensive strategy to evaluate the posterior expectations (1) is to construct new
regression random forests using the out-of-bag vector of values

(
θm(h),k − θ̂m(h),k

)2
or

∣∣∣∣∣θm(h),k − θ̂m(h),k

θm(h),k

∣∣∣∣∣ ,
depending on the targeted error. The observation η(y) is then given to the forests, targeting the
expectations (1).

Note that the values θ̂m(h),k in the previous formulas can be replaced by either the approximated

posterior expectations Ê(θm(h),k | η(y)) or the posterior medians Q̂50%(θm(h),k | η(y)), again using
the out-of-bag information, to provide the local posterior errors. We found that both in the present
paper (see main text, Materials and Methods section) and for various tests that we carried out on
different inferential setups and datasets (results not shown), the posterior median provides a better
accuracy of parameter estimation than the posterior expectation (aka posterior mean). This trends
also holds for global prior errors that can be computed using either the mean or the median as
point estimates.

As final comment, it is worth noting that so far a common practice consisted in evaluating
the quality of prediction (for model choice or parameter estimation) in the neighborhood of the
observed dataset, that is around η(y) and not exactly for η(y). For model choice, Estoup et al.
(2018) use the so called posterior predictive error rate which is an error of this type. In this case,
some simulated datasets of the reference table close to the observation are selected thanks to an
Euclidean distance, then new pseudo-observed datasets are simulated using similar parameters, on
which is computed the error (see also Lippens et al., 2017, for a similar approach in a standard
ABC framework). However, the main problem of processing this way is the difficulty to specify the
size of the area around the observation, especially when the number of summary statistics is large.
We therefore do not recommend the use of such a “neighborhood” error anymore, but rather to
compute the local posterior errors detailed above as the latter measured prediction quality exactly
at the position of interest η(y).
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Supplementary material S2. Details on results from ABC-RF treatments using an informed mutational 

prior setting. 

Table S2.1. Scenario choice for each of the ten replicate analyses using an informed mutational prior setting. 

We report values for the proportion of votes, prior error rates and posterior probabilities of the best scenario on ten replicate analyses based on 

ten different reference tables. Scenarios are depicted in Figure 2. For each reference table, the number of datasets simulated using DIYABC was 

set to 100,000 and the number of RF-trees was 3,000. The scenario 4 was the best supported for all replicate analyses: it involves a bottleneck 

event in S. g. flaviventris right after divergence, a population size contraction in the ancestral population and not any secondary contact with 

asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris.  
 

 

Reference 

table 

Best 

scenario 

Votes 

(scenario 1) 

Votes 

(scenario 2) 

Votes 

(scenario 3) 

Votes 

(scenario 4) 

Votes 

(scenario 5) 

Votes 

(scenario 6) 

Votes 

(scenario 7) 

Votes 

(scenario 8) 

Prior error 

rate 

Posterior 

probability  

(best scenario) 

1 scenario 4 0.010 0.170 0.032 0.629 0.005 0.021 0.018 0.114 0.480 0.625 

2 scenario 4 0.012 0.209 0.018 0.583 0.007 0.026 0.023 0.123 0.480 0.589 

3 scenario 4 0.011 0.199 0.037 0.608 0.011 0.028 0.017 0.090 0.479 0.597 

4 scenario 4 0.006 0.150 0.021 0.639 0.012 0.018 0.034 0.121 0.475 0.627 

5 scenario 4 0.010 0.134 0.017 0.669 0.005 0.044 0.023 0.098 0.478 0.613 

6 scenario 4 0.009 0.220 0.026 0.563 0.019 0.026 0.030 0.106 0.477 0.546 

7 scenario 4 0.007 0.176 0.033 0.532 0.006 0.023 0.040 0.184 0.479 0.565 

8 scenario 4 0.020 0.220 0.035 0.506 0.004 0.031 0.018 0.164 0.480 0.536 

9 scenario 4 0.010 0.186 0.039 0.572 0.012 0.041 0.034 0.106 0.480 0.521 

10 scenario 4 0.013 0.126 0.035 0.620 0.005 0.019 0.021 0.163 0.478 0.618 

All scenario 4 0.011 0.179 0.029 0.592 0.008 0.028 0.026 0.127 0.479 0.584 
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Table S2.2. Estimation of the divergence time between S. g. gregaria and S. g. flaviventris for the ten replicate analyses processed using 

an informed mutational prior setting under the best supported scenario (scenario 4).  

  

Replicate analyses have been processed on different reference tables. For each reference table, the number of datasets simulated using DIYABC 

was set to 100,000 and the number of RF-trees was 2,000. Divergence times are given in number of generations (G). SD stands for standard 

deviations computed from the ten values of median, 5% quantile and 95% quantile estimated from the ten replicate analyses.  

 

tdiv (G) Median q5% q95% 

reference table 1 7440.0 2485.0 19380.0 

reference table 2 8257.1 2668.0 21086.0 

reference table 3 7930.3 2771.0 20310.9 

reference table 4 7301.0 2888.0 19639.5 

reference table 5 7598.6 2376.0 18260.6 

reference table 6 7426.0 2975.7 19704.7 

reference table 7 7776.0 3190.0 19290.2 

reference table 8 7960.0 2812.0 19664.2 

reference table 9 7552.3 2717.0 20685.0 

reference table 10 7991.0 2966.9 19060.7 

Mean 7723.2 2785.0 19708.2 

SD 307.3 240.5 817.8 
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Figure S2.1. Projection on a single (when analyzing pairwise groups of scenarios) or on the first two LDA axes (when analyzing the eight 

scenarios separately) of the observed dataset and the datasets recorded in the reference table simulated using an informed mutational 

prior setting.  

  

Colors correspond to group of scenarios or individual scenarios. The location of the desert locust observed dataset is indicated by a vertical black 

line or a star. Scenarios were grouped based on the presence or not of a bottleneck in S. g. flaviventris (b or no b), a population size contraction in 

ancestor (ca or no ca) and a secondary contact with asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris (sc or no sc). When 

considering the whole set of eight scenarios separately (d), the projected points substantially overlapped for at least some of the scenarios. This 

suggests an overall low power to discriminate among scenarios considered. Conversely, considering pairwise groups of scenarios, one can 

observe a weaker overlap of projected points (at least for (a) and (b)) suggesting a stronger power to discriminate among groups of scenarios of 

interest than when considering all scenarios separately. One can note that the location of the observed dataset (indicated by a vertical line) 

suggests an association with the scenario group with a bottleneck event in S. g. flaviventris and with the scenario group with a population size 

contraction in the ancestral population.  

 

(a) Scenario group g1= no b vs. group g2 = b       (b) Scenario group g1 = no ca vs. group g2 = ca 
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(c) Scenario group g1 = no sc vs. group g2 = sc      (d) All eight scenarios considered separately 
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Figure S2.2. Contributions of ABC-RF summary statistics when choosing between groups of scenarios using an informed mutational prior setting. 

The contribution of each 32 summary statistics and one LDA axis is evaluated as the total amount of decrease in the Gini criterion (variable importance on the 

x-axis). The higher the contribution of the statistics, the more informative it is in the inferential process. The microsatellite set and subspecies sample are 

indicated at the end of each statistics by indices k_i for single population statistics and k_i.j for two population statistics, with k=1 for the set of untranscribed 

microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for the S. g. flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See 

Table S6.1 for details on the summary statistics abbreviations. Five noise variables, randomly drawn into uniform distributions bounded between 0 and 1, and 

denoted NOISE1 to NOISE5 were added to the set of summary statistics processed by RF, in order to evaluate from which amount of decrease in the Gini 

criterion the summary statistics computed from our genetic datasets were not informative anymore (indicated by a red star). 

 

(a) Scenario group g1=no b vs. group g2 = b                (b) Scenario groups g1 = no ca vs group. g2 = ca     (c) Scenario groups g1 = no sc vs. group g2 = sc
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Figure S2.3. Contributions of ABC-RF summary statistics when choosing among the eight 

individual scenarios using an informed mutational prior setting.  

The contribution of each 32 summary statistics and one LDA axis is evaluated as the total amount of 

decrease in the Gini criterion (variable importance on the x-axis). The higher the contribution of the 

statistics, the more informative it is in the inferential process. The microsatellite set and subspecies 

sample are indicated at the end of each statistics by indices k_i for single population statistics and 

k_i.j for two population statistics, with k=1 for the set of untranscribed microsatellites or k=2 for the 

set of transcribed microsatellites, and i(j)=1 for the S. g. flaviventris subspecies or and i(j)=2 for the 

S. g. gregaria subspecies. See Table S6.1 for details on the summary statistics abbreviations. Five 

noise variables, randomly drawn into uniform distributions bounded between 0 and 1, and denoted 

NOISE1 to NOISE5 were added to the set of summary statistics processed by RF, in order to 

evaluate from which amount of decrease in the Gini criterion the summary statistics computed from 

our genetic datasets were not informative anymore (indicated by a red star). 
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Figure S2.4. Contributions of ABC-RF summary statistics when estimating the divergence time 

between the two desert locust subspecies using an informed mutational prior setting under the 

best supported scenario (scenario 4).  
  

The contribution of each 32 summary statistics is evaluated as the total amount of decrease of the 

residual sum of squares, divided by the number of trees, (variable importance on the x-axis). The 

higher the contribution of the statistics, the more informative it is in the inferential process. The 

microsatellite set and subspecies sample are indicated at the end of each statistics by indices k_i for 

single population statistics and k_i.j for two population statistics, with k=1 for the set of 

untranscribed microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for the S. g. 

flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table S6.1 for details on 

the summary statistics abbreviations. Five noise variables, randomly drawn into uniform distributions 

bounded between 0 and 1, and denoted NOISE1 to NOISE5 were added to the set of summary 

statistics processed by RF, in order to evaluate from which amount of decrease in the variable 

importance criterion the summary statistics computed from our genetic datasets were not informative 

anymore (indicated by a red star). 
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Supplementary material S3. Details on results from ABC-RF treatments using a naive mutational 

prior setting. 

Table S3.1. Scenario choice for the ten replicate analyses using a naive mutational prior setting. 

We report values for the proportion of votes, prior error rates and posterior probabilities of the best scenario on ten replicate analyses based on 

ten different reference tables. Scenarios are depicted in Figure 2. For each reference table, the number of datasets simulated using DIYABC was 

set to 100,000 and the number of RF-trees was 3,000. The scenario 4 was the best supported for all replicate analyses: it involves a bottleneck 

event in S. g. flaviventris right after divergence, a population size contraction in the ancestral population and not any secondary contact with 

asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris.  
 

Reference 

table 

Best 

scenario 

Votes 

(scenario 1) 

Votes 

(scenario 2) 

Votes 

(scenario 3) 

Votes 

(scenario 4) 

Votes 

(scenario 5) 

Votes 

(scenario 6) 

Votes 

(scenario 7) 

Votes 

(scenario 8) 

Prior 

error rate 

Posterior 

probability 

(best scenario) 

1 scenario 4 0.029 0.198 0.029 0.593 0.007 0.022 0.024 0.098 0.501 0.544 

2 scenario 4 0.015 0.149 0.025 0.680 0.008 0.022 0.020 0.080 0.503 0.597 

3 scenario 4 0.035 0.218 0.037 0.581 0.003 0.028 0.044 0.055 0.503 0.444 

4 scenario 4 0.014 0.142 0.022 0.661 0.003 0.018 0.029 0.112 0.504 0.578 

5 scenario 4 0.021 0.199 0.028 0.578 0.009 0.045 0.017 0.103 0.505 0.478 

6 scenario 4 0.007 0.143 0.027 0.692 0.009 0.020 0.018 0.082 0.500 0.610 

7 scenario 4 0.009 0.193 0.033 0.620 0.014 0.037 0.017 0.077 0.503 0.554 

8 scenario 4 0.038 0.171 0.036 0.614 0.013 0.025 0.027 0.076 0.504 0.565 

9 scenario 4 0.019 0.151 0.101 0.540 0.009 0.052 0.034 0.094 0.500 0.518 

10 scenario 4 0.005 0.220 0.031 0.600 0.015 0.029 0.025 0.074 0.500 0.583 

All scenario 4 0.019 0.178 0.037 0.616 0.009 0.030 0.026 0.085 0.502 0.547 
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Table S3.2. Estimation of the divergence time between S. g. gregaria and S. g. flaviventris 

for ten replicate analyses using a naive mutational prior setting under the best 

supported scenario (scenario 4).  

 

Replicate analyses have been processed on different reference tables. For each reference table, 

the number of datasets simulated using DIYABC was set to 100,000 and the number of RF-

trees was 2,000. Divergence times are given in number of generations (G). SD stands for 

standard deviations computed from the ten values of median, 5% quantile and 95% quantile 

estimated from the ten replicate analyses. 

 

tdiv (G) Median q5% q95% 

reference table 1 4778.0 1201.0 21090.1 

reference table 2 4649.8 1102.0 24906.4 

reference table 3 4980.0 1192.0 22502.1 

reference table 4 5425.7 1155.0 22348.2 

reference table 5 5103.3 1309.0 23837.2 

reference table 6 5879.8 1167.0 23822.8 

reference table 7 5067.0 1395.0 28037.6 

reference table 8 4449.0 1143.0 19775.3 

reference table 9 5495.8 1344.0 26723.8 

reference table 10 6519.1 1235.0 25410.8 

Mean 5234.8 1224.3 23845.4 

SD 619.0 95.4 2530.7 
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Figure S3.1. Projection on a single (when analyzing pairwise groups of scenarios) or on the first two LDA axes (when analyzing the eight 

scenarios separately) of the observed dataset and the datasets recorded in the reference table simulated using a naive mutational prior 

setting.  
 

Colors correspond to group of scenarios or individual scenarios. The location of the desert locust observed dataset is indicated by a vertical black 

line or a star. Scenarios were grouped based on the presence or not of a bottleneck in S. g. flaviventris (b or no b), a population size contraction in 

ancestor (ca or no ca) and a secondary contact with asymmetrical genetic admixture from S. g. gregaria into S. g. flaviventris (sc or no sc). When 

considering the whole set of eight scenarios separately (d), the projected points substantially overlapped for at least some of the scenarios. This 

suggests an overall low power to discriminate among scenarios considered. Conversely, considering pairwise groups of scenarios, one can 

observe a weaker overlap of projected points (at least for (a) and (b)) suggesting a stronger power to discriminate among groups of scenarios of 

interest than when considering all scenarios separately. One can note that the location of the observed dataset (indicated by a vertical line) 

suggests an association with the scenario group with a bottleneck event in S. g. flaviventris and with the scenario group with a population size 

contraction in the ancestral population.  

 

(a)  Scenario group g1 = no b vs. group g2 = b       (b) Scenario group g1 = no ca vs. group g2 = ca 
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(c) Scenario group g1 = no sc vs. group g2 = sc       (d) All eight scenarios considered separately 
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Figure S3.2. Contributions of ABC-RF summary statistics when choosing among the 

eight individual scenarios using a naive mutational prior setting. 

 The contribution of each 32 summary statistics and one LDA axis is evaluated as the total 

amount of decrease in the Gini criterion (variable importance on the x-axis). The higher the 

contribution of the statistics, the more informative it is in the inferential process. The 

microsatellite set and subspecies sample are indicated at the end of each statistics by indices 

k_i for single population statistics and k_i.j for two population statistics, with k=1 for the set 

of untranscribed microsatellites or k=2 for the set of transcribed microsatellites, and i(j)=1 for 

the S. g. flaviventris subspecies or and i(j)=2 for the S. g. gregaria subspecies. See Table S6.1 

for details on the summary statistics abbreviations. Five noise variables, randomly drawn into 

uniform distributions bounded between 0 and 1, and denoted NOISE1 to NOISE5 were added 

to the set of summary statistics processed by RF, in order to evaluate from which amount of 

decrease in the Gini criterion the summary statistics computed from our genetic datasets were 

not informative anymore (indicated by a red star). 
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Figure S3.3. Contributions of ABC-RF summary statistics when estimating the 

divergence time between the two desert locust subspecies using a naïve mutational prior 

setting under the best supported scenario (scenario 4).  
 

The contribution of each 32 summary statistics is evaluated as the total amount of decrease of 

the residual sum of squares, divided by the number of trees, (variable importance on the x-

axis). The higher the contribution of the statistics, the more informative it is in the inferential 

process. The microsatellite set and subspecies sample are indicated at the end of each 

statistics by indices k_i for single population statistics and k_i.j for two population statistics, 

with k=1 for the set of untranscribed microsatellites or k=2 for the set of transcribed 

microsatellites, and i(j)=1 for the S. g. flaviventris subspecies or and i(j)=2 for the S. g. 

gregaria subspecies. See Table S6.1 for details on the summary statistics abbreviations. Five 

noise variables, randomly drawn into uniform distributions bounded between 0 and 1, and 

denoted NOISE1 to NOISE5 were added to the set of summary statistics processed by RF, in 

order to evaluate from which amount of decrease in the variable importance criterion the 

summary statistics computed from our genetic datasets were not informative anymore 

(indicated by a red star) 
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Supplementary material S4. On the influence of climatic cycles on 

the potential range variation of the desert locust Schistocerca 

gregaria. 

 

It may appear surprising, at least  at first sight, that the southern colonization of the desert 

locust did not occur during one of the major glacial episodes of the last Quaternary cycle, 

since these periods are characterized by a more continuous range of the desert locust (see 

paleo-vegetation maps in Figures 1E and 1F in the main text). In particular, during the last 

glacial maximum (LGM, -14.8 Ky to -26 Ky), the Sahara desert extended hundreds of km 

further South than at present and annual precipitation were lower (i.e. ~200–1,000 mm/year). 

Several hypotheses explain why our evolutionary scenario choice procedure provided low 

support to the possibility of a birth of the locust subspecies S. g. flaviventris at older periods. 

First, we cannot exclude that our microsatellite genetic data allow making inferences about 

the last colonization event only. The probabilities of choosing scenarios including a genetic 

admixture event after the split were the lowest, with a posterior predictive error of 16.1% (see 

Table 1 in the main text). The recent North-to-South colonization event selected by our ABC-

RF treatment may hence have blurred traces of older colonization events.  

Second, while there is large evidence that much of Africa was drier during the last 

glacial phase, this remains debated for southwestern Africa (see the gray coloration in Figure 

3B in the main text). Some climate models show that at least some parts of this region, such 

as the Kalahari Desert, may have experienced higher rainfall than at present (Cockcroft 1987; 

Ganopolski et al. 1998; Chase and Meadows 2007). Such regional responses to glacial cycles 

may have prolonged until the middle Holocene. In particular, the northern Younger Dryas 

(i.e. -12.9 to -11.7 Ky) can be correlated only partly with an arid period in the southern 

hemisphere (i.e. -14.4 to -12.5 Ky). Such older climate episodes in antiphase between 
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hemispheres (see the sandy brown coloration in Figure 3B in the main text) may have 

prevented from either a successful North-to-South migration event or a successful 

establishment and spread in the new southern range.  

Third, although semi-desert and desert biomes were more expanded than at present 

during the LGM, extreme aridity and lowered temperatures may have actually been 

unfavorable to the species. For example, mean temperatures lowered by 5 to 6°C in both 

southern-western Africa (Stute and Talma 1997) and Central Sahara (Edmunds et al. 

1999).The maintenance of desert locust populations depends on the proximity of areas with 

rainfalls at different seasons or with the capacity to capture and release water. For instance, in 

the African northern range, breeding success of locust populations relies on seasonal 

movements between the Sahel-Saharan zones of inter-tropical convergence, where the 

incidence of rain is high in summer, and the Mediterranean-Saharan transition zone, with a 

winter rainfall regime (Rainey and Waloff 1951). In addition, adult migration and nymphal 

growth of the desert locust are dependent upon high temperature (Roffey and Magor 2003). It 

is hence possible then that the conjunction of hyper-aridity with intense cold could not easily 

support populations of the desert locust, despite the high extent of their migrations.  

While ABC-RF analyses did not support that the Quaternary climatic history 

explained the subspecific divergence in the desert locust, they provided evidence for the 

occurrence of a large contraction of the size of the ancestral population preceding the 

divergence. Using the median as a point estimate, we estimated that the population size 

contraction in the ancestor could have occurred at a time about three fold older than the 

divergence time between the subspecies. This corresponds to the African humid period in the 

early and middle stages of the Holocene, though the large credibility interval also included the 

last interglacial period of the Pleistocene (Figure 3B in the main text). Such population size 

contraction was likely induced by the severe(s) contraction(s) of deserts that prevailed prior 

the estimated divergence between the two subspecies. Interestingly, these humid periods were 
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more intense and prolonged in northern Africa, which corresponded to the presumed center of 

origin of the most recent common ancestor (Scott 1993; Partridge 1997; Shi et al. 1998).  
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Supplementary material S5. Details on results from ABC-RF treatments when assuming uniform 

priors for the three time period parameters of the studied scenarios. 

Table S5.1. Scenario choice for each of the ten replicate analyses using an informed mutational prior setting and uniform priors for the 

three time period parameters of the studied scenarios. 

We empirically evaluated the influence of shape of prior distributions for the time periods on our inferences by conducting all ABC-RF analyses 

assuming a set of uniform priors bounded between 100 and 500,000 generations. In the main document, prior values for time periods were drawn 

from log-uniform distributions bounded between 100 and 500,000 generations. We report values for the proportion of votes, prior error rates and 

posterior probabilities of the best scenario on ten replicate analyses based on ten different reference tables. Scenarios are depicted in Figure 2. 

For each reference table, the number of datasets simulated using DIYABC was set to 100,000 and the number of RF-trees was 3,000. The 

scenario 4 was the best supported for all replicate analyses: it involves a bottleneck event in S. g. flaviventris right after divergence, a population 

size contraction in the ancestral population and not any secondary contact with asymmetrical genetic admixture from S. g. gregaria into S. g. 

flaviventris.  

 

Reference 

table 

Best 

scenario 

Votes 

(scenario 1) 

Votes 

(scenario 2) 

Votes 

(scenario 3) 

Votes 

(scenario 4) 

Votes 

(scenario 5) 

Votes 

(scenario 6) 

Votes 

(scenario 7) 

Votes 

(scenario 8) 

Prior 

error rate 

Probability 

(best scenario) 

1 scenario 4 0.012 0.150 0.041 0.590 0.010 0.058 0.036 0.103 0.697 0.635 

2 scenario 4 0.016 0.207 0.071 0.491 0.017 0.028 0.055 0.115 0.695 0.604 

3 scenario 4 0.020 0.320 0.029 0.452 0.011 0.027 0.041 0.101 0.696 0.483 

4 scenario 4 0.031 0.205 0.061 0.494 0.012 0.045 0.045 0.107 0.698 0.499 

5 scenario 4 0.044 0.230 0.053 0.422 0.018 0.056 0.021 0.157 0.697 0.458 

6 scenario 4 0.012 0.253 0.034 0.505 0.012 0.049 0.031 0.105 0.697 0.597 

7 scenario 4 0.040 0.128 0.114 0.465 0.022 0.057 0.070 0.104 0.697 0.602 

8 scenario 4 0.016 0.250 0.055 0.439 0.014 0.028 0.040 0.159 0.696 0.520 

9 scenario 4 0.016 0.220 0.061 0.528 0.009 0.030 0.027 0.109 0.697 0.610 

10 scenario 4 0.026 0.163 0.031 0.538 0.005 0.049 0.038 0.150 0.693 0.621 

Mean scenario 4 0.023 0.212 0.055 0.492 0.013 0.043 0.040 0.121 0.696 0.563 
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Table S5.2. Estimation of the divergence time between S. g. gregaria and S. g. 

flaviventris for ten replicate analyses using an informed mutational prior setting and 

uniform prior distributions for the three time period parameters under the best 

supported scenario (scenario 4).  
 

We empirically evaluated the influence of shape of prior distributions for the time periods on 

our inferences by conducting all ABC-RF analyses assuming a set of uniform priors bounded 

between 100 and 500,000 generations. Median value and 90% CI for priors are 146,936 and 

13,195 – 498,867, respectively. Replicate analyses have been processed on different 

reference tables. For each reference table, the number of datasets simulated using DIYABC 

was set to 100,000 and the number of RF- trees was 2,000. Divergence times are given in 

number of generations. SD stands for standard deviations computed from the ten values of 

median, 5% quantile and 95% quantile estimated from the ten replicate analyses.  

 

tdiv (G) Median q5% q95% 

reference table 1 10236.6 3678.5 25457.0 

reference table 2 7603.0 2311.2 23020.3 

reference table 3 8500.0 2788.8 19401.0 

reference table 4 10598.5 3564.4 24444.5 

reference table 5 9226.0 3147.9 21286.6 

reference table 6 9665.0 3381.5 24445.2 

reference table 7 8675.5 2572.3 26375.8 

reference table 8 10281.6 2919.8 27349.0 

reference table 9 8845.0 3271.9 24094.7 

reference table 10 7909.7 2040.1 21333.4 

Mean 9154.1 2967.6 23720.8 

SD 1027.5 541.6 2476.4 
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Figure S5.1. Estimation of the time since divergence between the two desert locust 

subspecies as a function of time scales using an informed mutational prior setting and 

uniform prior distributions for the three time period parameters under the best 

supported scenario (scenario 4).  

 

Simulated datasets (5,000 par divergence time) were generated for fixed divergence time 

values of 100 ; 250 ; 500; 1,000 ; 2,500; 5,000 ; 10,000 ; 25,000 ; 50,000; 100,000; and 

250,000 generations. The median (plain lines) and 90% credibility interval (dashed lines), 

averaged over the 5,000 datasets, are represented. Divergence time values are in number of 

generations. 
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Supplementary material S6. Details on the set of summary statistics used for ABC-RF treatments and 

effect of the number of simulated datasets recorded in the reference table and of the number of trees 

in the random forest.  
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Table S6.1. Summary statistics provided by DIYABC and values computed from the observed microsatellite dataset.  
 

 

 Summary statistics 

Observed values  at 

untranscribed markers 

Observed values at 

transcribed markers 

S. g. gregaria  

one-sample statistics 

NAL 28.8 15.8 

HET 0.92 0.79 

 VAR 36.1 13.3 

 MGW 0.92 0.86 

S. g. flaviventris  

one-sample statistics 

NAL 23.4 14.4 

HET 0.86 0.69 

 VAR 33.4 16.7 

 MGW 0.96 0.95 

Two-samples statistics FST 0.04 0.12 

 DAS 0.07 0.16 

 LIKSgg


 Sgf 3.61 2.82 

 LIKSgf 


 Sgg 3.20 2.55 

 DM2 22.7 12.4 

 N2P 35.0 21.1 

 H2P 0.91 0.79 

 V2P 40.2 18.2 

 

NAL: mean number of alleles; HET: mean expected heterozygosity; VAR: variance of allele sizes in base pairs; MGW: M index of Garza and 

Williamson (2001); FST: pairwise differentiation estimator of Weir and Cockerham (1984); DAS: shared allele distance (Chakraborty and Jin 

1993); LIK: the mean index of classification (Rannala and Moutain, 1997; Pascual et al. 2007); DM2: distance of Golstein et al. (1995). N2P, 

H2P and V2P: NAL, HET and VAR statistics computed after pooling the two population samples. Note that five “noise variables”, randomly 
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drawn into uniform distributions bounded between 0 and 1, and denoted NOISE1 to NOISE5 in the concerned illustrations, were added to the set 

of summary statistics processed by RF, in order to evaluate which summary statistics of our genetic datasets were informative in our different 

inferential ABC-RF settings, when conducting scenario choice or parameter estimation. Such noise variables do not alter ABC-RF inferences 

(see Marin et al. 2018; Raynal et al. 2019).  
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Table S6.2. Effect of the number of simulated datasets in the reference table on scenario choice using an informed mutational prior 

setting. 

. 

nref 50,000 80,000 90,000 100,000 

 
Mean SD Mean SD Mean SD Mean SD 

Votes (scenario 1) 0.011 0.006 0.010 0.006 0.009 0.004 0.011 0.004 

Votes (scenario 2) 0.197 0.035 0.192 0.034 0.182 0.029 0.179 0.034 

Votes (scenario 3) 0.033 0.009 0.029 0.009 0.031 0.008 0.029 0.008 

Votes (scenario 4) 0.572 0.032 0.580 0.051 0.592 0.046 0.592 0.050 

Votes (scenario 5) 0.009 0.006 0.008 0.005 0.008 0.005 0.008 0.005 

Votes (scenario 6) 0.029 0.012 0.030 0.008 0.029 0.009 0.028 0.009 

Votes (scenario 7) 0.021 0.006 0.024 0.008 0.025 0.006 0.026 0.008 

Votes (scenario 8) 0.127 0.028 0.126 0.031 0.123 0.027 0.127 0.032 

Prior error rate 0.486 0.001 0.480 0.002 0.479 0.002 0.479 0.001 

Posterior probability  

of the best model 
0.573 0.032 0.576 0.035 0.581 0.035 0.584 0.039 

 

Scenarios are depicted in Figure 2. The number of records in the reference datasets (nref) simulated from DIYABC varied from 50,000 to 

100,000. We report mean and standard deviation values for the proportion of votes for each scenario, and for prior error rates and posterior 

probabilities of the best scenario for ten replicate analyses. Replicate analyses have been processed on different reference tables. The number of 

RF-trees was 3,000. The scenario 4 was the best supported for all replicate analyses: it involves a bottleneck event in S. g. flaviventris right after 

divergence, a population size contraction in the ancestral population and not any secondary contact with asymmetrical genetic admixture from S. 

g. gregaria into S. g. flaviventris. 
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Table S6.3. Effect of the number of simulated datasets in the reference table on posterior point estimation values (A) and estimation 

accuracy (B) of the divergence time between S. g. gregaria and S. g. f laviventris under the best supported scenario (scenario 4) and using 

an informed mutational prior setting.  

 

 (A) 

 nref  
50,000 80,000 90,000 100,000 

 

  Mean SD Mean SD Mean SD Mean SD 

Posterior 

estimations 

         

Median 7731.8 448.9 7691.8 357.5 7724.8 318.0 7723.2 307.3 

q5% 2697.0 129.7 2706.8 235.2 2764.4 172.9 2785.0 240.5 

q95% 20295.5 1763.6 19711.6 1451.3 19508.7 1264.1 19708.2 817.8 

 

(B) 

 nref 50,000 80,000 90,000 100,000 

      

Accuracy 

measures 

 

Prior NMAE  0.378 0.365 0.362 0.359 

Posterior NMAE  0.375 0.370 0.365 0.369 

 

The number of records in the reference datasets (nref) simulated from DIYABC varied from 50,000 to 100,000. The number of RF-trees was set 

to 2,000. (a) Replicate analyses have been processed on ten reference tables. (b). The normalized mean absolute error (NMAE) is the absolute 

difference between the point estimate (here the median) and the (true) simulated value divided by the (true) simulated value. 
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Figure S6.1. Effect of the number of RF-trees for scenario choice. 

    

 

 

 

 

 

 

 

 

 

 

 

 

We here illustrate the effect of the number of trees in the forest on the prior error rate using an informed mutational prior setting and 

considering the eight compared scenarios separately. The number of datasets in the reference table simulated using DIYABC was 100,000. 

The shape of the curve shows that the prior error rate stabilizes for a number of RF-trees > 2,000. 
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Figure S6.2. Effect of the number of RF-trees for parameter estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We here illustrate the effect of the number of trees in the forest on the RF mean square error of the divergence time between S. g. gregaria and S. 

g. flaviventris under the selected scenario 4 and using an informed mutational prior setting. The number of datasets in the reference table 

simulated using DIYABC was 100,000. The shape of the curve shows that the prior error rate stabilizes for a number of RF-trees > 1,500 
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