Submit a preprint

411

Landscape connectivity alters the evolution of density-dependent dispersal during pushed range expansionsuse asterix (*) to get italics
Maxime Dahirel, Aline Bertin, Vincent Calcagno, Camille Duraj, Simon Fellous, Géraldine Groussier, Eric Lombaert, Ludovic Mailleret, Anaël Marchand, Elodie VerckenPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2021
<p style="text-align: justify;">As human influence reshapes communities worldwide, many species expand or shift their ranges as a result, with extensive consequences across levels of biological organization. Range expansions can be ranked on a continuum going from pulled dynamics, in which low-density edge populations provide the “fuel” for the advance, to pushed dynamics in which high-density rear populations “push” the expansion forward. While theory suggests that evolution during range expansions could lead pushed expansions to become pulled with time, empirical comparisons of phenotypic divergence in pushed vs. pulled contexts are lacking. In a previous experiment using <em>Trichogramma brassicae</em> wasps as a model, we showed that expansions were more pushed when connectivity was lower. Here we used descendants from these experimental landscapes to look at how the range expansion process and connectivity interact to shape phenotypic evolution. Interestingly, we found no clear and consistent phenotypic shifts, whether along expansion gradients or between reference and low connectivity replicates, when we focused on low-density trait expression. However, we found evidence of changes in density-dependence, in particular regarding dispersal: populations went from positive to negative density-dependent dispersal at the expansion edge, but only when connectivity was high. As positive density-dependent dispersal leads to pushed expansions, our results confirm predictions that evolution during range expansions may lead pushed expansions to become pulled, but add nuance by showing landscape conditions may slow down or cancel this process. This shows we need to jointly consider evolution and landscape context to accurately predict range expansion dynamics and their consequences.</p> <div id="ConnectiveDocSignExtentionInstalled" data-extension-version="1.0.4"></div>
https://doi.org/10.5281/zenodo.4570235You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
biological invasions; context-dependent dispersal; experimental evolution; habitat fragmentation; spatial sorting; Trichogramma
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Evolutionary Ecology, Experimental Evolution
No need for them to be recommenders of PCIEvolBiol. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2021-03-05 17:15:46
Inês Fragata