Submit a preprint

220

The insertion of a mitochondrial selfish element into the nuclear genome and its consequencesuse asterix (*) to get italics
Julien Y. Dutheil, Karin Münch, Klaas Schotanus, Eva H. Stukenbrock and Regine KahmannPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2020
<p>Homing endonucleases (HE) are enzymes capable of cutting DNA at highly specific target sequences, the repair of the generated double-strand break resulting in the insertion of the HE-encoding gene ("homing" mechanism). HEs are present in all three domains of life and viruses; in eukaryotes, they are mostly found in the genomes of mitochondria and chloroplasts, as well as nuclear ribosomal RNAs. We here report the case of a HE that accidentally integrated into a telomeric region of the nuclear genome of the fungal maize pathogen Ustilago maydis. We show that the gene has a mitochondrial origin, but its original copy is absent from the U. maydis mitochondrial genome, suggesting a subsequent loss or a horizontal transfer from a different species. The telomeric HE underwent mutations in its active site and lost its original start codon. A potential other start codon was retained downstream, but we did not detect any significant transcription of the newly created open reading frame, suggesting that the inserted gene is not functional. Besides, the insertion site is located in a putative RecQ helicase gene, truncating the C-terminal domain of the protein. The truncated helicase is expressed during infection of the host, together with other homologous telomeric helicases. This unusual mutational event altered two genes: the integrated HE gene subsequently lost its homing activity, while its insertion created a truncated version of an existing gene, possibly altering its function. As the insertion is absent in other field isolates, suggesting that it is recent, the U. maydis 521 reference strain offers a snapshot of this singular mutational event.</p>
https://gitlab.gwdg.de/molsysevol/umag_11064You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
https://www.biorxiv.org/content/10.1101/787044v4.supplementary-materialYou should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
homing endonuclease, mitochondrion, intron, gene birth, gene transfer
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Genome Evolution, Molecular Evolution
No need for them to be recommenders of PCIEvolBiol. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2019-09-30 20:34:23
Sylvain Charlat