Submit a preprint

654

The evolutionary dynamics of plastic foraging and its ecological consequences: a resource-consumer modeluse asterix (*) to get italics
Léo Ledru, Jimmy Garnier, Océane Guillot, Erwan Faou, Camille Noûs, Sébastien IbanezPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2023
<p style="text-align: justify;">Phenotypic plasticity has important ecological and evolutionary consequences. In particular, behavioural phenotypic plasticity such as plastic foraging (PF) by consumers, may enhance community stability. Yet little is known about the ecological conditions that favor the evolution of PF, and how the evolutionary dynamics of PF may modulate its effects on community stability. In order to address these questions, we constructed an eco evolutionary model in which resource and consumer niche traits underwent evolutionary diversification. Consumers could either forage randomly, only as a function of resources abundance, or plastically, as a function of resource abundance, suitability and consumption by competitors. PF evolved when the niche breadth of consumers with respect to resource use was large enough and when the ecological conditions allowed substantial functional diversification. In turn, PF promoted further diversification of the niche traits in both guilds. This suggests that phenotypic plasticity can influence the evolutionary dynamics at the community-level. Faced with a sudden environmental change, PF promoted community stability directly and also indirectly through its effects on functional diversity. However, other disturbances such as persistent environmental change and increases in mortality, caused the evolutionary regression of the PF behaviour, due to its costs. The causal relationships between PF, community stability and diversity are therefore intricate, and their outcome depends on the nature of the environmental disturbance, in contrast to simpler models claiming a direct positive relationship between PF and stability.</p>
You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
https://doi.org/10.5281/zenodo.8340657You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
phenotypic plasticity, adaptive foraging, plastic foraging, eco-evolutionnary dynamics, community stability
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Bioinformatics & Computational Biology, Evolutionary Dynamics, Evolutionary Ecology, Phenotypic Plasticity
peter.abrams@utoronto.ca, c.j.m.egas@uva.nl, fvaldovinos@ucdavis.edu, mkondoh@rins.ryukoku.ac.jp No need for them to be recommenders of PCIEvolBiol. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2023-03-25 12:04:08
François Rousset