Submit a preprint

173

When sinks become sources: adaptive colonization in asexualsuse asterix (*) to get italics
Florian Lavigne, Guillaume Martin, Yoann Anciaux, Julien Papaïx, Lionel RoquesPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2019
<p>The successful establishment of a population into a new empty habitat outside of its initial niche is a phenomenon akin to evolutionary rescue in the presence of immigration. It underlies a wide range of processes, such as biological invasions by alien organisms, host shifts in pathogens or the emergence of resistance to pesticides or antibiotics from untreated areas. In this study, we derive an analytically tractable framework to describe the coupled evolutionary and demographic dynamics of asexual populations in a source-sink system. In particular, we analyze the influence of several factors --- immigration rate, mutational parameters, and harshness of the stress induced by the change of environment --- on the establishment success in the sink (i.e. the formation of a self-sufficient population in the sink), and on the time until establishment. To this aim, we use a classic phenotype-fitness landscape (Fisher's geometrical model in n dimensions) where source and sink habitats determine distinct phenotypic optima. The harshness of stress, in the sink, is determined by the distance between the fitness optimum in the sink and that of the source. The dynamics of the full distribution of fitness and of population size in the sink are analytically predicted under a strong mutation strong immigration limit where the population is always polymorphic. The resulting eco-evolutionary dynamics depend on mutation and immigration rates in a non straightforward way. Below some mutation rate threshold, establishment always occurs in the sink, following a typical four-phases trajectory of the mean fitness. The waiting time to this establishment is independent of the immigration rate and decreases with the mutation rate. Beyond the mutation rate threshold, lethal mutagenesis impedes establishment and the sink population remains so, albeit with an equilibrium state that depends on the details of the fitness landscape. We use these results to get some insight into possible effects of several management strategies.</p>
https://www.biorxiv.org/content/10.1101/433235v5.supplementary-materialYou should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
host shift ; antibiotic resistance ; migration ; mutation ; Fisher's Geometrical Model ; Partial Differential Equations
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Adaptation, Evolutionary Applications, Evolutionary Dynamics, Evolutionary Ecology
e.g. John Doe john@doe.com
No need for them to be recommenders of PCIEvolBiol. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe john@doe.com
2018-10-03 20:59:16
François Blanquart